
Xpress-Optimizer

Reference manual

Release 18

Last update 23 April 2007

Published by Dash Optimization Ltd
c©Copyright Dash Associates 2007. All rights reserved.

All trademarks referenced in this manual that are not the property of Dash Associates are acknowledged.

All companies, products, names and data contained within this book are completely fictitious and are used solely to
illustrate the use of Xpress-MP. Any similarity between these names or data and reality is purely coincidental.

How to Contact Dash

USA, Canada and all Americas

Dash Optimization Inc

Information and Sales: info@dashoptimization.com
Licensing: license-usa@dashoptimization.com
Product Support: support-usa@dashoptimization.com

Tel: +1 (201) 567 9445
Fax: +1 (201) 567 9443

Dash Optimization Inc.
560 Sylvan Avenue
Englewood Cliffs
NJ 07632
USA

Japan

Dash Optimization Japan

Information and Sales: info@jp.dashoptimization.com
Licensing: license@jp.dashoptimization.com
Product Support: support@jp.dashoptimization.com

Tel: +81 43 297 8836
Fax: +81 43 297 8827

WBG Marive-East 21F FASuC B2124
2-6 Nakase Mihama-ku
261-7121 Chiba
Japan

Worldwide

Dash Optimization Ltd

Information and Sales: info@dashoptimization.com
Licensing: license@dashoptimization.com
Product Support: support@dashoptimization.com

Tel: +44 1926 315862
Fax: +44 1926 315854

Leam House, 64 Trinity Street
Leamington Spa
Warwickshire CV32 5YN
UK

For the latest news and Xpress-MP software and documentation updates, please visit the Xpress-MP website at
http://www.dashoptimization.com or subscribe to our mailing list.

mailto:info@dashoptimization.com
mailto:license-usa@dashoptimization.com
mailto:support-usa@dashoptimization.com
mailto:info@jp.dashoptimization.com
mailto:license@jp.dashoptimization.com
mailto:support@jp.dashoptimization.com
mailto:info@dashoptimization.com
mailto:license@dashoptimization.com
mailto:support@dashoptimization.com
http://www.dashoptimization.com

Contents

1 Introduction 1
1.1 Overview . 1
1.2 The Xpress-Optimizer . 1
1.3 Integer Programming Considerations . 2
1.4 Running the Xpress-Optimizer . 3

1.4.1 Initialization . 3
1.4.2 Console Xpress Options . 3
1.4.3 Interrupting an Optimization Run in Console Xpress 4
1.4.4 Termination . 4

1.5 Structure of this Manual . 4
1.6 Conventions Used . 5

2 Problem-Solving with Xpress-MP 6
2.1 Overview . 6
2.2 Initialization and Termination . 6

2.2.1 The Optimizer . 6
2.2.2 The Problem Environment . 6
2.2.3 Optimizer Output . 7

2.3 Reading in a Problem . 7
2.4 Solving the Problem . 7
2.5 Viewing the Solution . 7
2.6 Optimization by Example . 8
2.7 Quick Reference . 8

2.7.1 Initialization and Termination . 8
2.7.2 Reading In a Problem . 8
2.7.3 Solving the Problem . 9
2.7.4 Viewing the Solution . 9

3 Optimality, Infeasibility and Unboundedness 10
3.1 The Solution Process . 10
3.2 Infeasibility . 10

3.2.1 Diagnosing Infeasibility During Presolve . 10
3.2.2 Irreducible Infeasible Sets . 11
3.2.3 Integer Infeasibility . 11

3.3 Unboundedness . 11
3.4 Scaling . 11
3.5 Accuracy . 13

4 Performance Issues 14
4.1 Choice of Algorithm . 14
4.2 Simplex Performance . 14

4.2.1 The Simplex Method . 14
4.2.2 Inversion . 15
4.2.3 Partial Pricing vs. Devex Pricing . 15
4.2.4 Output . 15

4.3 Barrier Performance . 15
4.3.1 The Newton Barrier Method . 15
4.3.2 Controlling Barrier Performance . 16

i Xpress-Optimizer Reference Manual

4.3.3 Crossover . 16
4.3.4 Convergence . 16
4.3.5 Output . 16

4.4 Integer Programming - The Global Search . 16
4.4.1 The Branch and Bound Process . 16
4.4.2 Node and Variable Selection . 18
4.4.3 Variable Selection for Branching . 18
4.4.4 Node Selection . 18
4.4.5 Adjusting the Cutoff Value . 19
4.4.6 Integer Preprocessing . 19

5 Implementing Algorithms 21
5.1 Viewing and Modifying the Matrix . 21

5.1.1 Viewing the Matrix . 21
5.1.2 Modifying the Matrix . 22

5.2 Working with Presolve . 22
5.2.1 Linear Programming Problems . 22
5.2.2 (Mixed) Integer Programming Problems . 23
5.2.3 Common Causes of Confusion . 23

5.3 Using the Callbacks . 23
5.3.1 Optimizer Output . 23
5.3.2 LP Search Callbacks . 24
5.3.3 Global Search Callbacks . 24

5.4 Working with the Cut Manager . 24
5.4.1 Cuts and the Cut Pool . 24
5.4.2 Cut Management Routines . 25
5.4.3 User Cut Manager Routines . 25

5.5 Goal Programming . 26
5.5.1 Overview . 26
5.5.2 Pre-emptive Goal Programming Using Constraints 26
5.5.3 Archimedian Goal Programming Using Constraints 26
5.5.4 Pre-emptive Goal Programming Using Objective Functions 27
5.5.5 Archimedian Goal Programming Using Objective Functions 28

6 Console and Library Functions 29
6.1 Console Mode Functions . 29
6.2 Layout For Function Descriptions . 30

Function Name . 30
Purpose . 30
Synopsis . 30
Arguments . 30
Error Values . 31
Associated Controls . 31
Examples . 31
Further Information . 31
Related Topics . 31

XPRSaddcols . 32
XPRSaddcuts . 34
XPRSaddnames . 35
XPRSaddrows . 36
XPRSaddsets . 38
XPRSaddsetnames . 39
XPRSalter (ALTER) . 40
XPRSbasiscondition (BASISCONDITION) . 41
XPRSbtran . 42
XPRSchgbounds . 43
XPRSchgcoef . 44
XPRSchgcoltype . 45
XPRSchgmcoef . 46

Contents ii Xpress-Optimizer Reference Manual

XPRSchgmqobj . 47
XPRSchgobj . 48
XPRSchgqobj . 49
XPRSchgrhs . 50
XPRSchgrhsrange . 51
XPRSchgrowtype . 52
XPRScopycallbacks . 53
XPRScopycontrols . 54
XPRScopyprob . 55
XPRScreateprob . 56
XPRSdelcols . 57
XPRSdelcpcuts . 58
XPRSdelcuts . 59
XPRSdelnode . 60
XPRSdelrows . 61
XPRSdelsets . 62
XPRSdestroyprob . 63
EXIT . 64
XPRSfixglobal (FIXGLOBAL) . 65
XPRSfree . 66
XPRSftran . 67
XPRSgetbanner . 68
XPRSgetbasis . 69
XPRSgetcoef . 70
XPRSgetcolrange . 71
XPRSgetcols . 72
XPRSgetcoltype . 73
XPRSgetcpcutlist . 74
XPRSgetcpcuts . 75
XPRSgetcutlist . 76
XPRSgetdaysleft . 77
XPRSgetdblattrib . 78
XPRSgetdblcontrol . 79
XPRSgetdirs . 80
XPRSgetglobal . 81
XPRSgetiis . 83
XPRSgetindex . 84
XPRSgetinfeas . 85
XPRSgetintattrib . 86
XPRSgetintcontrol . 87
XPRSgetlasterror . 88
XPRSgetlb . 89
XPRSgetlicerrmsg . 90
XPRSgetlpsol . 91
XPRSgetmessagestatus (GETMESSAGESTATUS) . 92
XPRSgetmipsol . 93
XPRSgetmqobj . 94
XPRSgetnames . 95
XPRSgetobj . 96
XPRSgetpivotorder . 97
XPRSgetpivots . 98
XPRSgetpresolvebasis . 99
XPRSgetpresolvemap . 100
XPRSgetpresolvesol . 101
XPRSgetprobname . 102
XPRSgetqobj . 103
XPRSgetrhs . 104
XPRSgetrhsrange . 105

Contents iii Xpress-Optimizer Reference Manual

XPRSgetrowrange . 106
XPRSgetrows . 107
XPRSgetrowtype . 108
XPRSgetscaledinfeas . 109
XPRSgetsol . 110
XPRSgetstrattrib . 111
XPRSgetstrcontrol . 112
XPRSgetub . 113
XPRSgetunbvec . 114
XPRSgetversion . 115
XPRSglobal (GLOBAL) . 116
XPRSgoal (GOAL) . 118
HELP . 120
XPRSiis (IIS) . 121
XPRSinit . 122
XPRSinitglobal . 123
XPRSinterrupt . 124
XPRSloadbasis . 125
XPRSloadcuts . 126
XPRSloaddirs . 127
XPRSloadglobal . 128
XPRSloadlp . 131
XPRSloadmipsol . 133
XPRSloadmodelcuts . 134
XPRSloadpresolvebasis . 135
XPRSloadpresolvedirs . 136
XPRSloadqglobal . 137
XPRSloadqp . 140
XPRSloadsecurevecs . 142
XPRSmaxim, XPRSminim (MAXIM, MINIM) . 143
XPRSobjsa . 145
XPRSpivot . 146
XPRSpostsolve (POSTSOLVE) . 147
XPRSpresolvecut . 148
PRINTRANGE . 150
PRINTSOL . 151
QUIT . 152
XPRSrange (RANGE) . 153
XPRSreadbasis (READBASIS) . 154
XPRSreadbinsol (READBINSOL) . 155
XPRSreaddirs (READDIRS) . 156
XPRSreadprob (READPROB) . 158
XPRSrestore (RESTORE) . 160
XPRSrhssa . 161
XPRSsave (SAVE) . 162
XPRSscale (SCALE) . 163
XPRSsetbranchbounds . 164
XPRSsetbranchcuts . 165
XPRSsetcbbarlog . 166
XPRSsetcbchgbranch . 167
XPRSsetcbchgnode . 169
XPRSsetcbcutlog . 170
XPRSsetcbcutmgr . 171
XPRSsetcbdestroymt . 172
XPRSsetcbestimate . 173
XPRSsetcbfreecutmgr . 174
XPRSsetcbgloballog . 175
XPRSsetcbinfnode . 176

Contents iv Xpress-Optimizer Reference Manual

XPRSsetcbinitcutmgr . 177
XPRSsetcbintsol . 178
XPRSsetcblplog . 179
XPRSsetcbmessage . 180
XPRSsetcbmipthread . 182
XPRSsetcbnodecutoff . 183
XPRSsetcboptnode . 184
XPRSsetcbprenode . 185
XPRSsetcbsepnode . 186
XPRSsetdblcontrol . 188
XPRSsetdefaultcontrol . 189
XPRSsetdefaults . 190
XPRSsetintcontrol . 191
XPRSsetlogfile . 192
XPRSsetmessagestatus (SETMESSAGESTATUS) . 193
XPRSsetprobname (SETPROBNAME) . 194
XPRSsetstrcontrol . 195
STOP . 196
XPRSstorebounds . 197
XPRSstorecuts . 198
XPRSwritebasis (WRITEBASIS) . 200
XPRSwritebinsol (WRITEBINSOL) . 201
XPRSwriteomni (WRITEOMNI) . 202
XPRSwriteprob (WRITEPROB) . 204
XPRSwriteprtrange (WRITEPRTRANGE) . 205
XPRSwriteprtsol (WRITEPRTSOL) . 206
XPRSwriterange (WRITERANGE) . 207
XPRSwritesol (WRITESOL) . 209

7 Control Parameters 211
7.1 Retrieving and Changing Control Values . 211
AUTOPERTURB . 211
BACKTRACK . 212
BARCRASH . 212
BARDUALSTOP . 212
BARGAPSTOP . 213
BARINDEFLIMIT . 213
BARITERLIMIT . 213
BARORDER . 214
BAROUTPUT . 214
BARPRIMALSTOP . 214
BARSTEPSTOP . 215
BARTHREADS . 215
BIGM . 215
BIGMMETHOD . 215
BRANCHCHOICE . 216
BREADTHFIRST . 216
CACHESIZE . 216
CHOLESKYALG . 217
CHOLESKYTOL . 217
COVERCUTS . 217
CPUTIME . 217
CRASH . 218
CROSSOVER . 218
CSTYLE . 219
CUTDEPTH . 219
CUTFREQ . 219
CUTSTRATEGY . 219
DEFAULTALG . 220

Contents v Xpress-Optimizer Reference Manual

DEGRADEFACTOR . 220
DENSECOLLIMIT . 220
DUALGRADIENT . 221
DUALIZE . 221
ELIMTOL . 221
ETATOL . 221
EXTRACOLS . 222
EXTRAELEMS . 222
EXTRAMIPENTS . 222
EXTRAPRESOLVE . 223
EXTRAROWS . 223
EXTRASETELEMS . 223
EXTRASETS . 224
FEASIBILITYPUMP . 224
FEASTOL . 224
GOMCUTS . 224
HEURDEPTH . 225
HEURDIVESPEEDUP . 225
HEURDIVESTRATEGY . 225
HEURFREQ . 226
HEURMAXSOL . 226
HEURNODES . 226
HEURSEARCHFREQ . 226
HEURSTRATEGY . 227
INVERTFREQ . 227
INVERTMIN . 227
KEEPBASIS . 227
KEEPMIPSOL . 228
KEEPNROWS . 228
L1CACHE . 229
LINELENGTH . 229
LNPBEST . 229
LNPITERLIMIT . 229
LPITERLIMIT . 230
LPLOG . 230
MARKOWITZTOL . 230
MATRIXTOL . 230
MAXCUTTIME . 231
MAXIIS . 231
MAXMIPSOL . 231
MAXNODE . 231
MAXPAGELINES . 232
MAXTIME . 232
MIPABSCUTOFF . 232
MIPABSSTOP . 233
MIPADDCUTOFF . 233
MIPLOG . 233
MIPPRESOLVE . 234
MIPRELCUTOFF . 234
MIPRELSTOP . 234
MIPTARGET . 235
MIPTHREADS . 235
MIPTOL . 235
MPSBOUNDNAME . 236
MPSECHO . 236
MPSERRIGNORE . 236
MPSFORMAT . 236
MPSNAMELENGTH . 237

Contents vi Xpress-Optimizer Reference Manual

MPSOBJNAME . 237
MPSRANGENAME . 237
MPSRHSNAME . 237
MUTEXCALLBACKS . 238
NODESELECTION . 238
OMNIDATANAME . 238
OMNIFORMAT . 239
OPTIMALITYTOL . 239
OUTPUTLOG . 239
OUTPUTMASK . 239
OUTPUTTOL . 240
PENALTY . 240
PERTURB . 240
PIVOTTOL . 240
PPFACTOR . 241
PRESOLVE . 241
PRESOLVEOPS . 241
PRICINGALG . 242
PROBNAME . 242
PSEUDOCOST . 243
REFACTOR . 243
RELPIVOTTOL . 243
SBBEST . 243
SBEFFORT . 244
SBESTIMATE . 244
SBITERLIMIT . 244
SBSELECT . 245
SBTHREADS . 245
SCALING . 245
SHAREMATRIX . 246
SOLUTIONFILE . 246
SOSREFTOL . 247
TRACE . 247
TREECOVERCUTS . 248
TREEGOMCUTS . 248
VARSELECTION . 248
VERSION . 249

8 Problem Attributes 250
8.1 Retrieving Problem Attributes . 250
ACTIVENODES . 250
BARAASIZE . 250
BARCROSSOVER . 251
BARDENSECOL . 251
BARDUALINF . 251
BARDUALOBJ . 251
BARITER . 251
BARLSIZE . 252
BARPRIMALINF . 252
BARPRIMALOBJ . 252
BARSTOP . 252
BESTBOUND . 252
BOUNDNAME . 252
BRANCHVALUE . 253
BRANCHVAR . 253
COLS . 253
CUTS . 253
DUALINFEAS . 253
ELEMS . 254

Contents vii Xpress-Optimizer Reference Manual

ERRORCODE . 254
NUMIIS . 254
LPOBJVAL . 254
LPSTATUS . 255
MATRIXNAME . 255
MIPENTS . 255
MIPINFEAS . 256
MIPOBJVAL . 256
MIPSOLNODE . 256
MIPSOLS . 256
MIPSTATUS . 256
MIPTHREADID . 257
NAMELENGTH . 257
NODEDEPTH . 257
NODES . 258
OBJNAME . 258
OBJRHS . 258
OBJSENSE . 258
ORIGINALCOLS . 259
ORIGINALROWS . 259
PARENTNODE . 259
PRESOLVESTATE . 259
PRIMALINFEAS . 260
QELEMS . 260
RANGENAME . 260
RHSNAME . 260
ROWS . 260
SIMPLEXITER . 261
SETMEMBERS . 261
SETS . 261
SPARECOLS . 262
SPAREELEMS . 262
SPAREMIPENTS . 262
SPAREROWS . 262
SPARESETELEMS . 262
SPARESETS . 262
SUMPRIMALINF . 263

9 Return Codes and Error Messages 264
9.1 Optimizer Return Codes . 264
9.2 Optimizer Error and Warning Messages . 264

Appendix 279

A Log and File Formats 280
A.1 File Types . 280
A.2 XMPS Matrix Files . 281

A.2.1 NAME section . 281
A.2.2 ROWS section . 281
A.2.3 COLUMNS section . 281
A.2.4 QUADOBJ / QMATRIX section (Quadratic Programming only) 282
A.2.5 SETS section (Integer Programming only) . 283
A.2.6 RHS section . 283
A.2.7 RANGES section . 283
A.2.8 BOUNDS section . 284
A.2.9 ENDATA section . 285

A.3 LP File Format . 285
A.3.1 Rules for the LP file format . 286

Contents viii Xpress-Optimizer Reference Manual

A.3.2 Comments and blank lines . 286
A.3.3 File lines, white space and identifiers . 286
A.3.4 Sections . 286
A.3.5 Variable names . 288
A.3.6 Linear expressions . 288
A.3.7 Objective function . 288
A.3.8 Constraints . 288
A.3.9 Bounds . 289
A.3.10 Generals, Integers and binaries . 290
A.3.11 Semi-continuous and semi-integer . 290
A.3.12 Partial integers . 291
A.3.13 Special ordered sets . 291
A.3.14 Quadratic programming problems . 291

A.4 ASCII Solution Files . 292
A.4.1 Solution Header .hdr Files . 292
A.4.2 CSV Format Solution .asc Files . 293
A.4.3 Fixed Format Solution (.prt) Files . 293

A.5 ASCII Range Files . 295
A.5.1 Solution Header (.hdr) Files . 295
A.5.2 CSV Format Range (.rsc) Files . 295
A.5.3 Fixed Format Range (.rrt) Files . 296

A.6 The Directives (.dir) File . 297
A.7 The Matrix Alteration (.alt) File . 298

A.7.1 Changing Upper or Lower Bounds . 298
A.7.2 Changing Right Hand Side Coefficients . 298
A.7.3 Changing Constraint Types . 298

A.8 The Simplex Log . 299
A.9 The Global Log . 299

Index 301

Contents ix Xpress-Optimizer Reference Manual

Chapter 1

Introduction

1.1 Overview

Part of the Xpress-MP software suite, the Xpress-Optimizer is an extremely versatile and pow-
erful tool which is well-suited to a broad range of optimization problems. Accessible both
directly via a Console or graphical interface, or by means of library functions, the Optimizer
combines ease of use with speed and flexibility for the best results. A broad range of access
routines and optimization algorithms, employing the best techniques available allows the user
to tackle problems previously too large to solve within a reasonable time span. Either as a stan-
dalone program or handling tasks within users’ own programs, the Xpress-Optimizer opens a
world of possibilities.

For users of Console Xpress, the ’Console Mode’ encompasses a number of commands for using
the Optimizer’s core functionality. Models may be imported from either MPS or LP format files,
optimized using any of the algorithms supported by the Optimizer and the solution viewed in
a number of ways. Further control may be exerted over the optimization process by the setting
of a number of controls which influence various aspects of the algorithms.

Users of the Xpress-MP Optimizer library enjoy all the functionality of the Console Mode, with
additional access to an ’Advanced Mode’. This extension of the interface provides users with
access to the internal data structures of the Optimizer and greater matrix management. The
inclusion of a Cut Manager allowing the addition of cutting planes provides users with the
possibility of ’tailor-made’ strategies for efficiently solving mixed integer problems in individual
models.

The main benefit of the library, however, is the ability to embed all Optimizer calls within a
user’s own program, automating much of the above and providing the possibility of harnessing
the power of the Xpress-Optimizer within one’s own applications. To this end the set of library
functions are available for a number of common languages including C, Fortran, Java and
Visual Basic. The convention employed throughout will be to give all descriptions in terms of
the C structure, although differences and short examples for other languages may be found in
the Xpress-MP Getting Started manual.

