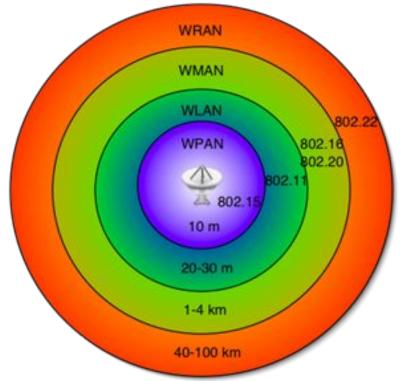
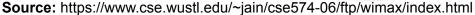
IEEE 802.15.1: Bluetooth


Prof. Juliana Freitag Borin



Wireless Personal Area Networks (WPANs)

10 m or less

IEEE 802.15.1 and Bluetooth

 Bluetooth started with Ericsson's Bluetooth Project in 1994 for radio communication between cell phones over short distances.

 Intel, IBM, Nokia, Toshiba, and Ericsson formed Bluetooth Special Interest Group (SIG) in 1998.

1st version of the specification came out in 1999.

IEEE 802.15.1 (2002) is based on Bluetooth specifications.

IEEE 802.15.1 and Bluetooth

- **Bluetooth v1.1** IEEE 802.15.1-2002
- Bluetooth v1.2 IEEE 802.15.1-2005 (Completed Nov. 2003): Faster Connection and Discover, adaptive FHSS – reduce radio frequency interference -, Extended Synchronous Connections – improve voice quality of audio links.
- Bluetooth v2.0 + Extended Data Rate (EDR) (2004): 3Mbps.
- Bluetooth v2.1 + EDR (2007): Secure Simple Pairing to speed up pairing.
- Bluetooth v3.0 + High Speed (HS) (2009): 24 Mbps using Wi-Fi + Bluetooth.
- **Bluetooth v4.0 (2010)**: low energy. Smaller devices requiring longer battery life. New incompatible PHY. Bluetooth Smart.
- Bluetooth v4.2 (Dec. 2014): privacy, data length extension, IP connectivity.
- Bluetooth 5 (2016): 4x range, 2x speed (2Mbps), 8x the broadcasting message capacity, focus on IoT
- Bluetooth 5.1 (2019): direction finding feature, cache, improved advertising channels
- Bluetooth 5.2 (2019): enhanced attribute protocol, LE power control, isochronous channel
- Bluetooth 5.3 (2021): removal of AMP, channel classification enhancement, connection subrating, enhancements to Periodic Advertising, Encryption Key Size Control
- Bluetooth 5.4 (2023): time-synchronized star network with bi-directional communication
 - Bluetooth 6.0 (2024): location accuracy, energy efficiency, and audio quality

Two flavors of Bluetooth

- Bluetooth BR/EDR establishes a relatively short-range, continuous wireless connection, which makes it ideal for use cases such as streaming audio.
- Bluetooth with low energy functionality (LE) allows for short bursts of long-range radio connection, making it ideal for Internet of Things (IoT) applications that don't require continuous connection but depend on long battery life.
- Dual-Mode dual-mode chipsets are available to support single devices such as smartphones or tablets that need to connect to both BR/EDR devices (such as audio headsets) and LE devices (such as wearables or retail beacons).

Bluetooth network

- Piconet:
 - 1 master and many slaves
- Scatter net:
 - A device can participate in multiple Piconets.
 - Routing protocols not defined.
- Mesh (Bluetooth 5.0)

