
MO806/MC914 - Tópicos

MC853 - Projeto

Ênfase em Software Livre

Islene Calciolari Garcia
Instituto de Computação - Unicamp
Segundo Semestre de 2020



Objetivos

I Visão geral de Sistemas Operacionais Modernos
I Dinâmica de desenvolvimento utilizando Software Livre
I Identificação de fronteiras pesquisa/desenvolvimento
I Experimentos práticos
I Proposta de contribuições



Sistemas Operacionais - UNIVESP

I Prof. Jó Ueyama
I Conceitos básicos sobre Sistemas Operacionais
I Enfoque teórico
I Referência principal: Tanenbaum



Visão geral de Sistemas Operacionais Modernos

Operating System Concepts
Tenth Edition

Avi Silberschatz
Peter Baer Galvin
Greg Gagne

John Wiley & Sons, Inc.
ISBN 978-1-118-06333-0

“Face The Real World of Operating Systems Fully Equipped”



Visão Geral de Sistemas Operacionais Modernos

4 Chapter 1 Introduction

1.1 What Operating Systems Do

We begin our discussion by looking at the operating system’s role in the
overall computer system. A computer system can be divided roughly into four
components: the hardware, the operating system, the application programs,
and a user (Figure 1.1).

The hardware—the central processing unit (CPU), the memory, and the
input/output (I/O) devices—provides the basic computing resources for the
system. The application programs—such as word processors, spreadsheets,
compilers, and web browsers—define the ways in which these resources are
used to solve users’ computing problems. The operating system controls the
hardware and coordinates its use among the various application programs for
the various users.

We can also view a computer system as consisting of hardware, software,
and data. The operating system provides the means for proper use of these
resources in the operation of the computer system. An operating system is
similar to a government. Like a government, it performs no useful function
by itself. It simply provides an environment within which other programs can
do useful work.

To understand more fully the operating system’s role, we next explore
operating systems from two viewpoints: that of the user and that of the system.

1.1.1 User View

The user’s view of the computer varies according to the interface being used.
Many computer users sit with a laptop or in front of a PC consisting of a
monitor, keyboard, and mouse. Such a system is designed for one user to
monopolize its resources. The goal is to maximize the work (or play) that the
user is performing. In this case, the operating system is designed mostly for
ease of use, with some attention paid to performance and security and none
paid to resource utilization—how various hardware and software resources
are shared.

(compilers, web browsers, development kits, etc.)

user

application programs

operating system

computer hardware
(CPU, memory, I/O devices, etc.)

Figure 1.1 Abstract view of the components of a computer system.

Operating System Concepts, página 04



Visão Geral de Sistemas Operacionais Modernos

6 Chapter 1 Introduction

exist because they offer a reasonable way to solve the problem of creating
a usable computing system. The fundamental goal of computer systems is
to execute programs and to make solving user problems easier. Computer
hardware is constructed toward this goal. Since bare hardware alone is not
particularly easy to use, application programs are developed. These programs
require certain common operations, such as those controlling the I/O devices.
The common functions of controlling and allocating resources are then brought
together into one piece of software: the operating system.

In addition, we have no universally accepted definition of what is part of
the operating system. A simple viewpoint is that it includes everything a ven-
dor ships when you order “the operating system.” The features included, how-
ever, vary greatly across systems. Some systems take up less than a megabyte
of space and lack even a full-screen editor, whereas others require gigabytes
of space and are based entirely on graphical windowing systems. Amore com-
mon definition, and the one that we usually follow, is that the operating system
is the one program running at all times on the computer—usually called the
kernel. Along with the kernel, there are two other types of programs: system
programs, which are associated with the operating system but are not neces-
sarily part of the kernel, and application programs, which include all programs
not associated with the operation of the system.

The matter of what constitutes an operating system became increasingly
important as personal computers becamemore widespread and operating sys-
tems grew increasingly sophisticated. In 1998, the United States Department of
Justice filed suit against Microsoft, in essence claiming that Microsoft included
toomuch functionality in its operating systems and thus prevented application
vendors from competing. (For example, a web browser was an integral part of
Microsoft’s operating systems.)As a result,Microsoftwas found guilty of using
its operating-system monopoly to limit competition.

Today, however, if we look at operating systems for mobile devices, we
see that once again the number of features constituting the operating system
is increasing. Mobile operating systems often include not only a core kernel
but also middleware—a set of software frameworks that provide additional
services to application developers. For example, each of the two most promi-
nentmobile operating systems—Apple’s iOS andGoogle’s Android—features

WHY STUDY OPERATING SYSTEMS?

Although there are many practitioners of computer science, only a small per-
centage of themwill be involved in the creation or modification of an operat-
ing system. Why, then, study operating systems and how they work? Simply
because, as almost all code runs on top of an operating system, knowledge
of how operating systems work is crucial to proper, efficient, effective, and
secure programming.Understanding the fundamentals of operating systems,
how they drive computer hardware, andwhat they provide to applications is
not only essential to those who program them but also highly useful to those
who write programs on them and use them.