1.2 The Xpress-Optimizer

The Xpress-Optimizer is a Linear and Integer Programming optimizer which has been carefully
programmed to take full advantage of matrix structure. The Integer Programming component
has the ability to handle a variety of global entities, i.e. objects which must satisfy some nonlin-
ear properties in an acceptable solution. We call such a solution an integer solution, although
this nomenclature is not always strictly accurate.

The Optimizer can read in a problem in one of three ways:

• in MPS format from a matrix file;

1 Xpress-Optimizer Reference Manual

• in a binary form (the Binary Interface Format created by the Xpress-Modeler);

• in LP format from a matrix file.

It will then perform linear optimization by the primal or dual simplex method, or the Newton
barrier method if licensed. The Optimizer may be instructed to go on to search for integer so-
lutions. Ranging (sensitivity analysis) may also be performed. For interfacing with spreadsheets
or database programs, ASCII representations of the solution may be produced.

The Optimizer may also save intermediate solutions in the form of basis files. If an optimal
linear solution has been found to one problem and the status of the variables has been stored
in a basis file, then the simplex LP solution path for a similar model may be shortened by
starting the process from the same point, reading in the basis file just obtained.

1.3 Integer Programming Considerations

Though many systems can be modeled accurately as Linear Programs, there are situations
where discreteness is central to the decision-making problem. It appears that there are three
major areas where such nonlinear facilities are required:

• when entities must inherently be selected from a discrete set;

• when modeling logical conditions;

• when finding the global optimum over functions.

Problems such as these can be modeled using any of Xpress-Mosel, Xpress-BCL or the Xpress-
Modeler. If enabled by your license, the Optimizer can then be used to find the global opti-
mum. Usually the underlying structure is that of a Linear Program, but optimization may be
used successfully when the nonlinearities are separable into functions of just a few variables.

The Xpress-MP suite supports the following global entities:

Binary variables (BV) – decision variables that must take either the value 0 or the value
1, sometimes called 0/1 variables;

Integer variables (UI) – decision variables that must take on integer values. Some upper
limit must be specified;

Partial integer variables (PI) – decision variables that must take integer values below a
specified limit but can take any value above that limit;

Semi-continuous variables (SC) – decision variables that must take on either the value
0, or any value in a range whose lower an upper limits are specified. SCs help model
situations where, if a variable is to be used at all, it has to be at some minimum level;

Semi-continuous integer variables (SI) – decision variables that must take either the value
0, or any integer value in a range whose lower and upper limits are specified;

Special ordered sets of type one (SOS1) – an ordered set of non-negative variables of
which at most one can take a nonzero value;

Special ordered sets of type two (SOS2) – an ordered set of non-negative variables of
which at most two can be nonzero, and if two are nonzero, they must be consecutive in
their ordering.

The Optimizer employs a Branch and Bound search to locate and ensure optimality of a solu-
tion. It has a set of default strategies which have been found to work well on most problems.
However, the user should note that sophistication in modeling is important in large scale MIP

Introduction 2 Xpress-Optimizer Reference Manual

work. It has always been our experience that careful experimentation with realistic but small
scale examples pays off when moving to large production versions of the models.

The special Integer Programming features of the Optimizer (except presolving) are used after
solving the underlying Linear Programming problem to optimality. It is only following this that
the nonlinearities and discreteness that have been specified in the input data are recognized.
Examples of using the global search facilities of the Optimizer for the various interfaces may be
found in Xpress-MP Getting Started manual and it is assumed that you have read the relevant
sections of that guide before using the reference manuals.

1.4 Running the Xpress-Optimizer

1.4.1 Initialization

To be able to run, the Optimizer requires a valid licence file, xpauth.ini. This may be con-
figured for a specific machine, ethernet address or an authorized dongle. If the license file
or dongle is missing, a message will be displayed describing the problem and the Optimizer
will exit. Under Windows the Optimizer looks for the license file in the directory of the exe-
cutables; under Unix the directory pointed to by the XPRESS environment variable is searched.
Note that the license file should always be kept in the same directory as the Xpress-MP DLL
xprl.dll, which is installed by the default into the c:\XpressMP\bin folder.

Following this, the Optimizer will attempt to determine the problem name. If none is given,
users of Console Xpress will be prompted for one and if this request is ignored a default prob-
lem name of $$$$$$$$ will be assumed. For problem names specified by the user, only the
(optional) drive and path and the (required) filename are noted, any extension being ignored.

The problem name, problem_name, is used as a base for all files generated by the Optimizer,
with separate files distinguished by different extensions. Matrix input files are problem_-
name.mat, problem_name.mps, problem_name.lp, problem_name.mat.gz, problem_name.mps.gz
and problem_name.lp.gz where files with the .gz extension are compressed in gzip format.

1.4.2 Console Xpress Options

For Console Xpress users, the syntax for calling the Optimizer is as follows:

C:\>optimizer [problem_name] [@filename]

The problem name may optionally be specified on the command line when the Optimizer
is invoked, but if omitted the problem name will be prompted for as described above. The
optional second argument allows you to specify a text file from which the optimizer console
input will be read (as if they had been typed interactively).

The Optimizer console is an interactive command line interface to the library. The features
of the Optimizer console include improved online help, auto- completion of command names,
and command prompt integration. Type "help commands" to get a list of available commands,
and then try, e.g., "help minim" for help on a specific command. Some other useful commands
are "help attributes", "help controls", or just "help".

To use the auto-completion feature, type the first part of an optimizer command name and
press the tab key, for example "min<tab>" or "mat<tab>". Once you have finished typing
the command name portion of your input line, the optimizer console will auto-complete file
names. For example, if you have a matrix named hpw15, try "readprob h<tab>".

The console also provides convenient access to the operating system’s shell commands. For
example, try typing "dir" (or "ls" under Unix). You can also use the "cd" command to change
the working directory, which will be indicated in the prompt:

Introduction 3 Xpress-Optimizer Reference Manual

[optimizer bin] cd \
[optimizer C:\]

When started, the Optimizer console will attempt to read in an initialization file called optimizer.ini
located in the current working directory. This is an ASCII file which may contain any statements
or commands which you wish to use by default in any run of the Optimizer. If the initialization
file does not exist or cannot be found, the Optimizer will be initialized with its own built-in
defaults.

The Optimizer console for 2006A onwards is implemented as a TCL shell. Users should be
aware that it is possible therefore to type incorrect input which is interpreted as valid TCL
syntax rather than as an error. Users of releases prior to 2006A should consult the release notes
for a list of incompatibilities between old and new consoles.

1.4.3 Interrupting an Optimization Run in Console Xpress

Console Xpress users of the Optimizer may interrupt the processing of any command in a grace-
ful way by typing CTRL-C, following which the Optimizer will return to its > prompt. If opti-
mization has been interrupted in this way, any solution process will stop at the first ’safe’ place
before returning to the prompt. Iterations may be resumed at a later point by re-typing the
interrupted command.

Note that if you have typed ahead, the CTRL-C mechanism may fail under some operating
systems.

1.4.4 Termination

The Optimizer can terminate in one of three possible ways:

(a) normally, with no errors;

(b) with an error status indicating the solution status;

(c) immediately upon detection of a fatal error.

A normal termination means that the Optimizer has been terminated successfully, possibly with
the QUIT or STOP command. The problem has not necessarily been solved to optimality since
this will depend on the commands issued and whether any non-fatal errors occurred.

If Console Xpress users terminate the Optimizer with the STOP command, then a nonzero
return code indicates the solution status of the problem. A complete list of these return codes
is provided in 9.

A fatal error stops the Optimizer immediately. Such errors usually arise from files being un-
available or disks being full, but may occur if available memory is exhausted.

1.5 Structure of this Manual

The main body of the manual is essentially organized into two parts. It begins in 2 with a
brief overview of common Optimizer usage, introducing the various routines available and
setting them in the context in which they are very often used. This is followed in 3 with a brief
overview of the sorts of problems which may arise during the optimization process and the
kind of solution that might be expected from a problem. 4 provides a description of some of
the more-frequently used controls along with some ideas of how they may be used to enhance
the solution process. Finally, 5 details some more advanced topics in Optimizer usage.

Following the first five chapters, the remainder forms the main reference section of the man-
ual. 6 details all functions in both the Console and Advanced Modes alphabetically. 7 and 8
then provide a reference for the various controls and attributes, followed by a list of Optimizer
error and return codes in 9. A description of several of the file formats is provided in A.

Introduction 4 Xpress-Optimizer Reference Manual

1.6 Conventions Used

Throughout the manual standard typographic conventions have been used, representing com-
puter code fragments with a fixed width font, whilst equations and equation variables
appear in italic type. Where several possibilities exist for the library functions, those with
C syntax have been used, and C style conventions have been used for structures such as arrays
etc. Console Mode routines which have both a Console and library equivalent are usually de-
scribed in both forms, with the Console command bracketed. In sections which are irrelevant
for Console users, only the library form is given. For differences in syntax between the Console
and Library versions of commands and controls, see the introduction to 6. Where appropriate,
the following have also been employed:

• square brackets [...] contain optional material;

• curly brackets {...} contain optional material, of which one must be chosen;

• entities in italics which appear in expressions stand for meta-variables. The description
following the meta-variable describes how it is to be used;

• the symbol CTRL followed by a letter means ’hold down the CTRL key and type the letter’.
The CTRL or Control key is usually at the bottom left hand corner of the keyboard;

Introduction 5 Xpress-Optimizer Reference Manual

Chapter 2

Problem-Solving with Xpress-MP

2.1 Overview

A wide range of routines are available for interacting with the Xpress-Optimizer, providing a
handle on its core functionality through Console Mode commands, or more extensive access
to its internal data structures through the Advanced Mode routines. Whilst the users of the
Xpress-Optimizer are diverse and the range of problems studied by them is wide, most opti-
mization tasks adhere to a fairly standard template, providing a "natural grouping" of the
routines. A discussion of this forms the subject matter for this chapter.

The general layout of an optimization process is given in Figure 2.1. Generally, a user goes
through five main processes in solving a problem. The Optimizer must first be initialized,
preparing it to handle a problem. The problem matrix is then read into memory before one of
the optimization routines is called to solve it. The solution to the problem may be viewed and
finally the user may exit the Optimizer. This structure may be more complex if the Optimizer’s
capability for handling multiple problems is used, but it serves to structure its commands.

Figure 2.1: Optimizing a Problem

2.2 Initialization and Termination

2.2.1 The Optimizer

The first stage in running the Optimizer is the initialization process. In Console Xpress, this
process is run automatically, but for library users, the system must be initialized manually by
calling XPRSinit before any of the other library routines. This command checks for any neces-
sary libraries, and runs security checks to determine licence information about your Xpress-MP
installation. Only once this has completed can any of the other routines be run.

When all calls to the Optimizer routines have completed at the end of your session, the ter-
mination stage is entered. At this point, any memory used by the Optimizer is released for
other processes and any files still open for reading or writing are closed. Again, this process
is handled automatically for Console Xpress users when the QUIT or STOP command is given.
Library users must call the routine XPRSfree to perform the equivalent tasks.

2.2.2 The Problem Environment

For library users, enjoying the benefits of a multiple problem environment, once the Optimizer
has been initialized and before a problem matrix can be read in, a problem environment must

6 Xpress-Optimizer Reference Manual

be created using the XPRScreateprob routine. The user may create any number of these
(license permitting) and may optimize, store and work on several such at any given time, refer-
ring to them by passing the problem pointer as the first argument to each subsequent function
call. When an environment is no longer needed, it can be removed using XPRSdestroyprob.
It is good practice to remove all such environments before calling XPRSfree.

2.2.3 Optimizer Output

For Console Xpress users, output is sent both directly to the screen and to a log file. Library
users have greater flexibility with this. Using the command XPRSsetlogfile, a log file can be
specified to catch output associated to a particular problem. Alternatively, an output callback
function may be employed, defined by the XPRSsetcbmessage command, to catch any output
and process it directly within the application. See 5.3 for details.

2.3 Reading in a Problem

Once initialized, the Optimizer will accept a problem for optimization. Problems may be read
into the Optimizer data structures in essentially two ways. The simplest of these is to read a
matrix from an MPS or LP file using XPRSreadprob (READPROB), although library users can also
load problems from their data structures using XPRSloadlp, XPRSloadqp, XPRSloadglobal,
or XPRSloadqglobal. MPS names may then be added to the model using XPRSaddnames.
Once the problem has been loaded, any subsequent call to one of these input routines will
overwrite it.

It is important to note that for MIP problems presolve will take a copy of the matrix and modify
it. The original matrix may be retrieved by calling XPRSpostsolve (POSTSOLVE). If the matrix
is in the original state then XPRSpostsolve (POSTSOLVE)will return without doing anything.

2.4 Solving the Problem

Having loaded the problem, the user may (attempt to) find a solution to it.

The XPRSmaxim (MAXIM) and XPRSminim (MINIM) commands allow for maximization and min-
imization of LP, QP and mixed integer (MIP) problems, whilst the command XPRSglobal
(GLOBAL) may be used to find the solution of MIP problems once the initial LP relaxation has
been solved. Additionally, ranging may be performed using XPRSrange (RANGE).

A number of other possibilities are also available to users. The simplex LP optimization process
may be accelerated by starting with an optimal basis from a previous, similar problem. Such
bases may be saved and restored using the XPRSwritebasis (WRITEBASIS) and
XPRSreadbasis (READBASIS) functions, or input from the user’s own data structures using
XPRSloadbasis. The user may additionally specify directives to influence the global search,
which may be loaded from file using XPRSreaddirs (READDIRS). The format for the directives
file is described in A. Other more advanced possibilities include the use of callback functions
and customization of the cut manager, both of which are discussed in 5.

2.5 Viewing the Solution

Once the optimization algorithms have completed, either a solution will be available, or else
the problem will have been identified as infeasible or unbounded. In the latter case, the user
may want to know why a problem has occurred and take steps to correct it. This is the subject
matter for 3, following. In the former case, the user will probably want to consult the identified
solution.

Xpress-MP provides a number of functions for accessing details of a solved problem. Using ei-
ther of XPRSwritesol (WRITESOL) or XPRSwriteprtsol (WRITEPRTSOL) a full solution may

Problem-Solving with Xpress-MP 7 Xpress-Optimizer Reference Manual

be obtained as an ASCII file. The first of these is suitable for interpretation by another applica-
tion, whilst the second is primarily intended to be sent to a printer. Equivalent commands for
obtaining range information are XPRSwriterange (WRITERANGE) and XPRSwriteprtrange
(WRITEPRTRANGE).

Library users may also access the solution directly through their programs using XPRSgetlpsol,
which will return the values of the decision variables, the slack variables, dual values and re-
duced costs for the current LP solution. The decision variables and slack variables for a MIP
solution may be obtained with the XPRSgetmipsol function. In addition, the optimization
algorithms provide extra details of a problem as it is solved by means of problem attributes.
These are a set of objects which may be interrogated for particular information and transferred
to user variables by type using the library functions XPRSgetintattrib, XPRSgetdblattrib
and XPRSgetstrattrib. Examples of attributes include LPOBJVAL and MIPOBJVAL, which
return the optimal values of the objective function for LP and (M)IP problems respectively. A
full list of attributes may be found in 8.

2.6 Optimization by Example

The above sections provide a brief introduction to the most common features of the Xpress-
Optimizer and its most general usage. Over the course of the following chapters, topics such
as common problems and Optimizer performance will be considered, as well as some of the
more advanced features of the Optimizer. The second part of the manual forms a reference
for the various functions and their usage.

Examples of using the Optimizer are available from a number of sources, most notably from
Xpress-MP Getting Started manual. This provides a straight forward, "hands on" approach
to the Xpress-MP software suite and it is highly recommended that users read the relevant
chapters before considering the reference manuals. Additional, more advanced, examples may
be found on the Xpress-MP CD-ROM.

2.7 Quick Reference

2.7.1 Initialization and Termination

XPRSinit Initialize the Optimizer.

XPRScreateprob Create a problem environment.

XPRSsetlogfile Direct all Optimizer output to a log file.

XPRSsetcbmessage Define an output callback function.

XPRSdestroyprob Destroy a problem environment.

XPRSfree Release memory used by the Optimizer and close any open files.

2.7.2 Reading In a Problem

XPRSreadprob Read in an MPS, LP, QP or binary interface format file.

XPRSloadlp Load an LP problem into the Optimizer.

XPRSloadqp Load a QP problem into the Optimizer.

XPRSloadglobal Load a MIP problem into the Optimizer.

XPRSloadqglobal Load a quadratic MIP problem into the Optimizer.

XPRSaddnames Provide names for a range of rows or columns.

Problem-Solving with Xpress-MP 8 Xpress-Optimizer Reference Manual

2.7.3 Solving the Problem

XPRSreadbasis Read a basis from file.

XPRSloadbasis Load a basis from a user’s data structures.

XPRSreaddirs Read a directives file.

XPRSmaxim Maximize the problem’s objective function.

XPRSminim Minimize the problem’s objective function.

XPRSglobal Search for an integer solution.

XPRSrange Calculate ranging information and save it to file.

XPRSgetbasis Get the current basis into user arrays.

XPRSwritebasis Write a basis to file.

2.7.4 Viewing the Solution

XPRSwritesol Write the current solution to ASCII files.

XPRSwriteprtsol Write the current solution in printable format to file.

XPRSwriterange Write range information to ASCII files.

XPRSwriteprtrange Write range information in printable format to file.

XPRSgetlpsol Retrieve current LP solution values into users arrays.

XPRSgetmipsol Retrieve last MIP solution values into users arrays.

XPRSgetintattrib Recover the value of an integer problem attribute.

XPRSgetdblattrib Recover the value of a double problem attribute.

XPRSgetstrattrib Recover the value of a string problem attribute.

Problem-Solving with Xpress-MP 9 Xpress-Optimizer Reference Manual

Chapter 3

Optimality, Infeasibility and Unbounded-
ness

3.1 The Solution Process

Once a problem matrix has been constructed within the Optimizer, typically a user will call one
of the optimization routines to attempt to solve it and, having done so, would be presented
with an optimal solution which can then be used. Optimization is not always this simple,
however, and many things can and do go wrong during the solution process. Very often in
real situations problems are large and will take some time to solve. This is particularly true
with complicated MIP problems. For problems that seem to be taking an unusually long time
to solve, the optimization time can often be improved with some thought and careful setting
of the control parameters. This is the subject of the following chapter.

Console users can safely terminate the solution process at any point using the CTRL-C keystroke.
This allows the current point in the process to be saved before the Optimizer terminates. The
process can subsequently be continued if desired by reissuing the command. Whilst library
users do not have this facility, limits can be placed on the amount of time taken for an Opti-
mizer run either by setting the control LPITERLIMIT, which provides an upper bound on the
number of simplex iterations carried out, or BARITERLIMIT, which performs the same role for
the Newton barrier method. Alternatively the control MAXTIME can be set to impose a "real
time" limit on the process. If the solution process ever ends prematurely, it is worth checking
that these three controls have been set to reasonable values and that it is not one of these that
is interrupting the optimization.

Assuming none of these problems arise and the optimization run completes successfully, there
are a number of possible outcomes for the resulting solution. Ideally, an optimal solution will
have been found, confirming that the problem was well-posed and providing an answer that
is usable. However, this is not the only outcome from the process. It is equally possible that
no solution can be found, where the problem is said to be infeasible. Occasionally, potentially
infinite solutions are also possible from certain models, resulting in unboundedness. In this
chapter we briefly discuss some of these possibilities.

3.2 Infeasibility

A problem is said to be infeasible if no solution exists which satisfies all the constraints. The
Xpress-Optimizer provides a number of means for diagnosing infeasibilities in models, depend-
ing on the point in the solution process at which they are detected.

3.2.1 Diagnosing Infeasibility During Presolve

The presolve facility, if used (see 5.2), makes a number of checks for infeasibility. If an infeasi-
bility is detected, it is possible to trace this back and uncover the cause of it. This diagnosis is

10 Xpress-Optimizer Reference Manual

carried out whenever the control parameter TRACE is set to 1 before the optimization routine
XPRSmaxim (MAXIM) or XPRSminim (MINIM) is called. In such a situation, the cause of the infea-
sibility is then reported as part of the output from the optimization routine and the problem
may be amended if necessary.

3.2.2 Irreducible Infeasible Sets

Another general technique to analyze infeasibility is to find a small portion of the matrix that
is itself infeasible. The Optimizer does this by finding irreducible infeasible sets (IISs). An IIS is a
minimal set of constraints and variable bounds which is infeasible, but becomes feasible if any
constraint or bound in it is removed.

A model may have several infeasibilities. Repairing a single IIS may not make the model fea-
sible, for which reason the Optimizer can find an IIS for each of the infeasibilities in a model
with the use of XPRSiis (NUMIIS). This search is controlled by the parameter MAXIIS, which
controls the maximum number of IISs which will be found. In some cases an infeasibility can
be represented by several different IISs and Xpress-MP will attempt to find the IIS with the
smallest number of constraints in order to make the infeasibility easier to diagnose. The IISs
may be retrieved by library users with XPRSgetiis.