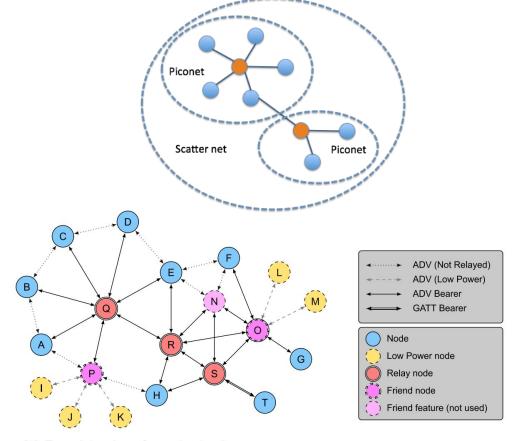


Figure 2.8: Example topology of a mesh network

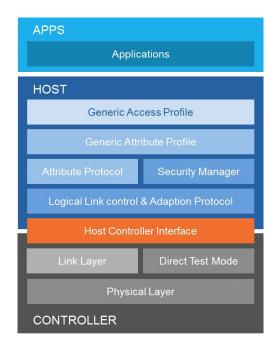
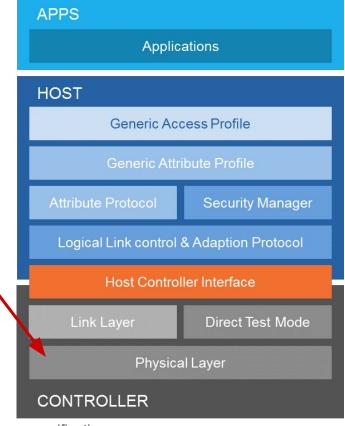


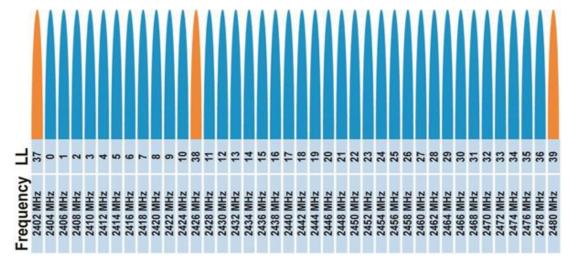
Figure 4 - The Bluetooth mesh stack

Source: The Bluetooth® Low Energy Primer



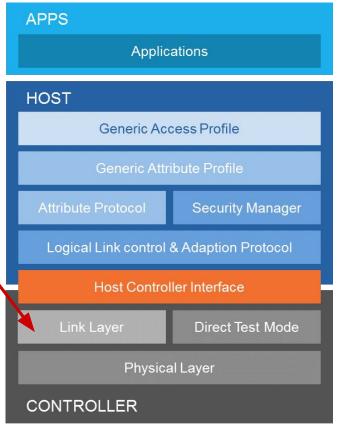
Source: https://www.bluetooth.com/specifications/bluetooth-core-specification

Controls transmission/receiving of the 2.4Ghz radio with Bluetooth communication channels. BR/EDR provides channels (79) with narrower bandwidth, while LE uses fewer channels (40) but broader bandwidth.



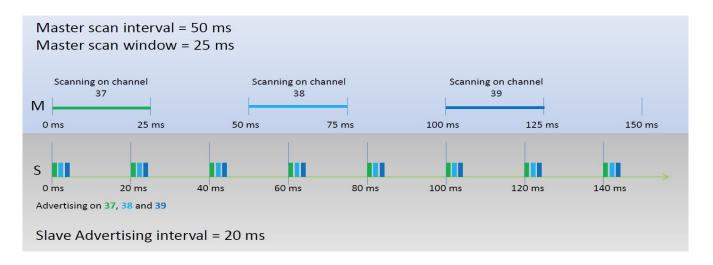
Physical Layer: BLE 4.x

- 2.4 GHz ISM
- 1 Mbps (theoretical upper limit, 5-10KB/s in a real scenario)
- 40 Channels on 2 MHz spacing
- Frequency hopping
- Range: can reach 30 m or more line-of-sight, but typically closer to 2 to 5 m.


3 advertising channels and 37 data channels

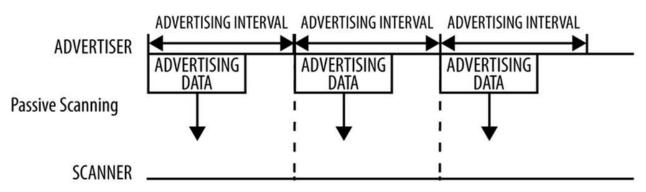
Defines packet structure/channels, discovery/connection procedure and sends/receives data.