Operating System Concepts, página 06



Visão Geral de Sistemas Operacionais Modernos

Tópicos de interesse:
I Gerenciamento de processos
I Programação multithread
I Gerenciamento de memória
I Gerenciamento de arquivos
I Entrada e saı́da
I Virtualização
I ...



Dinâmica de desenvolvimento com Software Livre
O que é Software Livre?

É um software que permite ao usuário 4 liberdades:
Liberdade 0 Executar
Liberdade 1 Estudar e adaptar
Liberdade 2 Distribuir cópias
Liberdade 3 Distribuir cópias modificadas



Dinâmica de desenvolvimento com Software Livre
Software Livre é Gratuito?

I Pode ser, mas não necessariamente
Free as in free speech, not as in free beer.
-Richard M. Stallman

I As pessoas podem ganhar dinheiro com software livre?

“One of the questions I’ve always hated answering is
how do people make money in open source. And I think
that Caldera and Red Hat – and there are a number of
other Linux companies going public – basically show
that yes, you can actually make money in the open-
source area.” -Linus Torvalds



Dinâmica de desenvolvimento com Software Livre
Software Livre é Gratuito?

I Pode ser, mas não necessariamente
Free as in free speech, not as in free beer.
-Richard M. Stallman

I As pessoas podem ganhar dinheiro com software livre?

“One of the questions I’ve always hated answering is
how do people make money in open source. And I think
that Caldera and Red Hat – and there are a number of
other Linux companies going public – basically show
that yes, you can actually make money in the open-
source area.” -Linus Torvalds



Dinâmica de desenvolvimento com Software Livre
Estudantes podem ganhar dinheiro com Software Livre?

I Outreachy
I GSoC



Free Software == Open Source?

Quase iguais, com diferentes abordagens:

http://atomrace.com/blog/wp-content/uploads/2016/03/free-software-vs-open-source.png

http://atomrace.com/blog/wp-content/uploads/2016/03/free-software-vs-open-source.png


O Movimento Software Livre

I Richard M. Stallman
I 1983
I Projeto GNU (GNU’s Not Unix)
I Free Software Foundation

The Free Software Foundation (FSF) is a nonprofit with
a worldwide mission to promote computer user free-
dom. We defend the rights of all software users.

http://www.fsf.org/


Open Source Initiative

I Bruce Perens e Eric S.
Raymond.

I 1998

I The Cathedral and the Bazaar
I Linux é subsersivo: desenvolvimento totalmente aberto e

público
I Lei de Linus: “Dado um número de olhos suficiente, todos

os erros são triviais”
I Desenvolvimento de software de alta qualidade



Como se desenvolve software livre?

I Deixando código disponı́vel, sob uma boa licença
I Com uma comunidade colaborativa é muito melhor:

I Canais IRC
I Listas de discussões
I Wikis
I Encontros
I Gerenciamento de bugs e melhorias
I Hierarquia, mantenedores, contribuidores

I Cuidado com os malas! Siga os códigos de conduta!



Exemplo de projeto/comunidade: GNU

I Bem estabelecida
I Algumas mudanças são

difı́ceis
I Pontos de colaboração claros
I Projetos prioritários



Exemplo de projeto/comunidade: Linux

I http://www.kernel.org/
I Milhões de linhas de código
I Comunidade hierárquica.

Linus Torvalds (chefão),
mantenedores e
contribuidores.

I Não tão livre assim... :-(
I Projeto Linux-libre e

distribuições GNU/Linux 100%
livres

http://www.kernel.org/


Exemplo de projeto/comunidade: Android

I Sistema operacional para
dispositivos móveis

I Open Handset Alliance e
Google

I Licença Apache
I Quem tem acesso ao código

que roda nos celulares?
I Código da comunidade é bem

aceito?
I Colaboração com a

comunidade Kernel Linux



Identificação fronteiras pesquisa/desenvolvimento

Pesquisa
I Busca por artigos, relatórios técnicos, teses
I Conferências cientı́ficas

Desenvolvimento
I Canais da comunidade
I Conferências como linuxdev-br



Critério de Avaliação

I MC806/MC914: Projeto individual ou em dupla
I MC853: Projeto individual ou em grupos de no máximo 4

pessoas
I Tópico de livre escolha na área de Sistemas Operacionais

preferencialmente Kernel Linux
I Relatórios de acompanhamento
I Vı́deo com apresentação final



Como ter acesso ao código?

I Repositório do Kernel Linux (github)
I LKCamp

https://git.kernel.org/
https://lkcamp.gitlab.io/


Como contribuir?

I Implementação de funcionalidades
I Correção de bugs
I Documentação
I Respondendo perguntas na lista...

I Para esta disciplina, não é um item obrigatório
I Foco na formação do contribuidor, não na contribuição


	Objetivos