Once an IIS has been found it is useful to know if dropping a single constraint or bound will
completely remove the infeasibility represented by the IIS. An attempt is made to identify a
subset of the IIS called a sub-IIS isolation. Removing any member of the sub-IIS isolation will
remove all infeasibilities in the IIS without increasing the infeasibilities of other IISs. The sub-IIS
isolations thus indicate the likely cause of each independent infeasibility and give an indication
of which constraint or bound to drop. It is not always possible to find sub-IIS isolations, but if
these subsets exist the members will be marked with a star. The sub-IIS isolations are searched
for only if all independent IISs have been found.

3.2.3 Integer Infeasibility

In certain situations a MIP problem may turn out to be infeasible, while the equivalent LP prob-
lem (the LP relaxation) yields an optimal solution. In such circumstances the feasible region for
the LP relaxation, while nontrivial, contains no solutions which satisfy the various integrality
constraints and a solution may only be recovered either by dropping one of these, or one of
the other problem constraints. These are perhaps the worst kind of infeasibilities as it is much
harder to determine the cause.

3.3 Unboundedness

A problem is said to be unbounded if the objective function may be improved indefinitely
whilst still satisfying the constraints of the model. When this occurs it usually signifies a prob-
lem in the formulation of the model being solved rather than a likely source of infinite profit.
If the Optimizer detects unboundedness, the user should look again at the model being pre-
sented for missing, insufficient or inaccurate constraints, or data.

3.4 Scaling

When they are first formulated, problems sometimes contain numerical values which vary over
many orders of magnitude. For example:

maximize: 106x+7y = z

subject to: 106x+0.1y ≤ 100

107x+8y ≤ 500

1012x+106y ≤ 50*106

Optimality, Infeasibility and Unboundedness 11 Xpress-Optimizer Reference Manual

Here the objective coefficients, constraint coefficients, and RHS values range between 0.1 and
1012. We say that the model is badly scaled.

During the optimization process, the Optimizer must perform many calculations involving sub-
traction and division of quantities derived from the constraints and objective function. When
these calculations are carried out with values differing greatly in magnitude, the finite preci-
sion of computer arithmetic and the fixed tolerances employed by Xpress-MP result in a build
up of rounding errors to a point where the Optimizer can no longer reliably find the optimal
solution.

To minimize undesirable effects, when formulating your problem try to choose units (or equiv-
alently scale your problem) so that objective coefficients and matrix elements do not range
by more than 106, and RHS and non-infinite bound values do not exceed 108. One common
problem is the use of large finite bound values to represent infinite bounds (i.e., no bounds)
— if you have to enter explicit infinite bounds, make sure you use values greater than 1020

which will be interpreted as infinity by the Optimizer. Avoid having large objective values that
have a small relative difference — this makes it hard for the dual simplex algorithm to solve
the problem. Similarly, avoid having large RHS/bound values that are close together.

In the above example, both the x-coefficient and the last constraint might be better scaled.
Issues arising from the first may be overcome by column scaling, effectively a change of coor-
dinates, with the replacement of 106x by some new variable. Those from the second may be
overcome by row scaling.

Xpress-MP also incorporates a number of automatic scaling options to improve the scaling of
the matrix. However, the general techniques described below cannot replace attention to the
choice of units specific to your problem. The best option is to scale your problem following the
advice above, and use the automatic scaling provided by the Optimizer.

The form of scaling employed by the Optimizer depends on the bits of the control parameter
SCALING which are set. To get a particular form of scaling, set SCALING to the sum of the val-
ues corresponding to the scaling required. For instance, to get row scaling, column scaling and
then row scaling again, set SCALING to 1+2+4=7. The problem is scaled during XPRSreadprob
(READPROB), and may be rescaled later using XPRSscale (SCALE).

Bit Value Type of Scaling

0 1 Row scaling.

1 2 Column scaling.

2 4 Row scaling again.

3 8 Maximin.

4 16 Curtis-Reid.

5 32 0 – scale by geometric mean;
1 – scale by maximum element
(not applicable if maximin or Curtis-Reid is specified).

Typically one may want to rescale the matrix following an alteration (using XPRSalter (ALTER)).
By setting SCALING before calling XPRSscale (SCALE), a different scaling strategy can be em-
ployed from that used originally.

The default value of SCALING is 35, so row and column scaling are done by the maximum
element method. If scaling is not required, SCALING must be set to 0 before any call to
XPRSreadprob (READPROB).

The scaling is determined by the matrix elements only. The objective coefficients, right hand
side values and bound values do not influence the scaling. Scaling of integer entities is not
supported in XPRSglobal (GLOBAL), although a nonzero SCALING will scale the LP variables.
This means that the scaling of integer entities should be considered carefully when formulating
MIP problems.

Optimality, Infeasibility and Unboundedness 12 Xpress-Optimizer Reference Manual

3.5 Accuracy

The accuracy of the computed variable values and objective function value is affected in gen-
eral by the various tolerances used in the Optimizer. Of particular relevance to MIP problems
are the accuracy and cut off controls. The MIPRELCUTOFF control has a non-zero default value,
which will prevent solutions very close but better than a known solution being found. This con-
trol can of course be set to zero if required.

However, for all problems it is probably ambitious to expect a level of accuracy in the objective
of more than 1 in 1,000,000. Bear in mind that the default feasibility and optimality tolerances
are 10−6. And you are lucky if you can compute the solution values and reduced costs to an
accuracy better than 10−8 anyway (particularly for large models). It depends on the condition
number of the basis matrix and the size of the RHS and cost coefficients. Under reasonable
assumptions, an upper bound for the computed variable value accuracy is 4xKx ‖ RHS ‖ /1016,
where ‖ RHS ‖ denotes the L-infinity norm of the RHS and K is the basis condition number. The
basis condition number can be found using the XPRSbasiscondition (BASISCONDITION)
function.

You should also bear in mind that the matrix is scaled, which would normally have the effect
of increasing the apparent feasibility tolerance.

Optimality, Infeasibility and Unboundedness 13 Xpress-Optimizer Reference Manual

Chapter 4

Performance Issues

4.1 Choice of Algorithm

The Xpress-Optimizer is essentially "three solvers in one", offering users a choice of methods
to be used for solving LP and QP problems: the primal and dual simplex algorithms and the
Newton barrier interior point algorithm. The best algorithm to use for optimization in a given
situation is problem-specific. As a general rule, the dual simplex is usually much faster than
the primal simplex if the model is not infeasible or near-infeasibility. If the problem is likely to
be infeasible, then the primal simplex is probably the best choice as it makes determining the
cause of the infeasibility simpler. Interior point methods such as the Newton barrier algorithm
perform better on certain classes of problems, although, for a problem matrix A, if ATA is
dense then the barrier will be slow.

As a default, the Xpress-Optimizer employs the dual simplex method for solving LP problems
and the barrier method for solving QP problems. For most users this will be sufficient and they
need not consider changing it. If a problem seems to be taking an unusually long time to solve,
however, it may be worth experimenting with the different algorithms. These may be called
by specifying flags to the optimization routines, XPRSmaxim (MAXIM) and XPRSminim (MINIM).
The default algorithm used is determined by the value of the control parameter, DEFAULTALG.

In the following few sections, performance issues relating to these methods and to the search
for integer solutions will be discussed in more detail.

4.2 Simplex Performance

4.2.1 The Simplex Method

The region defined by a set of linear constraints is a polyhedron, known as the feasible region.
Points with the same linear objective function value, known as a level set, form a hyperplane.
It follows that an optimal value of the objective function will occur only on the boundary of
the feasible region and one will always occur at one of the vertices of the polyhedron. In some
cases, when the level sets of the objective function are parallel to part of the polyhedron’s
boundary, the optimal solution will not be unique, consisting rather of a line, plane or hyper-
plane of solutions. However, in this case also, the optimal solution value may be found by
considering only the vertices of the feasible region, although there will obviously be a contin-
uum of decision variable values which will produce this optimum.

In general, vertices occur at points where as many constraints and variable bounds as there are
variables in the problem intersect. Simplex methods usually only consider solutions at vertices,
or bases (known as basic solutions) and proceed or iterate from one vertex to another until
an optimal solution has been found, or the problem proves to be infeasible or unbounded.
The number of iterations required increases with model size, usually slightly faster than the
number of constraints.

14 Xpress-Optimizer Reference Manual

The primal and dual simplex methods differ in which vertices they consider and how they
iterate. The dual is the default for LP problems, but may be explicitly invoked using the d flag
with either XPRSmaxim (MAXIM) or XPRSminim (MINIM).

4.2.2 Inversion

During optimization using the simplex method, every so often the Optimizer will go through
a process known as inversion, with frequency determined by the controls INVERTFREQ and
INVERTMIN. This will attempt to find a more compact representation of the current solution
and check its accuracy. However, it is possible that the Optimizer may be unable to find a new
representation of the current solution. This may be due to accuracy problems or an unstable
initial condition produced by the crash or XPRSreadbasis (READBASIS). In such a situation,
a number of the vectors will be rejected from the basis and replaced by unit vectors corre-
sponding to slack or artificial variables. Following inversion, the Optimizer subsequently tries
to adjust the current solution to find a more stable one before continuing with the algorithm.

4.2.3 Partial Pricing vs. Devex Pricing

The primal simplex Optimizer uses a mixture of partial pricing and Paul Harris" Devex pricing as
determined by the control PRICINGALG. Typically, partial pricing results in a greater number
of fast iterations whereas Devex pricing results in fewer, slow iterations. Which is better is
highly problem-dependent. When set to 0, the Optimizer will start by using partial pricing
and automatically determine when to switch to Devex pricing. To prevent the Optimizer from
switching to Devex pricing, the user can set PRICINGALG to -1. To force the Optimizer to
switch to Devex pricing the PRICINGALG control can be set to 1.

4.2.4 Output

Whilst searching for an optimal LP solution, the Console Optimizer writes an iteration log to
the screen. The same information may be obtained by library users with the XPRSsetlogfile
or XPRSsetcblplog functions. This log is produced every LPLOG iterations. If this is positive, a
summary output is produced, whereas a more detailed log is produced if it is negative. When
set to 0, a log is displayed only when the solution terminates.

4.3 Barrier Performance

4.3.1 The Newton Barrier Method

In contrast to the simplex method, the Newton barrier is an interior point method for solving
LP and QP problems. As the name suggests, such a method involves iteratively moving from
one point to the next within the interior of the feasible region. Approaching the boundary
of the region is penalized, so iterates of this method cannot leave the region. However, since
optimal solutions of LP problems lie on the boundary of the feasible region, this penalty must
be dynamically decreased as the algorithm proceeds in order to allow iterates to converge to
the optimal solution.

Interior point methods typically yield a solution lying strictly in the interior of the feasible
region and so can be only an approximation to the true optimal vertex solution. It is therefore
the required proximity to the optimal solution which determines the number of iterations
required, rather than the number of decision variables. Unlike the simplex method, therefore,
the barrier often completes in a similar number of iterations regardless of the problem size.

The barrier solver can be invoked on a problem by using the b flag with either XPRSmaxim
(MAXIM) or XPRSminim (MINIM). This is used by default for QP problems, whose quadratic ob-
jective functions result in optimal solutions that generically lie on a face of the polyhedral
feasible region, rather than at a vertex.

Performance Issues 15 Xpress-Optimizer Reference Manual

4.3.2 Controlling Barrier Performance

The Newton barrier method is influenced by a number of controls which can be altered if the
solution search seems slow, or if numerical problems result. Ensuring that the CACHESIZE is
set correctly can have a significant effect on the performance, and must be set manually on
non-Intel and non-AMD platforms. Similarly, altering the ordering algorithm for the Cholesky
factorization using BARORDER can affect performance. Setting this to 2 often produces bet-
ter results, although the ordering itself can be significantly slower. Other controls such as
DENSECOLLIMIT can be set manually to good effect. For example, numerical problems where
dense columns are detected in the tree search can be eliminated by disabling the dense col-
umn handling. This is achieved by setting DENSECOLLIMIT to a larger number. In this case the
optimization speed may be degraded, but numerical behavior is usually better.

4.3.3 Crossover

Typically the barrier algorithm terminates when it is within a given tolerance of the optimal
solution. Since this solution will lie on the boundary of the feasible region, the Optimizer may
perform a crossover at this stage, enabling the optimization to be completed using the simplex
method and thus yielding a ’true’ optimum. If a basic optimal solution is required, then this
procedure must be activated before optimization starts. The CROSSOVER control governs this,
set to 1 by default for LP problems. If CROSSOVER is set to 0, no crossover will be attempted
and the solution provided will be that determined purely by the barrier method.

4.3.4 Convergence

The optimization is normally terminated when the primal and dual solutions are feasible and
the relative duality gap is less than BARGAPSTOP, or in other words:

|primalobj−dualobj|
1.0+|dualobj| ≤ BARGAPSTOP

For example, BARGAPSTOP = 1.0 E-8 means that eight significant figures will be correct in
the optimal objective value. The BARPRIMALSTOP and BARDUALSTOP parameters give the ter-
mination criteria for the primal and dual feasibilities. In general it should not be necessary to
change the BARGAPSTOP, BARPRIMALSTOP and BARDUALSTOP controls, but if a crossover is em-
ployed and the simplex algorithm takes many iterations to get from the crossover basis to an
optimal basis, then reducing these controls (e.g. by a factor of 10 to 100) may be worthwhile.

The Newton barrier algorithm computes a search direction at each iteration and takes a step
in this direction. If this step size is less than BARSTEPSTOP then the algorithm terminates. If
convergence is very slow then it may be better to terminate prematurely by setting a higher
value for BARSTEPSTOP and hence invoking the simplex method at an earlier stage.

4.3.5 Output

As with the simplex method, the Console Optimizer can display an iteration log. Similarly,
library users may obtain the same information by employing XPRSsetlogfile or
XPRSsetcbbarlog. In both cases, this is dependent on the value of the BAROUTPUT control.

4.4 Integer Programming - The Global Search

4.4.1 The Branch and Bound Process

The Xpress-Optimizer uses the Branch and Bound technique to solve mixed integer program-
ming (MIP) problems. A brief overview of this is given here to aid the user in guiding the
search for integer solutions. The three major concepts involved are separation, relaxation and
fathoming.

Performance Issues 16 Xpress-Optimizer Reference Manual

The relaxation applied to each integer programming problem is that of dropping the inte-
grality constraints. The relaxed problem is a linear programming problem and can be solved,
resulting in one of the following outcomes:

(a) The LP is infeasible so the MIP problem must also be infeasible;

(b) The LP has a feasible solution, but some of the integrality constraints are not satisfied -
the MIP has not yet been solved;

(c) The LP has a feasible solution and all the integrality constraints are satisfied so the MIP
has also been solved;

(d) The LP is unbounded.

The final outcome (d) is a tricky case. It can only occur at the very first relaxation, in which case
the model is not well posed. It will therefore be assumed that the LP is not unbounded.

Outcomes (a) and (c) are said to "fathom" the particular MIP, since no further work on it is
necessary. For case (b) more work is required, since one of the unsatisfied integrality con-
straints must be selected and the concept of separation applied. Suppose, for example, that
the optimal LP value of an integer variable x is 1.34, violating integrality. It follows that in
any solution to the original problem either x <= 1.0 or x >= 2.0. If the two resulting IP
problems are solved, integer values of x are guaranteed not to be missed, so the problem is
separated into two sub-problems.

If both of these sub-problems can be solved and the better of the two is chosen, then the MIP
is solved. Exactly the same relaxation strategy is used to solve each of the sub-problems and
consequently this is a recursive solution technique.

This can be depicted as a tree-searching algorithm with a certain degree of arbitrariness. Each
node of the tree is a MIP sub-problem. That MIP is then relaxed and the LP relaxation can
be solved. If the relaxation is not fathomed, then the MIP must be further separated into
two more sub-problems, each having the same constraints as the node MIP, plus one further
constraint each. Each node is therefore either fathomed or has two descendants.

At some point in exploring the tree an integer solution may be found, providing a bound on
the solution to the problem. Clearly the LP relaxation of a MIP will have no worse an optimal
objective function value than that of the MIP. The value of the best MIP node found can then
act as a cutoff for outstanding nodes. If the value of the LP relaxation is no better than the
cutoff, then any MIP descendant of the node cannot be better than the MIP solution value
which has been found. Again the node can be fathomed and need be considered no further.

The concept of a cutoff value can be applied even when no integer solution has been found
if it is known, or it may be assumed from the outset that the optimal solution must be better
than some value. If the relaxation is worse than this cutoff, then the node may be abandoned.
There is a danger, however, that all integer feasible solutions, including the optimal one, may
be missed if an overly optimistic cutoff value is chosen.

The cutoff concept can be more powerful if a solution within a certain tolerance of the integer
optimum is sought. If an integer solution is found, this may be accepted if there is no other
solution more than, say, 100 better than it. The cutoff can then be set to be 100 better than
the solution that has just been found.

Performance Issues 17 Xpress-Optimizer Reference Manual

If the problem contains sets then the nodes of the Branch and Bound tree are separated by
branching on the sets this is done by choosing a position in the set and setting all members of
the set to 0 either above or below the chosen point. Each member of the set has a reference
row entry and the sets are ordered by these reference row entries. The optimizer used the
reference row entries to decide on the branching position and so it is important to choose the
reference row entries which reflect the cost of setting the set member to 0. In some cases it
maybe better to model the problem with binary variables instead of sets. This is especially the
case if the sets are small.

4.4.2 Node and Variable Selection

The branch and bound technique leaves many choices open to the user. However, in practice
the success of the technique is highly dependent upon two choices.

(a) At any given stage there will generally be several outstanding nodes which have not been
fathomed. The choice of which to solve first is known as the node selection problem;

(b) Having chosen a node to tackle, deciding which variable to separate upon is known as
the variable selection problem.

The Optimizer incorporates a default strategy for both choices which has been found to work
adequately on most problems. Several controls are provided to tailor the search strategy to
a particular problem. Since the Optimizer makes its variable selection when the LP relaxation
has been solved, rather than when it has selected the node, the variable selection problem will
be discussed first.

4.4.3 Variable Selection for Branching

Each global entry has a priority for branching, either the default value of 500 or one set by
the user in the directives file. A low priority value means that the variable is more likely to
be selected for branching. Up and down pseudo costs for each global entity can be specified,
which are estimates of the per unit degradation of forcing the entity away from its LP value.

The Optimizer selects the branching entity from among those entities of the most important
priority class which remain unsatisfied. Of these, it takes the one with the highest estimated
cost of being satisfied (degradation).

A rather crude estimate of the best integer solution derivable from the node is made by sum-
ming the individual entities" estimates. If these estimates are consistently biased in some prob-
lem class, it may be worthwhile to specify pseudo costs different from the default of 0.1. This
can be achieved using the XPRSreaddirs (READDIRS) command.

4.4.4 Node Selection

Each active node has an LP relaxation value and an estimated degradation to an integer so-
lution. The controls NODESELECTION, BACKTRACK, VARSELECTION and BREADTHFIRST deter-
mine the way the next node is selected.

The value of NODESELECTION defines the candidate set for node selection, i.e. the set of nodes
from which one will be chosen, while the value of BACKTRACK defines the criterion used in
selection of a node from the candidate set. If NODESELECTION is 1 (the usual default) then the
two descendent nodes form the candidate set, but if both have been fathomed then all active
nodes form the candidate set. If NODESELECTION is 2, all nodes are always included in the
candidate set resulting in a best, or breadth first, search. If NODESELECTION is 3, a depth-first
search is performed. If NODESELECTION is 4, all nodes are considered for selection in priority
order for the first BREADTHFIRST nodes, after which the usual default behavior is resumed.

For deciding between the nodes in the candidate set, the value of BACKTRACK determines
the selection criterion. If BACKTRACK is 1 and MIPTARGET has not been set (either directly by
the user or by the search previously finding an integer solution), then the node with the best

Performance Issues 18 Xpress-Optimizer Reference Manual

estimate is chosen. If BACKTRACK is 1 and MIPTARGET has been set, then the Forrest-Hirst-
Tomlin Criterion is used. For minimization problems, this chooses the node with the highest
value of:

(MIPTARGET − objective− deg) / deg

where deg is the estimated degradation. The value of VARSELECTION influences deg. If
VARSELECTION is 1 (the default) then deg is assumed to come from the better of the two
possible branching directions for each unsatisfied entity.

Various other ways of calculating deg can be actioned by setting VARSELECTION. The table
below shows the possible values where upj and downj are the estimated up and down degra-
dations of branching on global entity j.

VARSELECTION Estimated Degradation (deg)

1
∑

j min(upj, downj)

2
∑

j(upj + downj)

3
∑

j

(
2. 0 · min(upj, downj) + max(upj, downj)

)
4

∑
j max(upj, downj)

5
∑

j downj

6
∑

j upj

If BACKTRACK is 2, the node with the smallest estimated solution is always chosen. If BACKTRACK
is 3 the node with the smallest bound is always chosen.