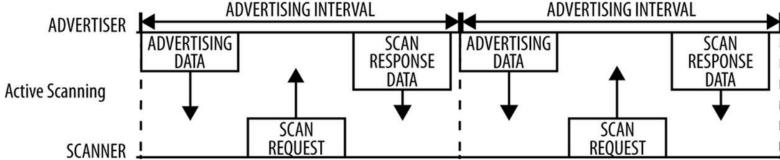
Link Layer: Advertising and Scanning


- One packet format and two types of packets: advertising and data packets
- Advertising packets serve two purposes:
 - To broadcast data for applications that do not need the overhead of a full connection establishment
 - To discover slaves and to connect to them
- Advertising packets are sent at a fixed rate defined by the advertising interval (20 ms to 10.24.s)

Link Layer: Advertising and Scanning (piconet)

BLE Advertising


From this we can see that the following advertising packets will be picked up by the scanning device: t=0 ch=37, t=20 ch=37, t=60 ch=38, t=100 ch=39 and t=120 ch=39.



Source: https://devzone.nordicsemi.com

Link Layer: Advertising and Scanning (piconet)

Link Layer: Advertising and Scanning

Classification of advertising packets:

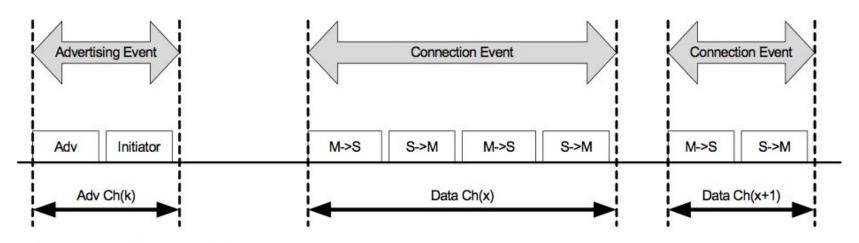
- Connectability:
 - Connectable: a scanner can initiate a connection upon reception of such packet
 - Non-connectable: a scanner cannot initiate a connection (broadcast only)
- Scannability:
 - Scannable: a scanner can issue a scan request upon reception of such packet
 - Non-scannable: a scanner cannot issue a scan request upon reception of such packet
- Directability:
 - Directed: contains only the advertiser's and the target scanner's Bluetooth addresses in its payload. This packet is, therefore, connectable.
 - Undirected: not targeted to any particular scanner.

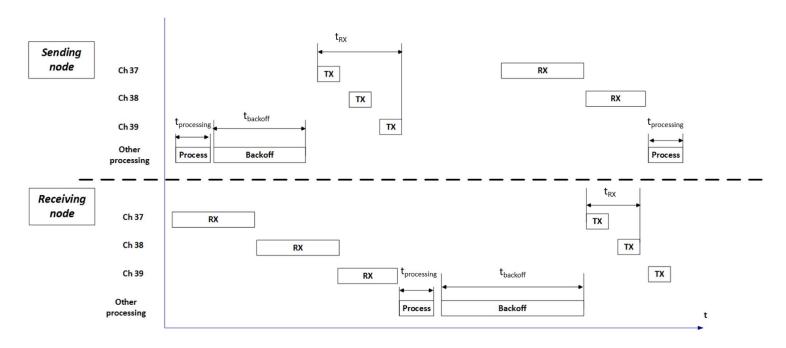
Link Layer: Connections (piconet)

Connection establishment:

- Initiator starts scanning to look for advertisers accepting connections requests.
- 2. Upon detection of a suitable advertising slave, the initiator sends a connection request packet.
- 3. If advertiser responds, the connection is established by the initiator. The initiator becomes the master and the advertiser becomes the slave.

Link Layer: Connections (piconet)



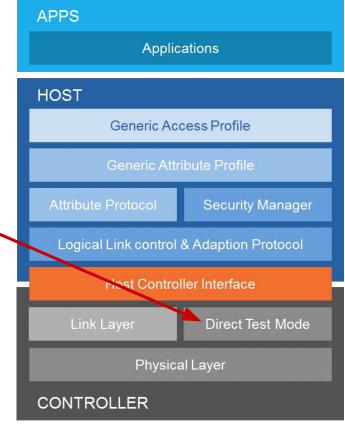

Figure 1.4: Connection Events

Source: Bluetooth Specification Version 4.2.