4.4.5 Adjusting the Cutoff Value

Since the parameters MIPRELCUTOFF and MIPADDCUTOFF have nonzero default values we must
consider carefully the effect of setting MIPADDCUTOFF at different places in the set of com-
mands to the Optimizer. If MIPADDCUTOFF is set prior to XPRSmaxim (MAXIM) or XPRSminim
(MINIM) then its value may be altered by the optimization process. At the end of the LP opti-
mization step, MIPADDCUTOFF is set to:

max (MIPADDCUTOFF, 0.01 · MIPRELCUTOFF · LP_value)

where LP_value is the optimal value found by the LP Optimizer. When this formula is not
required and a known value is to be specified for MIPADDCUTOFF, then MIPADDCUTOFF must
be set after the LP Optimizer has been run. If a value is specified for MIPRELCUTOFF it must be
specified before the LP Optimizer is run.

4.4.6 Integer Preprocessing

If MIPPRESOLVE has been set to a nonzero value before solving a MIP problem, integer pre-
processing will be performed at each node of the branch and bound tree search (including
the top node). This incorporates reduced cost fixing, binary variable fixing and probing at the
top node. If a variable is fixed at a node, it remains fixed at all its child nodes, but it is not
deleted from the matrix (unlike the variables fixed by presolve). The integer preprocessing is
not influenced by the linear (l) flag in XPRSmaxim (MAXIM) and XPRSminim (MINIM).

MIPPRESOLVE is a bitmap whose values are acted on as follows:

Bit Value Action

0 1 reduced cost fixing;

1 2 variable fixing;

2 4 probing at root node.

Performance Issues 19 Xpress-Optimizer Reference Manual

So a value of 1+2=3 for MIPPRESOLVE causes reduced cost fixing and variable fixing.

Performance Issues 20 Xpress-Optimizer Reference Manual

Chapter 5

Implementing Algorithms

5.1 Viewing and Modifying the Matrix

Whilst the simple procedures laid out in the previous chapters will be sufficient for many users
of the Xpress-Optimizer, it is sometimes necessary after a model has been loaded to view and
change certain properties of a problem’s matrix, prior to re-optimizing the altered problem.
This may be particularly important if the original problem was found to be infeasible and
constraints (matrix rows) needed to be removed to make the feasible region nontrivial. For
library users, Xpress-MP provides several functions specifically dedicated to this purpose, a few
of which we mention below.

5.1.1 Viewing the Matrix

The Optimizer supports functions which provide access to the objective function, constraint
right hand sides, bounds and the matrix elements both prior to and following optimization. In
the former case, all information about the problem is available, although clearly the solution
will not be. In the latter case, the structures available are dependent on whether or not the
matrix is in a presolved state. This is described fully in the following section, so we do not
elaborate on it here, other than to remark that full matrix information is only available if the
matrix is not presolved. If it is still presolved, then only partial information will be available.
If you are unsure of the matrix status, you may consult the problem attribute PRESOLVESTATE
to determine its state.

For this section we will be concerned only with matrices which are not in a presolved state.
For such matrices, the rows represent the constraints of the problem and may be obtained us-
ing XPRSgetrows. Their type and range are accessed via the functions XPRSgetrowtype and
XPRSgetrowrange, whilst the names for each constraint may be returned by the
XPRSgetnames command. The right hand side values and their ranges are available by means
of the XPRSgetrhs and XPRSgetrhsrange routines. Related to the matrix rows, the coeffi-
cients of the objective function are similarly obtainable with use of the XPRSgetobj routine,
whilst the related XPRSgetqobj function returns coefficients for quadratic objective func-
tions.

The matrix columns represent the decision variables for the problem and as such the user may
also be interested in information about these. The columns will typically have names, which the
user may want to access, again possible using the XPRSgetnames function. Upper and lower
bounds for the columns may be accessed with the commands XPRSgetub and XPRSgetlb,
whilst their type and range are obtainable by means of the functions XPRSgetcoltype and
XPRSgetcolrange, much as for the matrix rows. The XPRSgetcols function obtains the
matrix columns themselves.

The reference section of this manual gives the precise form and usage for each of these func-
tions in 6 and the user is advised to consult those pages for details and examples before em-
ploying them in their own programs.

21 Xpress-Optimizer Reference Manual

5.1.2 Modifying the Matrix

In some instances, a model which has previously been solved must be changed before the
modified matrix is re-presented for optimization, and a set of routines is provided for this
task. Rows and columns can be added (using XPRSaddrows, XPRSaddcols) or deleted from
the model (using XPRSdelrows, XPRSdelcols). If rows or columns are to be added, for max-
imum efficiency, space should be reserved for them before the matrix is read by setting the
EXTRAROWS, EXTRACOLS, EXTRAELEMS and EXTRAMIPENTS controls. If this is not done, resiz-
ing will be carried out automatically, but more space may be allocated than the user actually
requires, potentially resulting in slower solution times.

In the same way, existing row and column types may also be altered (using XPRSchgrowtype,
XPRSchgcoltype), as may the matrix coefficients (using XPRSchgcoef, or XPRSchgmcoef if
several are to be changed). Right hand sides and their ranges may be changed with
XPRSchgrhs and XPRSchgrhsrange, whilst the coefficients of the objective function may be
changed with XPRSchgobj. Those for quadratic objective functions may be similarly altered
using XPRSchgqobj or XPRSchgmqobj if several such are to be changed.

As mentioned above, a matrix may not be modified if it has been presolved and has not been
postsolved, except that the variable bounds may be altered (using XPRSchgbounds). In the
following section the Presolve facility will be discussed, along with some suggestions for get-
ting around the difficulties of working with a presolved matrix. Examples of all the above
functions and their precise syntax may be found within the reference pages of this manual in
6, to which the user is referred for details of how they might be employed in an Optimizer
library program.

5.2 Working with Presolve

The Optimizer provides a number of algorithms for simplifying a problem prior to the optimiza-
tion process. This elaborate collection of procedures, known as presolve, can often greatly im-
prove the Optimizer’s performance by modifying the problem matrix, making it easier to solve.
The presolve algorithms identify and remove redundant rows and columns, reducing the size
of the matrix, for which reason most users will find it a helpful tool in reducing solution times.
However, presolve is included as an option and can be disabled if not required by setting the
PRESOLVE control to 0. Usually this is set to 1 and presolve is called by default.

For some users the presolve routines can result in confusion since a problem viewed in its
presolved form will look very different to the original model. Under standard use of the Op-
timizer this may cause no difficulty. On a few occasions, however, if errors occur or if a user
tries to access additional properties of the matrix for certain types of problem, the presolved
values may be returned instead. In this section we provide a few notes on how such confusion
may be best avoided. If you are unsure if the matrix is in a presolved state or not, check the
PRESOLVESTATE attribute

5.2.1 Linear Programming Problems

For a linear problem, presolve is called as a default by the XPRSmaxim (MAXIM) and XPRSminim
(MINIM) routines, tidying the matrix before the main optimization algorithm is invoked. Fol-
lowing optimization, the whole matrix is automatically postsolved to recover a solution to
the original problem and restoring the original matrix. Consequently, either before optimiza-
tion or immediately following solution the full matrix may be viewed and altered as described
above, being in its original form.

If for some reason the optimization is interrupted before it has completed, either using the
CTRL-C key combination, or due to insufficient LPITERLIMIT or MAXTIME settings, then the
problem will remain in its presolved form. The problem may be returned to its original state
by calling XPRSpostsolve (POSTSOLVE).

Implementing Algorithms 22 Xpress-Optimizer Reference Manual

5.2.2 (Mixed) Integer Programming Problems

If a model contains global entities, integer presolve methods such as bound tightening and
coefficient tightening are also applied to tighten the LP relaxation. A simple example of this
might be if the matrix has a binary variable x and one of the constraints of the matrix is x
≤ 0.2. It follows that x can be fixed at zero since it can never take the value 1. If presolve
uses the global entities to alter the matrix in this way, then the LP relaxation is said to have
been tightened. For Console users, notice of this is sent to the screen; for library users it
may be sent to a callback function, or printed to the log file if one has been set up. In such
circumstances, the optimal objective function value of the LP relaxation for a presolved matrix
may be different from that for the unpresolved matrix.

The strict LP solution to a model with global entities can be obtained by specifying the l
flag with the XPRSmaxim (MAXIM) or XPRSminim (MINIM) command. This removes the global
constraints from the variables, preventing the LP relaxation being tightened and solves the
resulting matrix. In the example above, x would not be fixed at 0, but allowed to range
between 0 and 0.2. If you are not interested in the LP relaxation, then it is slightly more
efficient to solve the LP relaxation and do the global search in one go, which can be done by
specifying the g flag for the XPRSmaxim (MAXIM) or XPRSminim (MINIM) command.

When XPRSglobal (GLOBAL) finds an integer solution, it is postsolved and saved in memory.
The solution can be read with the XPRSgetmipsol function. A permanent copy can be saved
to a solution file by calling XPRSwritebinsol (WRITEBINSOL). This can be retrieved later by
calling XPRSreadbinsol (READBINSOL).

After calling XPRSglobal (GLOBAL), the matrix will be postsolved whenever the MIP search
has completed. If the MIP search hasn’t completed the matrix can be postsolved by calling the
XPRSpostsolve (POSTSOLVE) function.

5.2.3 Common Causes of Confusion

It should be noted that most of the library routines described above and in 6, which mod-
ify the matrix will not work on a presolved matrix. The only exceptions are that cuts may
be added using the cut pool manager and that the variable bounds may be changed (using
XPRSchgbounds). Any of these functions expect references to the presolved problem. If one
tries to retrieve rows, columns, bounds or the number of these, such information will come
from the presolved matrix and not the original. A few functions exist which are specifically de-
signed to work with presolved and scaled matrices, although care should be exercised in using
them. Examples of these include the commands XPRSgetpresolvebasis, XPRSgetscaledinfeas,
XPRSloadpresolvebasis and XPRSloadpresolvedirs.

5.3 Using the Callbacks

5.3.1 Optimizer Output

Console users are constantly provided with information on the standard output device by the
Optimizer as it searches for a solution to the current problem. The same output is also available
to library users if a log file has been set up using XPRSsetlogfile. However, whilst Console
users can respond to this information as it is produced and allow it to influence their session,
the same is not immediately true for library users, since their program must be written and
compiled before the session is initiated. For such users, a more interactive alternative to the
above forms of output is provided by the use of callback functions.

The library callbacks are a collection of functions which allow user-defined routines to be spec-
ified to the Optimizer. In this way, users may define their own routines which should be called
at various stages during the optimization process, prompting the Optimizer to return to the
user’s program before continuing with the solution algorithm. Perhaps the three most general
of the callback functions are those associated with the search for an LP solution. However, by
far the vast majority of situations in which such routines might be called are associated with

Implementing Algorithms 23 Xpress-Optimizer Reference Manual

the global search, and will be addressed below.

5.3.2 LP Search Callbacks

In place of catching the standard output from the Optimizer and saving it to a log file, the
callback XPRSsetcbmessage allows the user to define a routine which should be called every
time a text line is output by the Optimizer. Since this returns the status of each message
output, the user’s routine could test for error or warning messages and take appropriate action
accordingly.

Alternatively, the pair of functions XPRSsetcblplog and XPRSsetcbbarlog allow the user
to respond after each iteration of either the simplex or barrier algorithms respectively. The
controls LPLOG and BAROUTPUT may additionally be set to reduce the frequency at which this
routine should be called.

5.3.3 Global Search Callbacks

When a problem with global entities is to be optimized, a large number of LP problems, called
nodes, must typically be solved as part of the global tree search. At various points in this pro-
cess user-defined routines can be called, depending on the callback that is used to specify the
routine to the Optimizer. Such a routine may be called whenever a new node is selected using
XPRSsetcbprenode, and could be used to change the choice of node. Routines could be spec-
ified using either of the XPRSsetcboptnode or XPRSsetcbintsol callbacks, to be invoked
whenever an optimal solution or an integer solution is found at a particular node, or using
XPRSsetcbinfnode for when a node is found to be infeasible. Whenever a node is cut off as
a result of an improved integer solution being found, a routine may be called if specified us-
ing XPRSsetcbnodecutoff. Using XPRSsetcbchgbranch or XPRSsetcbchgnode, routines
can be specified to be invoked whenever a new branching variable is set or whenever the
code backtracks to select a new node. Perhaps more technically, XPRSsetcbsepnode and
XPRSsetcbestimate may specify routines determining how to separate on a node or obtain-
ing the estimated degradation at each node from branching on the user’s global entities.

The final global callback, XPRSsetcbgloballog, is more similar to the LP search callbacks, al-
lowing a user’s routine to be called whenever a line of the global log is printed. The frequency
with which this occurs is set by the control MIPLOG.

5.4 Working with the Cut Manager

5.4.1 Cuts and the Cut Pool

The global search for a solution of a (mixed) integer problem involves optimization of a large
number of LP problems, known as nodes. This process is often made more efficient by sup-
plying additional rows (constraints) to the matrix which reduce the size of the feasible region,
whilst ensuring that it still contains any optimal integer solution. Such additional rows are
called cutting planes, or cuts.

By default, cuts are automatically added to the matrix by the Optimizer during a global search
to speed up the solution process. However, for advanced users, the Optimizer library provides
greater freedom, allowing the possibility of choosing which cuts are to be added at particular
nodes, or removing cuts entirely. The cutting planes themselves are held in a cut pool, which
may be manipulated using library functions.

Cuts may be added directly to the matrix at a particular node, or may be stored in the cut pool
first before subsequently being loaded into the matrix. It often makes little difference which
of these two approaches are adopted, although as a general rule if cuts are cheap to generate,
it may be preferable to add the cuts directly to the matrix and delete any redundant cuts after
each sub-problem (node) has been optimized. Any cuts added to the matrix at a node and
not deleted at that node will automatically be added to the cut pool. If you wish to save all
the cuts that are generated, it is better to add the cuts to the cut pool first. Cuts can then be

Implementing Algorithms 24 Xpress-Optimizer Reference Manual

loaded into the matrix from the cut pool. This approach has the advantage that the cut pool
routines can be used to identify duplicate cuts and save only the stronger cuts.

To help you keep track of the cuts that have been added to the matrix at different nodes,
the cuts can be classified according to a user-defined cut type. The cut type can either be a
number such as the node number or it can be a bit map. In the latter case each bit of the cut
type may be used to indicate a property of the cut. For example cuts could be classified as
local cuts applicable at the current node and its descendants, or as global cuts applicable at all
nodes. If the first bit of the cut type is set this could indicate a local cut and if the second bit
is set this could indicate a global cut. Other bits of the cut type could then be used to signify
other properties of the cuts. The advantage of using bit maps is that all cuts with a particular
property can easily be selected, for example all local cuts.

5.4.2 Cut Management Routines

Cuts may be added directly into the matrix at the current node using XPRSaddcuts. Any cuts
added to the matrix at a node will be automatically added to the cut pool and hence restored
at descendant nodes unless specifically deleted at that node, using XPRSdelcuts. Cuts may be
deleted from a parent node which have been automatically restored, as well as those added
to the current node using XPRSaddcuts, or loaded from the cut pool using XPRSloadcuts.

It is usually best to delete only those cuts with basic slacks, or else the basis will no longer be
valid and it may take many iterations to recover an optimal basis. If the second argument to
XPRSdelcuts is set to 1, this will ensure that cuts with non-basic slacks will not be deleted,
even if the other controls specify that they should be. It is highly recommended that this is
always set to 1.

Cuts may be saved directly to the cut pool using the function XPRSstorecuts. Since cuts
added to the cut pool are not automatically added to the matrix at the current node, any such
cut must be explicitly loaded into the matrix using XPRSloadcuts before it can become active.
If the third argument of XPRSstorecuts is set to 1, the cut pool will be checked for duplicate
cuts with a cut type identical to the cuts being added. If a duplicate cut is found, the new cut
will only be added if its right hand side value makes the cut stronger. If the cut in the cut pool
is weaker than the added cut, it will be removed unless it has already been applied to active
nodes of the tree. If, instead, this argument is set to 2, the same test is carried out on all cuts,
ignoring the cut type. The routine XPRSdelcpcuts allows the user to remove cuts from the
cut pool, unless they have already been applied to active nodes in the Branch and Bound tree.

A list of cuts in the cut pool may be obtained using the command XPRSgetcpcuts, whilst
XPRSgetcpcutlist returns a list of their indices. A list of those cuts which are active at the
current node may be returned using XPRSgetcutlist.

5.4.3 User Cut Manager Routines

Users may also write their own cut manager routines to be called at various points during the
Branch and Bound search. Such routines must be defined in advance using library function
calls, similar to callbacks and are defined according to the frequency at which they should be
called. At the beginning of the process a cut manager initialization routine may be called and
should be specified using XPRSsetcbinitcutmgr. In the same way, at the end of the process,
XPRSsetcbfreecutmgr allows the specification of a termination routine. The command
XPRSsetcbcutmgr allows the definition of a routine which may be called at each node in
the tree.

Further details of these functions may be found in 6 within the functional reference which
follows.

Implementing Algorithms 25 Xpress-Optimizer Reference Manual

5.5 Goal Programming

5.5.1 Overview

Goal programming is an extension of linear programming in which targets are specified for
a set of constraints. In goal programming there are two basic models: the pre-emptive (lex-
icographic) model and the Archimedian model. In the pre-emptive model, goals are ordered
according to priorities. The goals at a certain priority level are considered to be infinitely more
important than the goals at the next level. With the Archimedian model, weights or penalties
for not achieving targets must be specified and one attempts to minimize the weighted sum
of goal under-achievement.

In the Optimizer, goals can be constructed either from constraints or from objective functions
(N rows). If constraints are used to construct the goals, then the goals are to minimize the
violation of the constraints. The goals are met when the constraints are satisfied. In the pre-
emptive case we try to meet as many goals as possible, taking them in priority order. In the
Archimedian case, we minimize a weighted sum of penalties for not meeting each of the goals.
If the goals are constructed from N rows, then, in the pre-emptive case, a target for each N
row is calculated from the optimal value for the N row. this may be done by specifying either a
percentage or absolute deviation that may be allowed from the optimal value for the N rows.
In the Archimedian case, the problem becomes a multi-objective linear programming problem
in which a weighted sum of the objective functions is to be minimized.

In this section four examples will be provided of the four different types of goal programming
available. Goal programming itself is performed using the XPRSgoal (GOAL) command, whose
syntax is described in full in the reference section of this manual.

5.5.2 Pre-emptive Goal Programming Using Constraints

For this case, goals are ranked from most important to least important. Initially we try to satisfy
the most important goal. Then amongst all the solutions that satisfy the first goal, we try to
come as close as possible to satisfying the second goal. We continue in this fashion until the
only way we can come closer to satisfying a goal is to increase the deviation from a higher
priority goal.

An example of this is as follows:

goal 1 (G1): 7x + 3y ≥ 40

goal 2 (G2): 10x + 5y = 60

goal 3 (G3): 5x + 4y ≤ 35

LIMIT: 100x + 60y ≤ 600

Initially we try to meet the first goal (G1), which can be done with x=5.0 and y=1.6, but this
solution does not satisfy goal 2 (G2) or goal 3 (G3). If we try to meet goal 2 while still meeting
goal 1, the solution x=6.0 and y=0.0 will satisfy. However, this does not satisfy goal 3, so we
repeat the process. On this occasion no solution exists which satisfies all three.

5.5.3 Archimedian Goal Programming Using Constraints

We must now minimize a weighted sum of violations of the constraints. Suppose that we have
the following problem, this time with penalties attached:

Penalties

goal 1 (G1): 7x + 3y ≥ 40 8

goal 2 (G2): 10x + 5y = 60 3

goal 3 (G3): 5x + 4y ≤ 35 1

LIMIT: 100x + 60y ≤ 600

Implementing Algorithms 26 Xpress-Optimizer Reference Manual

Then the solution will be the solution of the following problem:

minimize: 8d1 + 3d2 + 3d3 + 1d4

subject to: 7x + 3y + d1 ≥ 40

10x + 5y + d2 - d3 = 60

5x + 4y + d4 ≥ 35

100x + 60y ≤ 600

d1 ≥ 0, d2 ≥ 0, d3 ≥ 0, d4 ≥ 0

In this case a penalty of 8 units is incurred for each unit that 7x + 3y is less than 40 and so on.
the final solution will minimize the weighted sum of the penalties. Penalties are also referred
to as weights. This solution will be x=6, y=0, d1=d2=d3=0 and d4=5, which means that the first
and second most important constraints can be met, while for the third constraint the right
hand side must be reduced by 5 units in order to be met.

Note that if the problem is infeasible after all the goal constraints have been relaxed, then no
solution will be found.

5.5.4 Pre-emptive Goal Programming Using Objective Functions

Suppose that we now have a set of objective functions of which we know which are the most
important. As in the pre-emptive case with constraints, goals are ranked from most to least
important. Initially we find the optimal value of the first goal. Once we have found this
value we turn this objective function into a constraint such that its value does not differ from
its optimal value by more than a certain amount. This can be a fixed amount (or absolute
deviation) or a percentage of (or relative deviation from) the optimal value found before.
Now we optimize the next goal (the second most important objective function) and so on.

For example, suppose we have the following problem:

Sense D/P Deviation

goal 1 (OBJ1): 5x + 2y - 20 max P 10

goal 2 (OBJ2): -3x + 15y - 48 min D 4

goal 3 (OBJ3): 1.5x + 21y - 3.8 max P 20

LIMIT: 42x + 13y ≤ 100

For each N row the sense of the optimization (max or min) and the percentage (P) or absolute
(D) deviation must be specified. For OBJ1 and OBJ3 a percentage deviation of 10% and 20%
respectively have been specified, whilst for OBJ2 an absolute deviation of 4 units has been
specified.