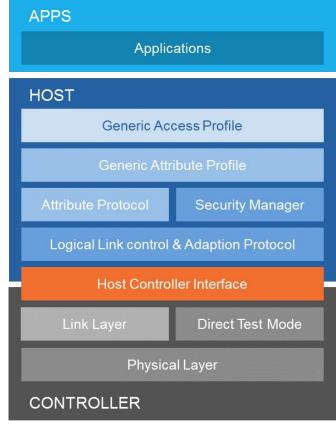
Link Layer: Mesh communication

Source: Baert, M.; Rossey, J.; Shahid, A.; Hoebeke, J. *The Bluetooth Mesh Standard: An Overview and Experimental Evaluation*. Sensors 2018, 18, 2409. https://doi.org/10.3390/s18082409

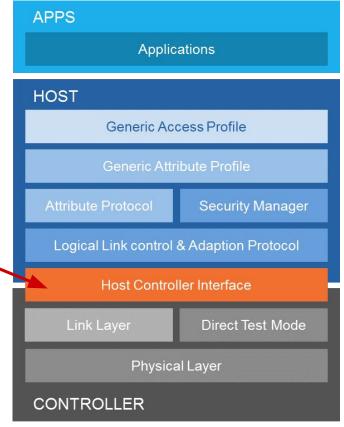
Link Layer: Connections


Connection parameters communicated by the master:

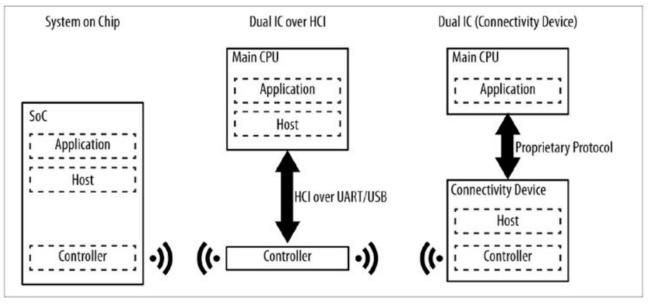
- **Connection interval:** the time between the beginning of two consecutive connection events (7.5 ms to 4s).
- Slave latency: number of connection events that a slave can skip without resulting in disconnection.
- Connection supervision timeout: maximum time between two received valid data packets before a connection is considered lost.



Allows testers to instruct the PHY layer to transmit or receive a given sequence of packets, submitting commands to it either via the HCI or via a 2-wire UART interface.

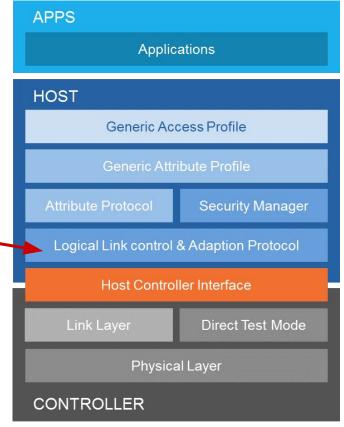


Optional standard interface between the Bluetooth controller subsystem (bottom three layers) and the Bluetooth host.



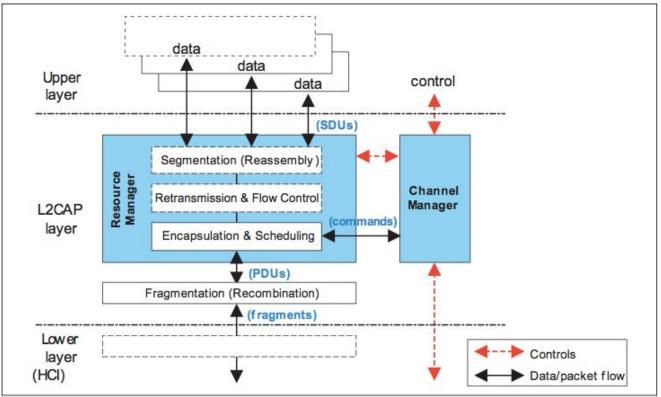
Host Controller Interface (HCI)

Standard protocol that allows for the communication between a host and a controller to take place across a serial interface.

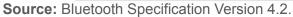


Source: K. Townsend *et all*, Getting Started with Bluetooth Low Energy: Tools and Techniques for Low-Power Networking. O'Reilly Media, 2014.