We start by maximizing the first objective function, finding that the optimal value is -4.615385.
As a 10% deviation has been specified, we change this objective function into the following
constraint:

5x + 2y - 20 ≥ -4.615385 - 0.14.615385

Now that we know that for any solution the value for the former objective function must be
within 10% of the best possible value, we minimize the next most important objective function
(OBJ2) and find the optimal value to be 51.133603. Goal 2 (OBJ2) may then be changed into
a constraint such that:

-3x + 15y - 48 ≤ 51.133603 + 4

and in this way we ensure that for any solution, the value of this objective function will not be
greater than the best possible minimum value plus 4 units.

Implementing Algorithms 27 Xpress-Optimizer Reference Manual

Finally we have to maximize OBJ3. An optimal value of 141.943995 will be obtained. Since a
20% allowable deviation has been specified, this objective function may be changed into the
following constraint:

1.5x + 21y - 3.8 ≥ 141.943995 - 0.2141.943995

The solution of this problem is x=0.238062 and y=6.923186.

5.5.5 Archimedian Goal Programming Using Objective Functions

In this, the final case, we optimize a weighted sum of objective functions. In other words we
solve a multi-objective problem. For consider the following:

Weights Sense

goal 1 (OBJ1): 5x + 2y - 20 100 max

goal 2 (OBJ2): -3x + 15y - 48 1 min

goal 3 (OBJ3): 1.5x + 21y - 3.8 0.01 max

LIMIT: 42x + 13y ≤ 100

In this case we have three different objective functions that will be combined into a single
objective function by weighting them by the values given in the weights column. The solution
of this model is one that minimizes:

1(-3x + 15y - 48) - 100(5x + 2y - 20) - 0.01(1.5x + 21y - 3.8)

The resulting values that each of the objective functions will have are as follows:

OBJ1: 5x + 2y - 20 = -4.615389

OBJ2: -3x + 15y - 48 = 67.384613

OBJ3: 1.5x + 21y - 3.8 = 157.738464

The solution is x=0.0 and y=7.692308.

Implementing Algorithms 28 Xpress-Optimizer Reference Manual

Chapter 6

Console and Library Functions

A large number of routines are available for both Console and Library users of the Xpress-
Optimizer, ranging from simple routines for the input and solution of problems from matrix
files to sophisticated callback functions and greater control over the solution process. Of these,
the core functionality is available to both sets of users and comprises the ’Console Mode’.
Library users additionally have access to a set of more ’advanced’ functions, which extend
the functionality provided by the Console Mode, providing more control over their program’s
interaction with the Optimizer and catering for more complicated problem development.

6.1 Console Mode Functions

With both the Console and Advanced Mode functions described side-by-side in this chapter,
library users can use this as a quick reference for the full capabilities of the Optimizer library.
For users of Console Xpress, only the following functions will be of relevance:

Command Description Page

EXIT Terminate the Console Optimizer. p. 64

HELP Quick reference help for the optimizer console p. 120

PRINTRANGE Writes the ranging information to screen. p. 150

PRINTSOL Write the current solution to screen. p. 151

QUIT Terminate the Console Optimizer. p. 152

STOP Terminate the Console Optimizer. p. 196

ALTER Alters or changes matrix elements, right hand sides and constraint senses in
the current problem. p. 40

BASISCONDITION Calculates the condition number of the current basis after solving the LP re-
laxation. p. 41

FIXGLOBAL Fixes all the global entities to the values of the last found MIP solution. This
is useful for finding the reduced costs for the continuous variables after the
global variables have been fixed to their optimal values. p. 65

GETMESSAGESTATUS Manages suppression of messages. p. 92

GLOBAL Starts the global search for an integer solution after solving the LP relax-
ation with XPRSmaxim (MAXIM) or XPRSminim (MINIM) or continues a global
search if it has been interrupted. p. 116

GOAL Perform goal programming. p. 118

IIS Initiates the search for Irreducible Infeasible Sets (IIS) amongst problems which
are linear infeasible. p. 121

MAXIM, MINIM Begins a search for the optimal LP solution. p. 143

POSTSOLVE Postsolve the current matrix when it is in a presolved state. p. 147

RANGE Calculates the ranging information for a problem and saves it to the binary
ranging file problem_name.rng. p. 153

READBASIS Instructs the Optimizer to read in a previously saved basis from a file. p. 154

READBINSOL Reads a solution from a binary solution file. p. 155

29 Xpress-Optimizer Reference Manual

READDIRS Reads a directives file to help direct the global search. p. 156

READPROB Reads an (X)MPS or LP format matrix from file. p. 158

RESTORE Restores the Optimizer’s data structures from a file created by XPRSsave (SAVE).
Optimization may then recommence from the point at which the file was cre-
ated. p. 160

SAVE Saves the current data structures, i.e. matrices, control settings and problem
attribute settings to file and terminates the run so that optimization can be
resumed later. p. 162

SCALE Re-scales the current matrix. p. 163

SETMESSAGESTATUS Manages suppression of messages. p. 193

SETPROBNAME Sets the current default problem name. This command is rarely used. p. 194

WRITEBASIS Writes the current basis to a file for later input into the Optimizer. p. 200

WRITEBINSOL Writes the current MIP or LP solution to a binary solution file for later input
into the Optimizer. p. 201

WRITEOMNI Writes the current solution to the binary OMNI format file SOLFILE, as recorded
in the solution file problem_name .sol. Optionally the current matrix may also
be written. All information is appended to this file. p. 202

WRITEPROB Writes the current problem to an MPS or LP file. p. 204

WRITEPRTRANGE Writes the ranging information to a fixed format ASCII file, problem_name.rrt.
The binary range file (.rng) must already exist, created by XPRSrange (RANGE).
p. 205

WRITEPRTSOL Writes the current solution to a fixed format ASCII file, problem_name .prt.
p. 206

WRITERANGE Writes the ranging information to a CSV format ASCII file, problem_name.rsc
(and .hdr). The binary range file (.rng) must already exist, created by XPRSrange
(RANGE) and an associated header file. p. 207

WRITESOL Writes the current solution to a CSV format ASCII file, problem_name.asc (and
.hdr). p. 209

For a list of functions by task, refer to 2.7.

6.2 Layout For Function Descriptions

All functions mentioned in this chapter are described under the following set of headings:

Function Name

The description of each routine starts on a new page for the sake of clarity. The library name
for a function is on the left and the Console Xpress name, where relevant, is on the right.

Purpose

A short description of the routine and its purpose begins the information section.

Synopsis

A synopsis of the syntax for usage of the routine is provided. "Optional" arguments and flags
may be specified as NULL if not required. Where this possibility exists, it will be described
alongside the argument, or in the Further Information at the end of the routine’s descrip-
tion. Where the function forms part of the Console Mode, the library syntax is described first,
followed by the Console Xpress syntax.

Arguments

A list of arguments to the routine with a description of possible values for them follows.

Console and Library Functions 30 Xpress-Optimizer Reference Manual

Error Values

Optimizer return codes are described in 9. For library users, however, a return code of 32
indicates that additional error information may be obtained, specific to the function which
caused the error. Such is available by calling

XPRSgetintattrib(prob,XPRS_ERRORCODE,&errorcode);

Likely error values returned by this for each function are listed in the Error Values section.
A description of the error may be obtained using the XPRSgetlasterror function. If no
attention need be drawn to particular error values, this section will be omitted.

Associated Controls

Controls which affect a given routine are listed next, separated into lists by type. The con-
trol name given here should have XPRS_ prefixed by library users, in a similar way to the
XPRSgetintattrib example in the Error Values section above. Console Xpress users should
use the controls without this prefix, as described in Xpress-MP Getting Started manual. These
controls must be set before the routine is called if they are to have any effect.

Examples

One or two examples are provided which explain certain aspects of the routine’s use.

Further Information

Additional information not contained elsewhere in the routine’s description is provided at the
end.

Related Topics

Finally a list of related routines and topics is provided for comparison and reference.

Console and Library Functions 31 Xpress-Optimizer Reference Manual

XPRSaddcols

Purpose
Allows columns to be added to the matrix after passing it to the Optimizer using the input
routines.

Synopsis
int XPRS_CC XPRSaddcols(XPRSprob prob, int newcol, int newnz, const

double objx[], const int mstart[], const int mrwind[], const
double dmatval[], const double bdl[], const double bdu[]);

Arguments
prob The current problem.

newcol Number of new columns.

newnz Number of new nonzeros in the added columns.

objx Double array of length newcol containing the objective function coefficients of the
new columns.

mstart Integer array of length newcol+1 containing the offsets in the mrwind and dmatval
arrays of the start of the elements for each column.

mrwind Integer array of length newnz containing the row indices for the elements in each
column.

dmatval Double array of length newnz containing the element values.

bdl Double array of length newcol containing the lower bounds on the added columns.

bdu Double array of length newcol containing the upper bounds on the added columns.

Related controls

Integer

EXTRACOLS Number of extra columns to be allowed for.

EXTRAELEMS Number of extra matrix elements to be allowed for.

EXTRAMIPENTS Number of extra global entities to be allowed for.

Double

MATRIXTOL Zero tolerance on matrix elements.

Example
In this example, we consider the two problems:

(a) maximize: 2x + y (b) maximize: 2x + y + 3z

subject to: x + 4y ≤ 24 subject to: x + 4y + 2z ≤ 24

y ≤ 5 y + z ≤ 5

3x + y ≤ 20 3x + y ≤ 20

x + y ≤ 9 x + y + 3 ≤ 9

z ≤ 12

Using XPRSaddcols, the following transforms (a) into (b) and then names the new variable
using XPRSaddnames:

obj[0] = 3;
mstart[] = {0, 3};
mrwind[] = {0, 1, 3};
matval[] = {2.0, 1.0, 3.0};
bdl[0] = 0.0; bdu[0] = 12.0;
...
XPRSaddcols(prob,1,3,obj,mstart,mrwind,matval,bdl,bdu);
XPRSaddnames(prob,2,"z",2,2);

Console and Library Functions 32 Xpress-Optimizer Reference Manual

Further information

1. For maximum efficiency, space for the extra rows and elements should be reserved by setting
the EXTRACOLS, EXTRAELEMS and EXTRAMIPENTS controls before loading the problem.

2. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY defined in the library
header file can be used to represent plus and minus infinity respectively in the bound arrays.

3. If the columns are added to a MIP problem then they will be continuous variables.

Related topics
XPRSaddnames, XPRSaddrows, XPRSalter, XPRSdelcols.

Console and Library Functions 33 Xpress-Optimizer Reference Manual

XPRSaddcuts

Purpose
Adds cuts directly to the matrix at the current node. Any cuts added to the matrix at the
current node and not deleted at the current node will be automatically added to the cut pool.
The cuts added to the cut pool will be automatically restored at descendant nodes.

Synopsis
int XPRS_CC XPRSaddcuts(XPRSprob prob, int ncuts, const int mtype[],

const char qrtype[], const double drhs[], const int mstart[],
const int mcols[], const double dmatval[]);

Arguments
prob The current problem.

ncuts Number of cuts to add.

mtype Integer array of length ncuts containing the cut types. The cut types can be any
positive integer chosen by the user, and are used to identify the cuts in other cut
manager routines using user supplied parameters. The cut type can be interpreted
as an integer or a bitmap - see XPRSdelcuts.

qrtype Character array of length ncuts containing the row types:
L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.

drhs Double array of length ncuts containing the right hand side elements for the cuts.

mstart Integer array containing offset into the mcols and dmatval arrays indicating the
start of each cut. This array is of length ncuts+1with the last element, mstart[ncuts],
being where cut ncuts+1 would start.

mcols Integer array of length mstart[ncuts] containing the column indices in the cuts.

dmatval Double array of length mstart[ncuts] containing the matrix values for the cuts.

Related controls

Double

MATRIXTOL Zero tolerance on matrix elements.

Further information

1. The columns and elements of the cuts must be stored contiguously in the mcols and dmatval
arrays passed to XPRSaddcuts. The starting point of each cut must be stored in the mstart
array. To determine the length of the final cut, the mstart array must be of length ncuts+1
with the last element of this array containing the position in mcols and dmatval where the
cut ncuts+1 would start. mstart[ncuts] denotes the number of nonzeros in the added cuts.

2. The cuts added to the matrix are always added at the end of the matrix and the number of
rows is always set to the original number of cuts added. If ncuts have been added, then the
rows 0,...,ROWS-ncuts-1 are the original rows, whilst the rows ROWS-ncuts,...,ROWS-1 are the
added cuts. The number of cuts can be found by consulting the CUTS problem attribute.

Related topics
XPRSaddrows, XPRSdelcpcuts, XPRSdelcuts, XPRSgetcpcutlist, XPRSgetcutlist,
XPRSloadcuts, XPRSstorecuts, 5.4.

Console and Library Functions 34 Xpress-Optimizer Reference Manual

XPRSaddnames

Purpose
When a model is loaded, the rows, columns and sets of the model may not have names asso-
ciated with them. This may not be important as the rows, columns and sets can be referred
to by their sequence numbers. However, if you wish row, column and set names to appear
in the ASCII solutions files, the names for a range of rows or columns can be added with
XPRSaddnames.

Synopsis
int XPRS_CC XPRSaddnames(XPRSprob prob, int type, const char cnames[],

int first, int last);

Arguments
prob The current problem.

type 1 for row names;
2 for column names.
3 for set names.

cnames Character buffer containing the null-terminated string names - each name may be
at most MPSNAMELENGTH+1 characters including the compulsory null terminator. If
this control is to be changed, this must be done before loading the problem.

first Start of the range of rows, columns or sets.

last End of the range of rows, columns or sets.

Related controls

Integer

MPSNAMELENGTH Maximum name length in characters.

Example
Add variable names (a and b), objective function (profit) and constraint names (first and
second) to a problem:

char rnames[] = "profit\0first\0second"
char cnames[] = "a\0b";
...
XPRSaddnames(prob,1,rnames,0,nrow-1);
XPRSaddnames(prob,2,cnames,0,ncol-1);

Related topics
XPRSaddcols, XPRSaddrows, XPRSgetnames.

Console and Library Functions 35 Xpress-Optimizer Reference Manual

XPRSaddrows

Purpose
Allows rows to be added to the matrix after passing it to the Optimizer using the input rou-
tines.

Synopsis
int XPRS_CC XPRSaddrows(XPRSprob prob, int newrow, int newnz, const char

qrtype[], const double rhs[], const double range[], const int
mstart[], const int mclind[], const double dmatval[]);

Arguments
prob The current problem.

newrow Number of new rows.

newnz Number of new nonzeros in the added rows.

qrtype Character array of length newrow containing the row types:
L indicates a ≤ row;
G indicates ≥ row;
E indicates an = row.
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length newrow containing the right hand side elements.

range Integer array of length newrow containing the offsets in the mclind and dmatval
arrays of the start of the elements for each row. This may be NULL if there are no
ranged constraints. The values in the range array will only be read for R type rows.
The entries for other type rows will be ignored.

mstart Integer array of length newrow+1 containing the offsets in the mclind and dmatval
arrays of the start of the elements for each row.

mclind Integer array of length newnz containing the (contiguous) column indices for the
elements in each row.

dmatval Double array of length newnz containing the (contiguous) element values.

Related controls

Integer

EXTRAELEMS Number of extra matrix elements to be allowed for.

EXTRAROWS Number of extra rows to be allowed for.

Double

MATRIXTOL Zero tolerance on matrix elements.

Example
Suppose the current problem was:

maximize: 2x + y + 3z

subject to: x + 4y + 2z ≤ 24

y + z ≤ 5

3x + y ≤ 20

x + y + 3z ≤ 9

Then the following adds the row 8x + 9y + 10z ≤ 25 to the problem and names it NewRow:

qrtype[0] = "L";
rhs[0] = 25.0;
mstart[] = {0, 3};
mclind[] = {0, 1, 2};
dmatval[] = {8.0, 9.0, 10.0};

Console and Library Functions 36 Xpress-Optimizer Reference Manual

...
XPRSaddrows(prob,1,3,qrtype,rhs,NULL,mstart,mclind, dmatval);
XPRSaddnames(prob,1,"NewRow",4,4);

Further information
For maximum efficiency, space for the extra rows and elements should be reserved by setting
the EXTRAROWS and EXTRAELEMS controls before loading the problem.

Related topics
XPRSaddcols, XPRSaddcuts, XPRSaddnames, XPRSdelrows.

Console and Library Functions 37 Xpress-Optimizer Reference Manual

XPRSaddsets

Purpose
Allows sets to be added to the problem after passing it to the Optimizer using the input rou-
tines.

Synopsis
int XPRS_CC XPRSaddsets(XPRSprob prob, int newsets, int newnz, char

qrtype[], int msstart[], int mclind[], double dref[]);

Arguments
prob The current problem.

newsetsx Number of new sets.

newnz Number of new nonzeros in the added sets.

qrtype Character array of length newsets containing the set types:
1 indicates a SOS1;
2 indicates a SOS2;

msstart Integer array of length newsets+1 containing the offsets in the mclind and dref
arrays of the start of the elements for each set.

mclind Integer array of length newnz containing the (contiguous) column indices for the
elements in each set.

dref Double array of length newnz containing the (contiguous) reference values.

Related topics
XPRSdelsets.

Console and Library Functions 38 Xpress-Optimizer Reference Manual

XPRSaddsetnames

Purpose
When a model with global entities is loaded, any special ordered sets may not have names
associated with them. If you wish names to appear in the ASCII solutions files, the names for a
range of sets can be added with this function.

Synopsis
int XPRS_CC XPRSaddsetnames(XPRSprob prob, const char names[], int first,

int last);

Arguments
prob The current problem.

names Character buffer containing the null-terminated string names - each name may be
at most MPSNAMELENGTH+1 characters including the compulsory null terminator. If
this control is to be changed, this must be done before loading the problem.

first Start of the range of sets.

last End of the range of sets.

Related controls

Integer

MPSNAMELENGTH Maximum name length in characters.

Example
Add set names (set1 and set2) to a problem:

char snames[] = "set1\0set2"
...
XPRSaddsetnames(prob,snames,0,1);

Related topics
XPRSaddnames, XPRSloadglobal, XPRSloadqglobal.

Console and Library Functions 39 Xpress-Optimizer Reference Manual

XPRSalter ALTER

Purpose
Alters or changes matrix elements, right hand sides and constraint senses in the current prob-
lem.

Synopsis
int XPRS_CC XPRSalter(XPRSprob prob, const char *filename);
ALTER [filename]

Arguments
prob The current problem.

filename A string of up to 200 characters specifying the file to be read. If omitted, the
default problem_name is used with a .alt extension.

Related controls

Integer

EXTRAELEMS Number of extra matrix elements to be allowed for.

Double

MATRIXTOL Zero tolerance on matrix elements.

Example 1 (Library)
Since the following call does not specify a filename, the file problem_name.alt is read in,
from which commands are taken to alter the current matrix.

XPRSalter(prob,"");

Example 2 (Console)
The following example reads in the file fred.alt, from which instructions are taken to alter
the current matrix:

ALTER fred

Further information

1. The file filename.alt is read. It is an ASCII file containing matrix revision statements in the
format described in A.7. The MODIFY format of the MPS REVISE data is also supported.

2. The command XPRSalter (ALTER) and the control EXTRAELEMS work together to enable the
user to change values and constraint senses in the problem held in memory. For maximum effi-
ciency, it should be set to reserve space for additional matrix elements. Defining the maximum
number of extra elements that can be added, it must be set before XPRSreadprob (READPROB).

3. It is not possible to alter an integer model which has been presolved. If it is required to alter
such a model after optimization, either turn the presolve off by setting PRESOLVE to 0 prior to
optimization, or reread the model with XPRSreadprob (READPROB).

Related topics
A.7.

Console and Library Functions 40 Xpress-Optimizer Reference Manual

XPRSbasiscondition BASISCONDITION

Purpose
Calculates the condition number of the current basis after solving the LP relaxation.

Synopsis
int XPRS_CC XPRSbasiscondition(XPRSprob prob, double *condnum, double

*scondnum);
BASISCONDITION

Arguments
prob The current problem.

condnum The returned condition number of the current basis.

scondnum The returned condition number of the current basis for the scaled problem.

Example 1 (Library)
Get the condition number after optimizing a problem.

XPRSminim(prob," ");
XPRSbasiscondition(prob,&condnum,&scondnum);
printf("Condition no’s are %g %g\n",condnum,scondnum);

Example 2 (Console)
Print the condition number after optimizing a problem.

READPROB
MINIM
BASISCONDITION

Further information

1. The condition number of an invertible matrix is the norm of the matrix multiplied with the
norm of its inverse. This number is an indication of how accurate the solution can be calculated
and how sensitive it is to small changes in the data. The larger the condition number is, the
less accurate the solution is likely to become.

2. The condition number is shown both for the scaled problem and in parenthesis for the original
problem.

Console and Library Functions 41 Xpress-Optimizer Reference Manual

XPRSbtran

Purpose
Post-multiplies a (row) vector provided by the user by the inverse of the current basis.