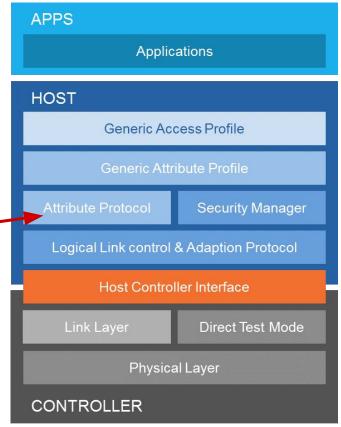
A packet-based protocol that transmits packets to the HCI or directly to the Link Manager in a hostless system. Supports higher-level protocol multiplexing, packet segmentation and reassembly, and the conveying of quality of service information to higher layers.


Logical Link Control and Adaptation Protocol (L2CAP)

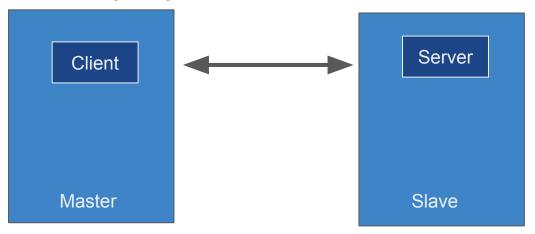
- Protocol multiplexer: encapsulates messages from the upper layer protocols into the standard BLE packet format and vice versa.
- Fragmentation and recombination:
 - on the transmit side it breaks large messages from upper layers into chunks that fit into the 27-byte maximum payload size of BLE;
 - on the reception side it takes multiple packets that have been fragmented and recombines them into one large packet to send to the upper layers.
- Flow control: window based flow control for each channel
- Quality of Service: connection establishment process allows the exchange of information regarding expected QoS.



Logical Link Control and Adaptation Protocol (L2CAP)



Defines the **client/server protocol** for data exchange once a connection is established. Attributes are grouped together into meaningful services using the Generic Attribute Profile (GATT). ATT is used in LE implementations and occasionally in BR/EDR implementations.


Attribute Protocol (ATT)

- Implements the peer-to-peer protocol between an attribute server and an attribute client.
- The ATT client communicates with an ATT server on a remote device over a dedicated fixed L2CAP channel.
- Attribute discrete value that has three properties:
 - type: specifies what the attribute represents (Bluetooth SIG defined a set of types)
 - o handle: uniquely identifies an attribute on a server
 - o permissions: controls whether the attribute can be read or written or whether the attribute value should be sent over an encrypted link.

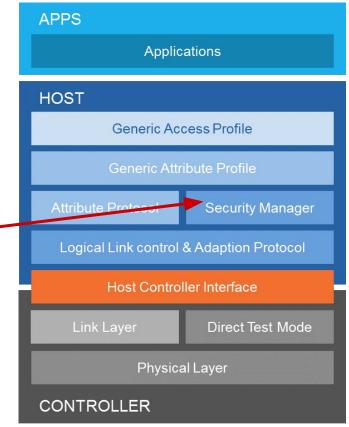
Attribute Protocol (ATT): Client-Server

Example: BLE-enabled temperature sensor. This sensor (*server*) periodically measures the ambient temperature and makes it available for other devices (*clients*) to read.

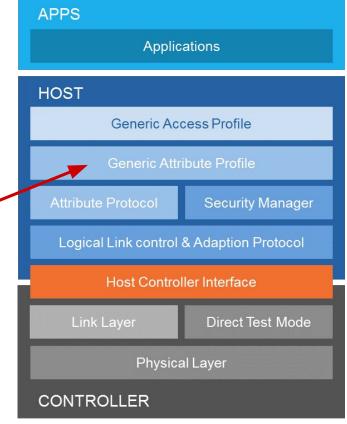
* Attributes: the temperature sensor exposes its temperature reading through an attribute:

Attribute Value: A 32-bit floating-point value representing the temperature in Celsius.