Synopsis
int XPRS_CC XPRSbtran(XPRSprob prob, double vec[]);

Arguments
prob The current problem.

vec Double array of length ROWS containing the values by which the basis inverse is to
be multiplied. The transformed values will appear in the array.

Related controls

Double

ETATOL Zero tolerance on eta elements.

Example
Get the (unscaled) tableau row z of constraint number irow, assuming that all arrays have
been dimensioned.

/* Minimum size of arrays:
y: nrow + ncol;
mstart: 2;
mrowind, dmatval: nrow. */

/* set up the unit vector y to pick out row irow */
for(i = 0; i < nrow; i++) y[i] = 0.0;
y[irow] = 1.0;

rc = XPRSbtran(prob,y); /* y = e*B^{-1} */

/* Form z = y * A */
for(j = 0; J < ncol, j++) {
rc = XPRSgetcols(prob, mstart, mrowind, dmatval,

nrow, &nelt, j, j);
for(d = 0.0, ielt = 0, ielt < nelt; ielt++)
d += y[mrowind[ielt]] * dmatval[ielt];

y[nrow + j] = d;
}

Further information
If the matrix is in a presolved state, XPRSbtran will work with the basis for the presolved
problem.

Related topics
XPRSftran.

Console and Library Functions 42 Xpress-Optimizer Reference Manual

XPRSchgbounds

Purpose
Used to change the bounds on columns in the matrix.

Synopsis
int XPRS_CC XPRSchgbounds(XPRSprob prob, int nbnds, const int mindex[],

const char qbtype[], const double bnd[]);

Arguments
prob The current problem.

nbnds Number of bounds to change.

mindex Integer array of size nbnds containing the indices of the columns on which the
bounds will change.

qbtype Character array of length nbnds indicating the type of bound to change:
U indicates change the upper bound;
L indicates change the lower bound;
B indicates change both bounds, i.e. fix the column.

bnd Double array of length nbnds giving the new bound values.

Example
The following changes column 0 of the current problem to have an upper bound of 0.5:

mindex[0] = 0;
qbtype[0] = "U";
bnd[0] = 0.5;
XPRSchgbounds(prob,1,mindex,qbtype,bnd);

Further information

1. A column index may appear twice in the mindex array so it is possible to change both the
upper and lower bounds on a variable in one go.

2. XPRSchgbounds may be applied to the problem in a presolved state, in which case it expects
references to the presolved problem.

3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY defined in the library
header file can be used to represent plus and minus infinity respectively in the bound (bnd)
array).

4. If the upper bound on a binary variable is changed to be greater than 1 or the lower bound is
changed to be less than 0 then the variable will become an integer variable.

Related topics
XPRSgetlb, XPRSgetub, XPRSstorebounds.

Console and Library Functions 43 Xpress-Optimizer Reference Manual

XPRSchgcoef

Purpose
Used to change a single coefficient in the matrix. If the coefficient does not already exist, a
new coefficient will be added to the matrix. If many coefficients are being added to a row of
the matrix, it may be more efficient to delete the old row of the matrix and add a new row.

Synopsis
int XPRS_CC XPRSchgcoef(XPRSprob prob, int irow, int icol, double dval);

Arguments
prob The current problem.

irow Row index for the coefficient.

icol Column index for the coefficient.

dval New value for the coefficient. If dval is zero, any existing coefficient will be
deleted.

Related controls

Double

MATRIXTOL Zero tolerance on matrix elements.

Example
In the following, the element in row 2, column 1 of the matrix is changed to 0.33:

XPRSchgcoef(prob,2,1,0.33);

Further information
XPRSchgmcoef is more efficient than multiple calls to XPRSchgcoef and should be used in its
place in such circumstances.

Related topics
XPRSaddcols, XPRSaddrows, XPRSchgmcoef, XPRSchgmqobj, XPRSchgobj, XPRSchgqobj,
XPRSchgrhs, XPRSgetcols, XPRSgetrows.

Console and Library Functions 44 Xpress-Optimizer Reference Manual

XPRSchgcoltype

Purpose
Used to change the type of a column in the matrix.

Synopsis
int XPRS_CC XPRSchgcoltype(XPRSprob prob, int nels, const int mindex[],

const char qctype[]);

Arguments
prob The current problem.

nels Number of columns to change.

mindex Integer array of length nels containing the indices of the columns.

qctype Character array of length nels giving the new column types:
C indicates a continuous column;
B indicates a binary column;
I indicates an integer column.

Example
The following changes columns 3 and 5 of the matrix to be integer and binary respectively:

mindex[0] = 3; mindex[1] = 5;
qctype[0] = "I"; qctype[1] = "B";
XPRSchgcoltype(prob,2,mindex,qctype);

Further information

1. The column types can only be changed before the MIP search is started. If XPRSchgcoltype is
called after a problem has been presolved, the presolved column numbers must be supplied. It
is not possible to change a column into a partial integer, semi-continuous or semi-continuous
integer variable.

2. Calling XPRSchgcoltype to change any variable into a binary variable causes the bounds pre-
viously defined for the variable to be deleted and replaced by bounds of 0 and 1.

Related topics
XPRSaddcols, XPRSchgrowtype, XPRSdelcols, XPRSgetcoltype.

Console and Library Functions 45 Xpress-Optimizer Reference Manual

XPRSchgmcoef

Purpose
Used to change multiple coefficients in the matrix. If any coefficient does not already exist, it
will be added to the matrix. If many coefficients are being added to a row of the matrix, it
may be more efficient to delete the old row of the matrix and add a new one.

Synopsis
int XPRS_CC XPRSchgmcoef(XPRSprob prob, int nels, const int mrow[], const

int mcol[], const double dval[]);

Arguments
prob The current problem.

nels Number of new coefficients.

mrow Integer array of length nels containing the row indices of the coefficients to be
changed.

mcol Integer array of length nels containing the column indices of the coefficients to
be changed.

dval Double array of length nels containing the new coefficient values. If an element
of dval is zero, the coefficient will be deleted.

Related controls

Double

MATRIXTOL Zero tolerance on matrix elements.

Example

mrow[0] = 0; mrow[1] = 3;
mcol[0] = 1; mcol[1] = 5;
dval[0] = 2.0; dval[1] = 0.0;
XPRSchgmcoef(prob,2,mrow,mcol,dval);

This changes two elements to values 2.0 and 0.0.

Further information
XPRSchgmcoef is more efficient than repeated calls to XPRSchgcoef and should be used in its
place if many coefficients are to be changed.

Related topics
XPRSchgcoef, XPRSchgmqobj, XPRSchgobj, XPRSchgqobj, XPRSchgrhs, XPRSgetcols,
XPRSgetrhs.

Console and Library Functions 46 Xpress-Optimizer Reference Manual

XPRSchgmqobj

Purpose
Used to change multiple quadratic coefficients in the objective function. If any of the coeffi-
cients does not exist already, new coefficients will be added to the objective function.

Synopsis
int XPRS_CC XPRSchgmqobj(XPRSprob prob, int nels, const int mqcol1[],

const int mqcol2[], const double dval[]);

Arguments
prob The current problem.

nels The number of coefficients to change.

mqcol1 Integer array of size ncol containing the column index of the first variable in each
quadratic term.

mqcol2 Integer array of size ncol containing the column index of the second variable in
each quadratic term.

dval New values for the coefficients. If an entry in dval is 0, the corresponding entry
will be deleted. These are the coefficients of the quadratic Hessian matrix.

Example
The following code results in an objective function with terms: [6x2

1 + 3x1x2 + 3x2x1] / 2

mqcol1[0] = 0; mqcol2[0] = 0; dval[0] = 6.0;
mqcol1[1] = 1; mqcol2[1] = 0; dval[1] = 3.0;
XPRSchgmqobj(prob,2,mqcol1,mqcol2,dval);

Further information

1. The columns in the arrays mqcol1 and mqcol2 must already exist in the matrix. If the columns
do not exist, they must be added with XPRSaddcols.

2. XPRSchgmqobj is more efficient than repeated calls to XPRSchgqobj and should be used in its
place when several coefficients are to be changed.

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgobj, XPRSchgqobj, XPRSgetqobj.

Console and Library Functions 47 Xpress-Optimizer Reference Manual

XPRSchgobj

Purpose
Used to change the objective function coefficients.

Synopsis
int XPRS_CC XPRSchgobj(XPRSprob prob, int nels, const int mindex[], const

double obj[]);

Arguments
prob The current problem.

nels Number of objective function coefficient elements to change.

mindex Integer array of length nels containing the indices of the columns on which the
range elements will change. An index of -1 indicates that the fixed part of the
objective function on the right hand side should change.

obj Double array of length nels giving the new objective function coefficient.

Example
Changing three coefficients of the objective function with XPRSchgobj :

mindex[0] = 0; mindex[1] = 2; mindex[2] = 5;
obj[0] = 25.0; obj[1] = 5.3; obj[2] = 0.0;
XPRSchgobj(prob,3,mindex,obj);

Further information
The value of the fixed part of the objective function can be obtained using the OBJRHS problem
attribute.

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgmqobj, XPRSchgqobj, XPRSgetobj.

Console and Library Functions 48 Xpress-Optimizer Reference Manual

XPRSchgqobj

Purpose
Used to change a single quadratic coefficient in the objective function corresponding to the
variable pair (icol,jcol) of the Hessian matrix.

Synopsis
int XPRS_CC XPRSchgqobj(XPRSprob prob, int icol, int jcol, double dval);

Arguments
prob The current problem.

icol Column index for the first variable in the quadratic term.

jcol Column index for the second variable in the quadratic term.

dval New value for the coefficient in the quadratic Hessian matrix. If an entry in dval is
0, the corresponding entry will be deleted.

Example
The following code adds the terms [6x2

1 + 3x1x2 + 3x2x1] / 2 to the objective function:

icol = jcol = 0; dval = 6.0;
XPRSchgqobj(prob,icol,jcol,dval);
icol = 0; jcol = 1; dval = 3.0;
XPRSchgqobj(prob,icol,jcol,dval);

Further information

1. The columns icol and jcol must already exist in the matrix. If the columns do not exist, they
must be added with the routine XPRSaddcols.

2. If icol is not equal to jcol, then both the matrix elements (icol, jcol) and (jcol,
icol) are changed to leave the Hessian symmetric.

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgmqobj, XPRSchgobj, XPRSgetqobj .

Console and Library Functions 49 Xpress-Optimizer Reference Manual

XPRSchgrhs

Purpose
Used to change right hand side elements of the matrix.

Synopsis
int XPRS_CC XPRSchgrhs(XPRSprob prob, int nels, const int mindex[], const

double rhs[]);

Arguments
prob The current problem.

nels Number of right hand side elements to change.

mindex Integer array of length nels containing the indices of the rows on which the right
hand side elements will change.

rhs Double array of length nels giving the right hand side values.

Example
Here we change the three right hand sides in rows 2, 6, and 8 to new values:

mindex[0] = 2; mindex[1] = 8; mindex[2] = 6;
rhs[0] = 5.0; rhs[1] = 3.8; rhs[2] = 5.7;
XPRSchgrhs(prob,3,mindex,rhs);

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgrhsrange, XPRSgetrhs, XPRSgetrhsrange .

Console and Library Functions 50 Xpress-Optimizer Reference Manual

XPRSchgrhsrange

Purpose
Used to change the range for a row of the problem matrix.

Synopsis
int XPRS_CC XPRSchgrhsrange(XPRSprob prob, int nels, const int mindex[],

const double rng[]);

Arguments
prob The current problem.

nels Number of range elements to change.

mindex Integer array of length nels containing the indices of the rows on which the range
elements will change.

rng Double array of length nels giving the range values.

Example
Here, the constraint x + y ≤ 10 in the problem is changed to 8 ≤ x + y ≤ 10:

mindex[0] = 5; rng[0] = 2.0;
XPRSchgrhsrange(prob,1,mindex,rng);

Further information
If the range specified on the row is r, what happens depends on the row type and value of r.
It is possible to convert non-range rows using this routine.

Value of r Row type Effect

r ≥ 0 = b, ≤ b b − r ≤
∑

ajxj ≤ b

r ≥ 0 ≥ b b ≤
∑

ajxj ≤ b + r

r < 0 = b, ≤ b b ≤
∑

ajxj ≤ b − r

r < 0 ≥ b b + r ≤
∑

ajxj ≤ b

Related topics
XPRSchgcoef, XPRSchgmcoef, XPRSchgrhs, XPRSgetrhsrange .

Console and Library Functions 51 Xpress-Optimizer Reference Manual

XPRSchgrowtype

Purpose
Used to change the type of a row in the matrix.

Synopsis
int XPRS_CC XPRSchgrowtype(XPRSprob prob, int nels, const int mindex[],

const char qrtype[]);

Arguments
prob The current problem.

nels Number of rows to change.

mindex Integer array of length nels containing the indices of the rows.

qrtype Character array of length nels giving the new row types:
L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row;
R indicates a range row;
N indicates a free row.

Example
Here row 4 is changed to an equality row:

mindex[0] = 4; qrtype[0] = "E";
XPRSchgrowtype(prob,1,mindex,qrtype);

Further information
A row can be changed to a range type row by first changing the row to an R or L type row and
then changing the range on the row using XPRSchgrhsrange.

Related topics
XPRSaddrows, XPRSchgcoltype, XPRSchgrhs, XPRSchgrhsrange, XPRSdelrows,
XPRSgetrowrange, XPRSgetrowtype.

Console and Library Functions 52 Xpress-Optimizer Reference Manual

XPRScopycallbacks

Purpose
Copies callback functions defined for one problem to another.

Synopsis
int XPRS_CC XPRScopycallbacks(XPRSprob dest, XPRSprob src);

Arguments
dest The problem to which the callbacks are copied.

src The problem from which the callbacks are copied.

Example
The following sets up a message callback function callback for problem prob1 and then
copies this to the problem prob2.

XPRScreateprob(&prob1);
XPRSsetcbmessage(prob1,callback,NULL);
XPRScreateprob(&prob2);
XPRScopycallbacks(prob2,prob1);

Related topics
XPRScopycontrols, XPRScopyprob.

Console and Library Functions 53 Xpress-Optimizer Reference Manual

XPRScopycontrols

Purpose
Copies controls defined for one problem to another.

Synopsis
int XPRS_CC XPRScopycontrols(XPRSprob dest, XPRSprob src);

Arguments
dest The problem to which the controls are copied.

src The problem from which the controls are copied.

Example
The following turns off Presolve for problem prob1 and then copies this and other control
values to the problem prob2 :

XPRScreateprob(&prob1);
XPRSsetintcontrol(prob1,XPRS_PRESOLVE,0);
XPRScreateprob(&prob2);
XPRScopycontrols(prob2,prob1);

Related topics
XPRScopycallbacks, XPRScopyprob.

Console and Library Functions 54 Xpress-Optimizer Reference Manual

XPRScopyprob

Purpose
Copies information defined for one problem to another.

Synopsis
int XPRS_CC XPRScopyprob(XPRSprob dest, XPRSprob src, const char

*probname);

Arguments
dest The new problem pointer to which information is copied.

src The old problem pointer from which information is copied.

probname A string of up to 200 characters to contain the name for the copied problem. This
must be unique when file writing is to be expected, and particularly for global
problems.

Example
The following copies the problem, its controls and it callbacks from prob1 to prob2:

XPRSprob prob1, prob2;
...
XPRScreateprob(&prob2);
XPRScopyprob(prob2,prob1,"MyProb");
XPRScopycontrols(prob2,prob1);
XPRScopycallbacks(prob2,prob1);

Further information
XPRScopyprob copies only the problem and does not copy the callbacks or controls associated
to a problem. These must be copied separately using XPRScopycallbacks and XPRScopycontrols
respectively.

Related topics
XPRScopycallbacks, XPRScopycontrols, XPRScreateprob.

Console and Library Functions 55 Xpress-Optimizer Reference Manual

XPRScreateprob

Purpose
Sets up a new problem within the Optimizer.

Synopsis
int XPRS_CC XPRScreateprob(XPRSprob *prob);

Argument
prob Pointer to a variable holding the new problem.

Example
The following creates a problem which will contain myprob:

XPRSprob prob;
XPRSinit(NULL);
XPRScreateprob(&prob);
XPRSreadprob(prob,"myprob","");

Further information

1. XPRScreateprob must be called after XPRSinit and before using the other Optimizer rou-
tines.

2. Any number of problems may be created in this way, depending on your license details. All
problems should be removed using XPRSdestroyprob once you have finished working with
them.

Related topics
XPRSdestroyprob, XPRScopyprob, XPRSinit.

Console and Library Functions 56 Xpress-Optimizer Reference Manual

XPRSdelcols

Purpose
Delete columns from a matrix.

Synopsis
int XPRS_CC XPRSdelcols(XPRSprob prob, int ncols, const int mindex[]);

Arguments
prob The current problem.

ncols Number of columns to delete.

mindex Integer array of length ncols containing the columns to delete.

Example
In this example, column 3 is deleted from the matrix:

mindex[0] = 3;
XPRSdelcols(prob,1,mindex);

Further information

1. After columns have been deleted from a problem, the numbers of the remaining columns are
moved down so that the columns are always numbered from 0 to COLS-1 where COLS is the
problem attribute containing the number of non-deleted columns in the matrix.

2. If the problem has already been optimized, or an advanced basis has been loaded, and you
delete a basis column the current basis will no longer be valid - the basis is "lost".
If you go on to re-optimize the problem, a warning message is displayed (140) and the Opti-
mizer automatically generates a corrected basis.
You can avoid losing the basis by only deleting non-basic columns (see XPRSgetbasis), taking
a basic column out of the basis first if necessary (see XPRSgetpivots and XPRSpivot).

Related topics
XPRSaddcols, XPRSdelrows.

Console and Library Functions 57 Xpress-Optimizer Reference Manual

XPRSdelcpcuts

Purpose
During the Branch and Bound search, cuts are stored in the cut pool to be applied at descen-
dant nodes. These cuts may be removed from a given node using XPRSdelcuts, but if this is
to be applied in a large number of cases, it may be preferable to remove the cut completely
from the cut pool. This is achieved using XPRSdelcpcuts.

Synopsis
int XPRS_CC XPRSdelcpcuts(XPRSprob prob, int itype, int interp, int

ncuts, XPRScut mcutind[]);

Arguments
prob The current problem.

itype Cut type.

interp Way in which the cut type is interpreted:
-1 drop all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in itype;
3 treat cut types as bit maps - delete if all bits match those set in itype.

ncuts The number of cuts to delete. A value of -1 indicates delete all cuts.

mcutind Array containing pointers to the cuts which are to be deleted. This array may be
NULL if ncuts is -1, otherwise it has length ncuts.

Related topics
XPRSaddcuts, XPRSdelcuts, XPRSloadcuts, 5.4.

Console and Library Functions 58 Xpress-Optimizer Reference Manual

XPRSdelcuts

Purpose
Deletes cuts from the matrix at the current node. Cuts from the parent node which have
been automatically restored may be deleted as well as cuts added to the current node using
XPRSaddcuts or XPRSloadcuts. The cuts to be deleted can be specified in a number of ways.
If a cut is ruled out by any one of the criteria it will not be deleted.

Synopsis
int XPRS_CC XPRSdelcuts(XPRSprob prob, int ibasis, int itype, int interp,

double delta, int num, XPRScut mcutind[]);

Arguments
prob The current problem.

ibasis Ensures the basis will be valid if set to 1. If set to 0, cuts with non-basic slacks may
be deleted.

itype Type of the cut to be deleted.

interp Way in which the cut itype is interpreted:
-1 delete all cut types;
1 treat cut types as numbers;
2 treat cut types as bit maps - delete if any bit matches any bit set in itype;
3 treat cut types as bit maps - delete if all bits match those set in itype.

delta Only delete cuts with an absolute slack value greater than delta. To delete all the
cuts, this argument should be set to XPRS_MINUSINFINITY.

num Number of cuts to drop if a list of cuts is provided. A value of -1 indicates all cuts.

mcutind Array containing pointers to the cuts which are to be deleted. This array may be
NULL if num is set to -1 otherwise it has length num.

Further information

1. It is usually best to drop only those cuts with basic slacks, otherwise the basis will no longer be
valid and it may take many iterations to recover an optimal basis. If the ibasis parameter is
set to 1, this will ensure that cuts with non-basic slacks will not be deleted even if the other pa-
rameters specify that these cuts should be deleted. It is highly recommended that the ibasis
parameter is always set to 1.

2. The cuts to be deleted can also be specified by the size of the slack variable for the cut. Only
those cuts with a slack value greater than the delta parameter will be deleted.

3. A list of indices of the cuts to be deleted can also be provided. The list of active cuts at a node
can be obtained with the XPRSgetcutlist command.

Related topics
XPRSaddcuts, XPRSdelcpcuts, XPRSgetcutlist, XPRSloadcuts, 5.4.

Console and Library Functions 59 Xpress-Optimizer Reference Manual

XPRSdelnode

Purpose
Deletes the specified node from the list of outstanding nodes in the Branch and Bound tree
search.