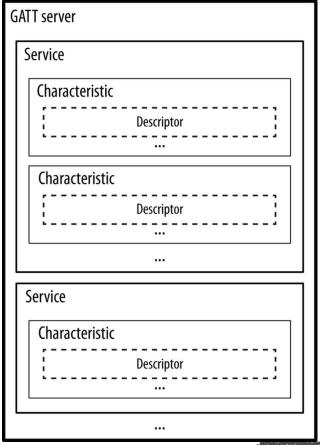
<u>Attribute Type</u>: Temperature Measurement


<u>Attribute Handle</u>: 0x1234 (just an example handle)

Attribute Permissions: read

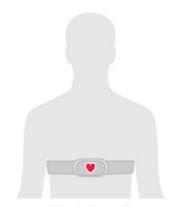

Defines the protocol and behavior that manages pairing integrity, authentication and encryption between Bluetooth devices, and provides a toolbox of security functions that other components use to support almost any level of security needed by diverse applications.

Using the Attribute Protocol, GATT groups services that encapsulate the behavior of part of a device and describes a use case, roles and general behaviors based on the GATT functionality. Its service framework defines procedures and formats of services and their characteristics. including discovering, reading, writing, notifying and indicating characteristics, as well as configuring the broadcast of characteristics. GATT is used only in Bluetooth LE implementations.



GATT

- Attributes in a GATT server are grouped into services.
- Each service can contain zero or more characteristics.
- Characteristics can include zero or more descriptors.



GATT

For example, a heart rate service may contain one characteristic that describes the intended body location of the device's heart rate sensor and another characteristic that transmits heart rate measurement data.

Peripheral

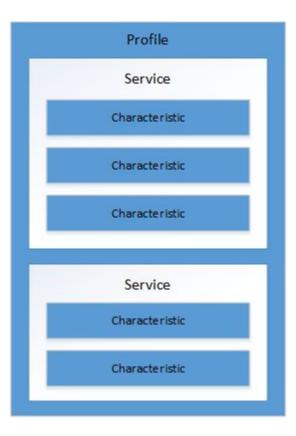
Service

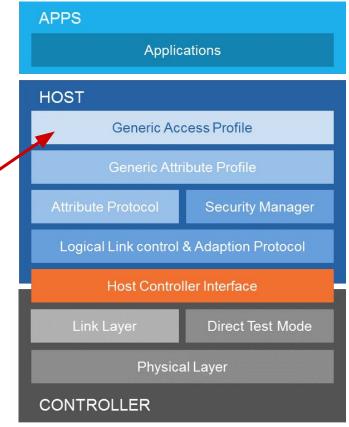
Heart rate service

Characteristic

Heart rate measurement

Characteristic


Body sensor location


GATT: Profiles

Works in conjunction with GATT in Bluetooth LE implementations to define the procedures and roles related to the discovery of Bluetooth devices and sharing information, and link management aspects of connecting to Bluetooth devices.

Generic Access Profile (GAP)

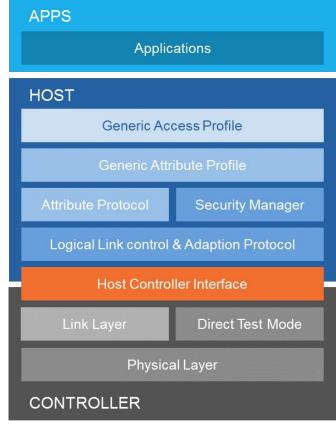
- Allows Bluetooth Low Energy devices to interoperate with each other.
- GAP specifies four roles that a device can adopt to join a BLE network:
 - o **Broadcaster:** periodically sends out advertising packets with data.
 - Observer: listens for data embedded in advertising packets from broadcasting peers.
 - Central: corresponds to the Link Layer master. A device capable of establishing multiple connections to peers.
 - Peripheral: corresponds to the Link Layer slave. This role uses advertising packets to allow centrals to find it and, subsequently, to establish a connection with it.

GAP

Source: https://github.com/yeokm1/intro-to-ble

Broadcaster use case

BLE beacons and the Physical Web:


https://www.youtube.com/watch?v=1yaLPRgtIR0

Eddystone format:

https://developers.google.com/beacons/eddystone

Bibliography

- IEEE 802.15-15-15-0107-01-007a, January 2015
- Bluetooth Core Specification Version 4.2.
- Bluetooth Core Specification Version 5.0.
- https://www.bluetooth.com/specifications/bluetooth-core-specification.
- K. Townsend et all, Getting Started with Bluetooth Low Energy: Tools and Techniques for Low-Power Networking. O'Reilly Media, 2014.