Synopsis
int XPRS_CC XPRSdelnode(XPRSprob prob, int inode, int ifboth);

Arguments
prob The current problem.

inode Number of the node to delete.

ifboth Flag which must be one of:
0 meaning that the next descendant is to be deleted;
1 meaning that both descendants are to be deleted.

Example

XPRSdelnode(prob,10,0);

This deletes node number 10 in the tree search and its next descendent.

Further information
This routine might most effectively be called from a callback within the Branch and Bound
search.

Console and Library Functions 60 Xpress-Optimizer Reference Manual

XPRSdelrows

Purpose
Delete rows from a matrix.

Synopsis
int XPRS_CC XPRSdelrows(XPRSprob prob, int nrows, const int mindex[]);

Arguments
prob The current problem.

nrows Number of rows to delete.

mindex An integer array of length nrows containing the rows to delete.

Example
In this example, rows 0 and 10 are deleted from the matrix:

mindex[0] = 0; mindex[1] = 10;
XPRSdelrows(prob,2,mindex);

Further information

1. After rows have been deleted from a problem, the numbers of the remaining rows are moved
down so that the rows are always numbered from 0 to ROWS-1 where ROWS is the problem
attribute containing the number of non-deleted rows in the matrix.

2. If the problem has already been optimized, or an advanced basis has been loaded, and you
delete a row for which the slack column is non-basic, the current basis will no longer be valid -
the basis is "lost".

If you go on to re-optimize the problem, a warning message is displayed (140) and the Opti-
mizer automatically generates a corrected basis.
You can avoid losing the basis by only deleting basic rows (see XPRSgetbasis), bringing a
non-basic row into the basis first if necessary (see XPRSgetpivots and XPRSpivot).

Related topics
XPRSaddrows, XPRSdelcols.

Console and Library Functions 61 Xpress-Optimizer Reference Manual

XPRSdelsets

Purpose
Delete sets from a problem.

Synopsis
int XPRS_CC XPRSdelsets(XPRSprob prob, int ndelsets, const int mindex[]);

Arguments
prob The current problem.

ndelsets Number of sets to delete.

mindex An integer array of length ndelsets containing the sets to delete.

Example
In this example, sets 0 and 2 are deleted from the problem:

mindex[0] = 0; mindex[1] = 2;
XPRSdelsets(prob,2,mindex);

Further information
After sets have been deleted from a problem, the numbers of the remaining sets are moved
down so that the sets are always numbered from 0 to SETS-1 where SETS is the problem
attribute containing the number of non-deleted sets in the problem.

Related topics
XPRSaddsets.

Console and Library Functions 62 Xpress-Optimizer Reference Manual

XPRSdestroyprob

Purpose
Removes a given problem and frees any memory associated with it following manipulation
and optimization.

Synopsis
int XPRS_CC XPRSdestroyprob(XPRSprob prob);

Argument
prob The problem to be destroyed.

Example
The following creates, loads and solves a problem called myprob, before subsequently freeing
any resources allocated to it:

XPRScreateprob(&prob);
XPRSreadprob(prob,"myprob","");
XPRSmaxim(prob,"");
XPRSdestroyprob(prob);

Further information
After work is finished, all problems must be destroyed. If a NULL problem pointer is passed to
XPRSdestroyprob, no error will result.

Related topics
XPRScreateprob, XPRSfree, XPRSinit.

Console and Library Functions 63 Xpress-Optimizer Reference Manual

EXIT

Purpose
Terminates the Console Optimizer, returning a zero exit code to the operating system. Alias of
QUIT.

Synopsis
EXIT

Example
The command is called simply as:

EXIT

Further information

1. Fatal error conditions return nonzero exit values which may be of use to the host operating
system. These are described in 9.

2. If you wish to return an exit code reflecting the final solution status, then use the STOP com-
mand instead.

Related topics
STOP, XPRSsave (SAVE).

Console and Library Functions 64 Xpress-Optimizer Reference Manual

XPRSfixglobal FIXGLOBAL

Purpose
Fixes all the global entities to the values of the last found MIP solution. This is useful for
finding the reduced costs for the continuous variables after the global variables have been
fixed to their optimal values.

Synopsis
int XPRS_CC XPRSfixglobal(XPRSprob prob);
FIXGLOBAL

Argument
prob The current problem.

Example 1 (Library)
This example performs a global search on problem myprob and then uses XPRSfixglobal
before solving the remaining linear problem:

XPRSreadprob(prob,"myprob","");
XPRSminim(prob,"g");
XPRSfixglobal(prob);
XPRSminim(prob,"l");
XPRSwriteprtsol(prob);

Example 2 (Console)
A similar set of commands at the console would be as follows:

READPROB
MINIM -g
FIXGLOBAL
MINIM -l
PRINTSOL

Further information
This command is useful for inspecting the reduced costs of the continuous variables in a matrix
after the global entities have been fixed. Sensitivity analysis can also be performed on the
continuous variables in a MIP problem using XPRSrange (RANGE) after calling XPRSfixglobal
(FIXGLOBAL).

Related topics
XPRSglobal (GLOBAL), XPRSrange (RANGE).

Console and Library Functions 65 Xpress-Optimizer Reference Manual

XPRSfree

Purpose
Frees any allocated memory and closes all open files.

Synopsis
int XPRS_CC XPRSfree(void);

Example
The following frees resources allocated to the problem prob and then tidies up before exit-
ing:

XPRSdestroyprob(prob);
XPRSfree();
return 0;

Further information
After a call to XPRSfree no library functions may be used without first calling XPRSinit again.

Related topics
XPRSdestroyprob, XPRSinit.

Console and Library Functions 66 Xpress-Optimizer Reference Manual

XPRSftran

Purpose
Pre-multiplies a (column) vector provided by the user by the inverse of the current matrix.

Synopsis
int XPRS_CC XPRSftran(XPRSprob prob, double vec[]);

Arguments
prob The current problem.

vec Double array of length ROWS containing the values which are to be multiplied by
the basis inverse. The transformed values appear in the array.

Related controls

Double

ETATOL Zero tolerance on eta elements.

Example
To get the (unscaled) tableau column of structural variable number jcol, assuming that all
arrays have been dimensioned, do the following:

/* Min size of arrays: mstart: 2;
mrowind, dmatval & y: nrow. */

/* Get column as loaded originally, in sparse format */
rc = XPRSgetcols(prob, mstart, mrowind, dmatval, nrow, &nelt,

jcol, jcol);

/* Unpack into the zeroed array */
for(i = 0; i < nrow; i++)
y[i] = 0.0;
for(ielt = 0; ielt < nelt; ielt++)
y[mrowind[ielt]] = dmatval[ielt];

rc = XPRSftran(prob,y);

Get the (unscaled) tableau column of the slack variable for row number irow, assuming that
all arrays have been dimensioned.

/* Min size of arrays: y: nrow */
/* Set up the original slack column in full format */
for(i = 0; i < nrow; i++)
y[i] = 0.0;
y[irow] = 1.0;

rc = XPRSftran(prob,y);

Further information
If the matrix is in a presolved state, the function will work with the basis for the presolved
problem.

Related topics
XPRSbtran.

Console and Library Functions 67 Xpress-Optimizer Reference Manual

XPRSgetbanner

Purpose
Returns the banner and copyright message.

Synopsis
int XPRS_CC XPRSgetbanner(char *banner);

Argument
banner Buffer long enough to hold the banner (plus a null terminator). This can be at most

256 characters.

Example
The following calls XPRSgetbanner to return banner information at the start of the program:

char banner[256];
...
if(XPRSinit(NULL))
{
XPRSgetbanner(banner);
printf("%s\n", banner);
return 1;

}
XPRSgetbanner(banner);
printf("%s\n", banner);

Further information
This function can most usefully be employed to return extra information if a problem occurs
with XPRSinit.

Related topics
XPRSinit.

Console and Library Functions 68 Xpress-Optimizer Reference Manual

XPRSgetbasis

Purpose
Returns the current basis into the user’s data areas.

Synopsis
int XPRS_CC XPRSgetbasis(XPRSprob prob, int rstatus[], int cstatus[]);

Arguments
prob The current problem.

rstatus Integer array of length ROWS to the basis status of the slack, surplus or artificial
variable associated with each row. The status will be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.
May be NULL if not required.

cstatus Integer array of length COLS to hold the basis status of the columns in the constraint
matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable has

no lower bound;
1 variable is basic;
2 variable is non-basic at upper bound;
3 variable is super-basic.
May be NULL if not required.

Example
The following example minimizes a problem before saving the basis for later:

int rows, cols, *rstatus, *cstatus;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
XPRSgetintattrib(prob,XPRS_COLS,&cols);
rstatus = (int *) malloc(sizeof(int)*rows);
cstatus = (int *) malloc(sizeof(int)*cols);
XPRSminim(prob,"");
XPRSgetbasis(prob,rstatus,cstatus);

Related topics
XPRSgetpresolvebasis, XPRSloadbasis, XPRSloadpresolvebasis.

Console and Library Functions 69 Xpress-Optimizer Reference Manual

XPRSgetcoef

Purpose
Returns a single coefficient in the constraint matrix.

Synopsis
int XPRS_CC XPRSgetcoef(XPRSprob prob, int irow, int icol, double *dval);

Arguments
prob The current problem.

irow Row of the constraint matrix.

icol Column of the constraint matrix.

dval Pointer to a double where the coefficient will be returned.

Further information
It is quite inefficient to get several coefficients with the XPRSgetcoef function. It is better to
use XPRSgetcols or XPRSgetrows.

Related topics
XPRSgetcols, XPRSgetrows.

Console and Library Functions 70 Xpress-Optimizer Reference Manual

XPRSgetcolrange

Purpose
Returns the column ranges computed by XPRSrange.

Synopsis
int XPRS_CC XPRSgetcolrange(XPRSprob prob, double upact[], double

loact[], double uup[], double udn[], double ucost[], double
lcost[]);

Arguments
prob The current problem.

upact Double array of length COLS for upper column activities.

loact Double array of length COLS for lower column activities.

uup Double array of length COLS for upper column unit costs.

udn Double array of length COLS for lower column unit costs.

ucost Double array of length COLS for upper costs.

lcost Double array of length COLS for lower costs.

Example
Here the column ranges are retrieved into arrays as in the synopsis:

int cols;
double *upact, *loact, *uup, *udn, *ucost, *lcost;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
upact = malloc(cols*(sizeof(double)));
loact = malloc(cols*(sizeof(double)));
uup = malloc(cols*(sizeof(double)));
udn = malloc(cols*(sizeof(double)));
ucost = malloc(cols*(sizeof(double)));
lcost = malloc(cols*(sizeof(double)));
XPRSrange(prob);
XPRSgetcolrange(prob,upact,loact,uup,udn,ucost,lcost);

Further information
The activities and unit costs are obtained from the range file (problem_name.rng). The mean-
ing of the upper and lower column activities and upper and lower unit costs in the ASCII range
files is described in Appendix A.

Related topics
XPRSgetrowrange, XPRSrange.

Console and Library Functions 71 Xpress-Optimizer Reference Manual

XPRSgetcols

Purpose
Returns the nonzeros in the constraint matrix for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetcols(XPRSprob prob, int mstart[], int mrwind[], double

dmatval[], int size, int *nels, int first, int last);

Arguments
prob The current problem.

mstart Integer array which will be filled with the indices indicating the starting offsets in
the mrwind and dmatval arrays for each requested column. It must be of length
at least last-first+2. Column i starts at position mstart[i] in the mrwind and
dmatval arrays, and has mstart[i+1]-mstart[i] elements in it. May be NULL if
not required.

mrwind Integer array of length sizewhich will be filled with the row indices of the nonzero
elements for each column. May be NULL if not required.

dmatval Double array of length size which will be filled with the nonzero element values.
May be NULL if not required.

size Maximum number of elements to be retrieved.

nels Pointer to the integer where the number of nonzero elements in the mrwind and
dmatval arrays will be returned. If the number of nonzero elements is greater than
size, then only size elements will be returned. If nels is smaller than size, then
only nels will be returned.

first First column in the range.

last Last column in the range.

Example

int nels, cols, first = 0, last;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
last = cols-1;
XPRSgetcols(prob,NULL,NULL,NULL,0,&nels,first,last);

This returns in nels the number of nonzero matrix elements in all columns of the matrix.

Further information
It is possible to obtain just the number of elements in the range of columns by replacing
mstart, mrwind and dmatval by NULL, as in the example. In this case, size must be set
to 0 to indicate that the length of arrays passed is zero. This is demonstrated in the example
above.

Related topics
XPRSgetrows.

Console and Library Functions 72 Xpress-Optimizer Reference Manual

XPRSgetcoltype

Purpose
Returns the column types for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetcoltype(XPRSprob prob, char coltype[], int first, int

last);

Arguments
prob The current problem.

coltype Character array of length last-first+1 where the column types will be returned:
C indicates a continuous variable;
I indicates an integer variables;
B indicates a binary variable;
S indicates a semi-continuous variable;
R indicates a semi-continuous integer variable;
P indicates a partial integer variable.

first First column in the range.

last Last column in the range.

Example
This example finds the types for all columns in the matrix and prints them to the console:

int cols, i;
char *types;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
types = (char *)malloc(sizeof(char)*cols);
XPRSgetcoltype(prob,types,0,cols-1);

for(i=0;i<cols;i++) printf("%c\n",types[i]);

Related topics
XPRSchgcoltype, XPRSgetrowtype.

Console and Library Functions 73 Xpress-Optimizer Reference Manual

XPRSgetcpcutlist

Purpose
Returns a list of cut indices from the cut pool.

Synopsis
int XPRS_CC XPRSgetcpcutlist(XPRSprob prob, int itype, int interp, double

delta, int *ncuts, int size, XPRScut mcutind[], double dviol[]);

Arguments
prob The current problem.

itype Cut type of the cuts to be returned.

interp Way in which the cut type is interpreted:
-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in

itype;
3 treat cut types as bit maps - get cut if all bits match those set in itype.

delta Only those cuts with an absolute slack value greater than delta will be returned.

ncuts Pointer to the integer where the number of cuts of type itype in the cut pool will
be returned.

size Maximum number of cuts to be returned.

mcutind Array of length size where the pointers to the cuts will be returned.

dviol Double array of length size where the values of the slack variables for the cuts will
be returned.

Further information

1. The violated cuts can be obtained by setting the delta parameter to the size of the violation
required. If unviolated cuts are required as well, delta may be set to XPRS_MINUSINFINITY
which is defined in the library header file.

2. If the number of active cuts is greater than size, only size cuts will be returned and ncuts
will be set to the number of active cuts. If ncuts is less than size, then only ncuts positions
will be filled in mcutind.

Related topics
XPRSdelcpcuts, XPRSgetcpcuts, XPRSgetcutlist, XPRSloadcuts, 5.4.

Console and Library Functions 74 Xpress-Optimizer Reference Manual

XPRSgetcpcuts

Purpose
Returns cuts from the cut pool. A list of cut pointers in the array mindex must be passed to
the routine. The columns and elements of the cut will be returned in the regions pointed to
by the mcols and dmatval parameters. The columns and elements will be stored contiguously
and the starting point of each cut will be returned in the region pointed to by the mstart
parameter.

Synopsis
int XPRS_CC XPRSgetcpcuts(XPRSprob prob, XPRScut mindex[], int ncuts,

int size, int mtype[], char qrtype[], int mstart[], int mcols[],
double dmatval[], double drhs[]);

Arguments
prob The current problem.

mindex Array of length ncuts containing the pointers to the cuts.

ncuts Number of cuts to be returned.

size Maximum number of column indices of the cuts to be returned.

mtype Integer array of length at least ncuts where the cut types will be returned.

qrtype Character array of length at least ncuts where the sense of the cuts (L, G, or E) will
be returned.

mstart Integer array of length at least ncuts+1 containing the offsets into the mcols and
dmatval arrays. The last element indicates where cut ncuts+1 would start.

mcols Integer array of length size where the column indices of the cuts will be returned.

dmatval Double array of length size where the matrix values will be returned.

drhs Double array of length at least ncuts where the right hand side elements for the
cuts will be returned.

Related topics
XPRSgetcpcutlist, XPRSgetcutlist, 5.4.

Console and Library Functions 75 Xpress-Optimizer Reference Manual

XPRSgetcutlist

Purpose
Retrieves a list of cut pointers for the cuts active at the current node.

Synopsis
int XPRS_CC XPRSgetcutlist(XPRSprob prob, int itype, int interp, int

*ncuts, int size, XPRScut mcutind[]);

Arguments
prob The current problem.

itype Cut type of the cuts to be returned. A value of -1 indicates return all active cuts.

interp Way in which the cut type is interpreted:
-1 get all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - get cut if any bit matches any bit set in

itype;
3 treat cut types as bit maps - get cut if all bits match those set in itype.

ncuts Pointer to the integer where the number of active cuts of type itype will be re-
turned.

size Maximum number of cuts to be retrieved.

mcutind Array of length size where the pointers to the cuts will be returned.

Further information
If the number of active cuts is greater than size, then size cuts will be returned and ncuts
will be set to the number of active cuts. If ncuts is less than size, then only ncuts positions
will be filled in mcutind.

Related topics
XPRSgetcpcutlist, XPRSgetcpcuts, 5.4.

Console and Library Functions 76 Xpress-Optimizer Reference Manual

XPRSgetdaysleft

Purpose
Returns the number of days left until an evaluation license expires.

Synopsis
int XPRS_CC XPRSgetdaysleft(int *days);

Argument
days Pointer to an integer where the number of days is to be returned.

Example
The following calls XPRSgetdaysleft to print information about the license:

int days;
...
XPRSinit(NULL);
if(XPRSgetdaysleft(&days) == 0) {
printf("Evaluation license expires in %d days\n", days);

} else {
printf("Not an evaluation license\n");

}

Further information
This function can only be used with evaluation licenses, and if called when a normal license is in
use returns an error code of 32. The expiry information for evaluation licenses is also included
in the Optimizer banner message.

Related topics
XPRSgetbanner.

Console and Library Functions 77 Xpress-Optimizer Reference Manual

XPRSgetdblattrib

Purpose
Enables users to retrieve the values of various double problem attributes. Problem attributes
are set during loading and optimization of a problem.

Synopsis
int XPRS_CC XPRSgetdblattrib(XPRSprob prob, int ipar, double *dval);

Arguments
prob The current problem.

ipar Problem attribute whose value is to be returned. A full list of all available problem
attributes may be found in 8, or from the list in the xprs.h header file.

dval Pointer to a double where the value of the problem attribute will be returned.

Example
The following obtains the optimal value of the objective function and displays it to the con-
sole:

double lpobjval;
...
XPRSmaxim(prob,"");
XPRSgetdblattrib(prob,XPRS_LPOBJVAL,&lpobjval);
printf("The maximum profit is %f\n",lpobjval);

Related topics
XPRSgetintattrib, XPRSgetstrattrib.

Console and Library Functions 78 Xpress-Optimizer Reference Manual

XPRSgetdblcontrol

Purpose
Retrieves the value of a given double control parameter.

Synopsis
int XPRS_CC XPRSgetdblcontrol(XPRSprob prob, int ipar, double *dgval);

Arguments
prob The current problem.

ipar Control parameter whose value is to be returned. A full list of all controls may be
found in 7, or from the list in the xprs.h header file.

dgval Pointer to the location where the control value will be returned.

Example
The following returns the integer feasibility tolerance:

XPRSgetdblcontrol(prob,XPRS_MIPTOL,&miptol);

Related topics
XPRSsetdblcontrol, XPRSgetintcontrol, XPRSgetstrcontrol.

Console and Library Functions 79 Xpress-Optimizer Reference Manual

XPRSgetdirs

Purpose
Used to return the directives that have been loaded into a matrix. Priorities, forced branching
directions and pseudo costs can be returned. If called after presolve, XPRSgetdirs will get the
directives for the presolved problem.

Synopsis
int XPRS_CC XPRSgetdirs(XPRSprob prob, int *ndir, int mcols[], int

mpri[], char qbr[], double dupc[], double ddpc[]);

Arguments
prob The current problem.

ndir Pointer to an integer where the number of directives will be returned.

mcols Integer array of length ndir containing the column numbers (0, 1, 2,...) or negative
values corresponding to special ordered sets (the first set numbered -1, the second
numbered -2,...).

mpri Integer array of length ndir containing the priorities for the columns and sets.

qbr Character array of length ndir specifying the branching direction for each column
or set:
U the entity is to be forced up;
D the entity is to be forced down;
N not specified.

dupc Double array of length ndir containing the up pseudo costs for the columns and
sets.

ddpc Double array of length ndir containing the down pseudo costs for the columns
and sets.

Further information

1. The value ndir denotes the number of directives, at most MIPENTS, obtainable with
XPRSgetintattrib(prob,XPRS_MIPENTS,& mipents);.

2. Any of the arguments except prob and ndir may be NULL if not required.

Related topics
XPRSloaddirs, XPRSloadpresolvedirs.

Console and Library Functions 80 Xpress-Optimizer Reference Manual

XPRSgetglobal

Purpose
Retrieves global information about a problem. It must be called before XPRSmaxim or XPRSminim
if the presolve option is used.

Synopsis
int XPRS_CC XPRSgetglobal(XPRSprob prob, int *nglents, int *sets,

char qgtype[], int mgcols[], double dlim[], char qstype[], int
msstart[], int mscols[], double dref[]);

Arguments
prob The current problem.

nglents Pointer to the integer where the number of binary, integer, semi-continuous, semi-
continuous integer and partial integer entities will be returned. This is equal to the
problem attribute MIPENTS.

sets Pointer to the integer where the number of SOS1 and SOS2 sets will be returned. It
can be retrieved from the problem attribute SETS.

qgtype Character array of length nglents where the entity types will be returned. The
types will be one of:
B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols Integer array of length nglents where the column indices of the global entities
will be returned.

dlim Double array of length nglents where the limits for the partial integer variables
and lower bounds for the semi-continuous and semi-continuous integer variables
will be returned (any entries in the positions corresponding to binary and integer
variables will be meaningless).

qstype Character array of length sets where the set types will be returned. The set types
will be one of:
1 SOS1 type sets;
2 SOS2 type sets.

msstart Integer array where the offsets into the mscols and dref arrays indicating the start
of the sets will be returned. This array must be of length sets+1, the final element
will contain the offset where set sets+1 would start and equals the length of the
mscols and dref arrays, SETMEMBERS.

mscols Integer array of length SETMEMBERSwhere the columns in each set will be returned.

dref Double array of length SETMEMBERS where the reference row entries for each
member of the sets will be returned.

Example
The following obtains the global variables and their types in the arrays mgcols and qrtype:

int nglents, nsets, *mgcols;
char *qgtype;
...
XPRSgetglobal(prob,&nglents,&nsets,NULL,NULL,NULL,NULL,

NULL,NULL,NULL);
mgcols = malloc(nglents*sizeof(int));
qgtype = malloc(nglents*sizeof(char));
XPRSgetglobal(prob,&nglents,&nsets,qgtype,ngcols,NULL,

NULL,NULL,NULL,NULL);

Further information
Any of the arguments except prob, nglents and sets may be NULL if not required.

Console and Library Functions 81 Xpress-Optimizer Reference Manual

Related topics
XPRSloadglobal, XPRSloadqglobal.

Console and Library Functions 82 Xpress-Optimizer Reference Manual

XPRSgetiis

Purpose
Retrieves the final Irreducible Infeasible Set (IIS) found in an IIS search.

Synopsis
int XPRS_CC XPRSgetiis(XPRSprob prob, int *colnumber, int *rownumber, int

miiscol[], int miisrow[]);

Arguments
prob The current problem.

colnumber Number of columns in the IIS.

rownumber Number of rows in the IIS.

miiscol Integer array of length colnumber containing the column indices for the IIS set.
May be NULL if not required.

miisrow Integer array of length rownumber containing the row indices for the IIS set. May
be NULL if not required.

Related controls

Integer

MAXIIS Number of Irreducible Infeasible Sets to be found

Example
The following finds and retrieves an IIS in the problem prob :

int ncols, nrows, *miiscol, *miisrow;
...
XPRSiis(prob,"");
XPRSgetiis(prob,&ncols,&nrows,NULL,NULL);
miiscol = malloc(ncols*sizeof(int));
miisrow = malloc(nrows*sizeof(int));
XPRSgetiis(prob,&ncols,&nrows,miiscol,miisrow);

Further information

1. XPRSgetiis can only be called after the function XPRSiis, which computes the IISs in a prob-
lem.

2. To retrieve all of the IIS in a problem, you need to call XPRSiis and XPRSgetiis repeatedly,
setting MAXIIS to 1, then 2, then 3, etc. For example:

XPRSiis(prob, "");
XPRSgetintattrib(prob, XPRS_NUMIIS, &niis);
for (i=1; i<=niis; i++) {
XPRSsetintcontrol(prob, XPRS_MAXIIS, i);
XPRSiis(prob, "");
XPRSgetiis(prob, &ncols, &nrows, miiscol, miisrow);
/* display or use IIS */

}

Related topics
XPRSiis.

Console and Library Functions 83 Xpress-Optimizer Reference Manual

XPRSgetindex

Purpose
Returns the index for a specified row or column name.

Synopsis
int XPRS_CC XPRSgetindex(XPRSprob prob, int type, const char *name, int

*seq);

Arguments
prob The current problem.

type 1 if a row index is required;
2 if a column index is required.

name String of length MPSNAMELENGTH (plus a null terminator) holding the name of the
row or column.

seq Pointer of the integer where the row or column index number will be returned. A
value of -1 will be returned if the row or column does not exist.

Related controls

Integer

MPSNAMELENGTH Maximum name length in characters.

Example
The following example loads problem and checks to see if "n 0203" is the name of a row or
column:

int seqr, seqc;
...
XPRSreadprob(prob,"problem","");

XPRSgetindex(prob,1,"n 0203", &seqr);
XPRSgetindex(prob,2,"n 0203", &seqc);
if(seqr==-1 && seqc ==-1) printf("n 0203 not there\n");
if(seqr!= -1) printf("n 0203 is row %d\n",seqr);
if(seqc!= -1) printf"n 0203 is column %d\n",seqc);

Related topics
XPRSaddnames.

Console and Library Functions 84 Xpress-Optimizer Reference Manual

XPRSgetinfeas

Purpose
Returns a list of infeasible primal and dual variables.

Synopsis
int XPRS_CC XPRSgetinfeas(XPRSprob prob, int *npv, int *nps, int *nds,

int *ndv, int mx[], int mslack[], int mdual[], int mdj[]);

Arguments
prob The current problem.

npv Number of primal infeasible variables.

nps Number of primal infeasible rows.

nds Number of dual infeasible rows.

ndv Number of dual infeasible variables.

mx Integer array of length npv where the primal infeasible variables will be returned.
May be NULL if not required.

mslack Integer array of length nps where the primal infeasible rows will be returned. May
be NULL if not required.

mdual Integer array of length nds where the dual infeasible rows will be returned. May
be NULL if not required.

mdj Integer array of length ndv where the dual infeasible variables will be returned.
May be NULL if not required.

Error values
91 A current problem is not available.

422 A solution is not available.

Related controls

Double

FEASTOL Zero tolerance on RHS.

OPTIMALITYTOL Reduced cost tolerance.

Example
In this example, XPRSgetinfeas is first called with nulled integer arrays to get the number of
infeasible entries. Then space is allocated for the arrays and the function is again called to fill
them in:

int npv, nps, nds, ndv, *mx, *mslack, *mdual, *mdj;
...
XPRSgetinfeas(prob, &npv, &nps, &nds, &ndv,

NULL, NULL, NULL, NULL);
mx = malloc(npv * sizeof(*mx));
mslack = malloc(nps * sizeof(*mslack));
mdual = malloc(nds * sizeof(*mdual));
mdj = malloc(ndv * sizeof(*mdj));
XPRSgetinfeas(prob, &npv, &nps, &nds, &ndv,

mx, mslack, mdual, mdj);

Further information

1. To find the infeasibilities in a previously saved solution, the solution must first be loaded into
memory with the XPRSreadbinsol (READBINSOL) function.

2. If any of the last four arguments are set to NULL, the corresponding number of infeasibilities
is still returned.

Related topics
XPRSgetiis, XPRSgetscaledinfeas, XPRSiis.

Console and Library Functions 85 Xpress-Optimizer Reference Manual

XPRSgetintattrib

Purpose
Enables users to recover the values of various integer problem attributes. Problem attributes
are set during loading and optimization of a problem.

Synopsis
int XPRS_CC XPRSgetintattrib(XPRSprob prob, int ipar, int *ival);

Arguments
prob The current problem.

ipar Problem attribute whose value is to be returned. A full list of all problem attributes
may be found in 8, or from the list in the xprs.h header file.

ival Pointer to an integer where the value of the problem attribute will be returned.

Example
The following obtains the number of columns in the matrix and allocates space to obtain lower
bounds for each column:

int cols;
double *lb;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
lb = (double *) malloc(sizeof(double)*cols);
XPRSgetlb(prob,lb,0,cols-1);

Related topics
XPRSgetdblattrib, XPRSgetstrattrib.

Console and Library Functions 86 Xpress-Optimizer Reference Manual

XPRSgetintcontrol

Purpose
Enables users to recover the values of various integer control parameters

Synopsis
int XPRS_CC XPRSgetintcontrol(XPRSprob prob, int ipar, int *igval);

Arguments
prob The current problem.

ipar Control parameter whose value is to be returned. A full list of all controls may be
found in 7, or from the list in the xprs.h header file.

igval Pointer to an integer where the value of the control will be returned.

Example
The following obtains the value of DEFAULTALG and outputs it to screen:

int defaultalg;
...
XPRSmaxim(prob,"");
XPRSgetintcontrol(prob,XPRS_DEFAULTALG,&defaultalg);
printf("DEFAULTALG is %d\n",defaultalg);

Further information
Some control parameters, such as SCALING, are bitmaps. Each bit controls a different behavior.
If set, bit 0 has value 1, bit 1 has value 2, bit 2 has value 4, and so on.

Related topics
XPRSsetintcontrol, XPRSgetdblcontrol, XPRSgetstrcontrol.

Console and Library Functions 87 Xpress-Optimizer Reference Manual

XPRSgetlasterror

Purpose
Returns the last error encountered during an optimization run.

Synopsis
int XPRS_CC XPRSgetlasterror(XPRSprob prob, char *errmsg);

Arguments
prob The current problem.

errmsg A 512 character buffer where the last error message will be returned.

Example
The following shows how this function might be used in error-checking:

void error(XPRSprob myprob, char *function)
{
char errmsg[512];
XPRSgetlasterror(myprob,errmsg);
printf("Function %s did not execute correctly: %s\n",

function, errmsg);
XPRSdestroyprob(myprob);
XPRSfree();
exit(1);

}

where the main function might contain lines such as:

XPRSprob prob;
...
if(XPRScreateprob(&prob))
error(prob,"XPRScreateprob");

Related topics
9, ERRORCODE, XPRSsetcbmessage, XPRSsetlogfile.

Console and Library Functions 88 Xpress-Optimizer Reference Manual

XPRSgetlb

Purpose
Returns the lower bounds for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetlb(XPRSprob prob, double lb[], int first, int last);

Arguments
prob The current problem.

lb Double array of length last-first+1 where the lower bounds are to be placed.

first First column in the range.

last Last column in the range.

Example
The following example retrieves the lower bounds for the columns of the current problem:

int cols;
double *lb;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
lb = (double *) malloc(sizeof(double)*cols);
XPRSgetlb(prob,lb,0,cols-1);

Further information
Values greater than or equal to XPRS_PLUSINFINITY should be interpreted as infinite; values
less than or equal to XPRS_MINUSINFINITY should be interpreted as infinite and negative.

Related topics
XPRSchgbounds, XPRSgetub.

Console and Library Functions 89 Xpress-Optimizer Reference Manual

XPRSgetlicerrmsg

Purpose
Retrieves an error message describing the last licensing error, if any occurred.

Synopsis
int XPRS_CC XPRSgetlicerrmsg(char *buffer, int length);

Arguments
buffer Buffer long enough to hold the error message (plus a null terminator).

length Length of the buffer. This should be 512 or more since messages can be quite long.

Example
The following calls XPRSgetlicerrmsg to find out why XPRSinit failed:

char message[512];
...
if(XPRSinit(NULL))
{
XPRSgetlicerrmsg(message,512);
printf("%s\n", message);

}

Further information
The error message included an error code, which in case the user wishes to use it is also re-
turned by the function. If there was no licensing error the function returns 0.

Related topics
XPRSinit.

Console and Library Functions 90 Xpress-Optimizer Reference Manual

XPRSgetlpsol

Purpose
Used to obtain the LP solution values following optimization.

Synopsis
int XPRS_CC XPRSgetlpsol(XPRSprob prob, double x[], double slack[],

double dual[], double dj[]);

Arguments
prob The current problem.

x Double array of length COLS where the values of the primal variables will be re-
turned. May be NULL if not required.

slack Double array of length ROWS where the values of the slack variables will be re-
turned. May be NULL if not required.

dual Double array of length ROWSwhere the values of the dual variables will be returned.
May be NULL if not required.

dj Double array of length COLS where the reduced cost for each variable will be re-
turned. May be NULL if not required.

Example
The following sequence of commands will get the LP solution (x) at the top node of a MIP and
the optimal MIP solution (y):

int cols;
double *x, *y;
...
XPRSmaxim(prob,"");
XPRSgetintattrib(prob,XPRS_ORIGINALCOLS,&cols);
x = malloc(cols*sizeof(double));
XPRSgetlpsol(prob,x,NULL,NULL,NULL);
XPRSglobal(prob);
y = malloc(cols*sizeof(double));
XPRSgetmipsol(prob,y,NULL);

Further information

1. If called during an XPRSglobal callback the solution of the current node will be returned.

2. If the matrix is modified after calling XPRSmaxim or XPRSminim, then the solution will no
longer be available.

3. If the problem has been presolved, then XPRSgetlpsol returns the solution to the origi-
nal problem. The only way to obtain the presolved solution is to call the related function,
XPRSgetpresolvesol.

Related topics
XPRSgetpresolvesol, XPRSgetmipsol, XPRSwriteprtsol, XPRSwritesol.

Console and Library Functions 91 Xpress-Optimizer Reference Manual

XPRSgetmessagestatus GETMESSAGESTATUS

Purpose
Manages suppression of messages.

Synopsis
int XPRS_CC XPRSgetmessagestatus(XPRSprob prob, int errcode, int

*status);
GETMESSAGESTATUS

Arguments
prob The problem for which message errcode is to have its suppression status changed;

pass NULL if the message should have the status apply globally to all problems.

errcode The id number of the message. Refer to the section 9 for a list of possible message
numbers.

status Non-zero if the message is not suppressed; 0 otherwise. If a value for status is
not supplied in the command-line call then the console optimizer prints the value
of the suppression status to screen i.e., non-zero if the message is not suppressed;
0 otherwise.

Further information

1. Use the SETMESSAGESTATUS console function to print the value of the suppression status to
screen.

2. If a message is suppressed globally then the message will always have status return zero from
XPRSgetmessagestatus when prob is non-NULL.

Related topics
XPRSsetmessagestatus.

Console and Library Functions 92 Xpress-Optimizer Reference Manual

XPRSgetmipsol

Purpose
Used to obtain the solution values of the last MIP solution that was found.

Synopsis
int XPRS_CC XPRSgetmipsol(XPRSprob prob, double x[], double slack[]);

Arguments
prob The current problem.

x Double array of length COLS where the values of the primal variables will be re-
turned. May be NULL if not required.

slack Double array of length ROWS where the values of the slack variables will be re-
turned. May be NULL if not required.

Example
The following sequence of commands will get the solution (x) of the last MIP solution for a
problem:

int cols;
double *x;
...
XPRSmaxim(prob,"g");
XPRSgetintattrib(prob,XPRS_ORIGINALCOLS,&cols);
x = malloc(cols*sizeof(double));
XPRSgetmipsol(prob,x,NULL);

Further information
Warning: If allocating space for the MIP solution the row and column sizes must be obtained
for the original problem and not for the presolve problem. They can be obtained before
optimizing or after calling XPRSpostsolve for the case where the global search has not com-
pleted.

Related topics
XPRSgetpresolvesol, XPRSwriteprtsol, XPRSwritesol.

Console and Library Functions 93 Xpress-Optimizer Reference Manual

XPRSgetmqobj

Purpose
Returns the nonzeros in the quadratic objective coefficients matrix for the columns in a given
range. To achieve maximum efficiency, XPRSgetmqobj returns the lower triangular part of this
matrix only.

Synopsis
int XPRS_CC XPRSgetmqobj (XPRSprob prob, int mstart[], int mclind[],

double dobjval[], int size, int *nels, int first, int last);

Arguments
prob The current problem.

mstart Integer array which will be filled with indices indicating the starting offsets in the
mclind and dobjval arrays for each requested column. It must be length of at
least last-first+2. Column i starts at position mstart[i] in the mrwind and
dmatval arrays, and has mstart[i+1]-mstart[i] elements in it. May be NULL if
if size is 0.

mclind Integer array of length size which will be filled with the column indices of the
nonzero elements in the lower triangular part of Q. May be NULL if size is 0.

dobjval Double array of length size which will be filled with the nonzero element values.
May be NULL if size is 0.

size Double array of length size containing the objective function coefficients.

nels Pointer to the integer where the number of nonzero elements in the mclind and
dobjval arrays will be returned. If the number of nonzero elements is greater than
size, then only size elements will be returned. If nels is smaller than size, then
only nels will be returned.

first First column in the range.

last Last column in the range.

Further information

1. The objective function is of the form c’x+0.5x’Qx where Q is positive semi-definite for min-
imization problems and negative semi-definite for maximization problems. If this is not the
case the optimization algorithms may converge to a local optimum or may not converge at all.
Note that only the upper or lower triangular part of the Q matrix is returned.

2. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0
to ncol-1 respectively.

3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Op-
timizer library header file.

Related topics
XPRSchgmqobj, XPRSchgqobj, XPRSgetqobj.

Console and Library Functions 94 Xpress-Optimizer Reference Manual

XPRSgetnames

Purpose
Returns the names for the rows, columns or set in a given range. The names will be returned
in a character buffer, each name being separated by a null character.

Synopsis
int XPRS_CC XPRSgetnames(XPRSprob prob, int type, char names[], int

first, int last);

Arguments
prob The current problem.

type 1 if row names are required;
2 if column names are required.
3 if set names are required.

names Buffer long enough to hold the names. Since each name is 8*NAMELENGTH char-
acters long (plus a null terminator), the array, names, would be required to be at
least as long as (first-last+1)*(8*NAMELENGTH+1) characters. The names of the
row/column/set first+i will be written into the names buffer starting at position
i*8*NAMELENGTH+i.

first First row, column or set in the range.

last Last row, column or set in the range.

Related controls

Integer

MPSNAMELENGTH Maximum name length in characters.

Example
The following example retrieves the row and column names of the current problem:

int cols, rows, nl;
...
XPRSgetintattrib(prob,XPRS_ORIGINALCOLS,&cols);
XPRSgetintattrib(prob,XPRS_ORIGINALROWS,&rows);
XPRSgetintattrib(prob,XPRS_NAMELENGTH,&nl);

cnames = (char *) malloc(sizeof(char)*(8*nl+1)*cols);
rnames = (char *) malloc(sizeof(char)*(8*nl+1)*rows);
XPRSgetnames(prob,1,rnames,0,rows-1);
XPRSgetnames(prob,2,cnames,0,cols-1);

To display names[i] in C, use

int namelength;
...

XPRSgetintattrib(prob,XPRS_NAMELENGTH,&namelength);
printf("%s",names + i*(8*namelength+1));

Related topics
XPRSaddnames.

Console and Library Functions 95 Xpress-Optimizer Reference Manual

XPRSgetobj

Purpose
Returns the objective function coefficients for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetobj(XPRSprob prob, double obj[], int first, int last);

Arguments
prob The current problem.

obj Double array of length last-first+1 where the objective function coefficients
are to be placed.

first First column in the range.

last Last column in the range.

Example
The following example retrieves the objective function coefficients of the current problem:

int cols;
double *obj;
...
XPRSgetintattrib(prob,XPRS_COLS,&cols);
obj = (double *) malloc(sizeof(double)*cols);
XPRSgetobj(prob, obj, 0, cols-1);

Related topics
XPRSchgobj.

Console and Library Functions 96 Xpress-Optimizer Reference Manual

XPRSgetpivotorder

Purpose
Returns the pivot order of the basic variables.

Synopsis
int XPRS_CC XPRSgetpivotorder(XPRSprob prob, int mpiv[]);

Arguments
prob The current problem.

mpiv Integer array of length ROWS where the pivot order will be returned.

Example
The following returns the pivot order of the variables into an array pPivot :

XPRSgetintattrib(prob,XPRS_ROWS,&rows);
pPivot = malloc(rows*(sizeof(int)));
XPRSgetpivotorder(prob,pPivot);

Further information
Row indices are in the range 0 to ROWS-1; whilst columns are in the range ROWS+SPAREROWS
to ROWS+SPAREROWS+COLS-1.

Related topics
XPRSgetpivots, XPRSpivot.

Console and Library Functions 97 Xpress-Optimizer Reference Manual

XPRSgetpivots

Purpose
Returns a list of potential leaving variables if a specified variable enters the basis.

Synopsis
int XPRS_CC XPRSgetpivots(XPRSprob prob, int in, int outlist[], double

x[], double *dobj, int *npiv, int maxpiv);

Arguments
prob The current problem.

in Index of the specified row or column to enter basis.

outlist Integer array of length at least maxpiv to hold list of potential leaving variables.
May be NULL if not required.

x Double array of length ROWS+SPAREROWS+COLS to hold the values of all the vari-
ables that would result if in entered the basis. May be NULL if not required.

dobj Pointer to a double where the objective function value that would result if in en-
tered the basis will be returned.

npiv Pointer to an integer where the actual number of potential leaving variables will
be returned.

maxpiv Maximum number of potential leaving variables to return.

Error value
425 Indicates in is invalid (out of range or already basic).

Example
The following retrieves a list of up to 5 potential leaving variables if variable 6 enters the
basis:

int npiv, outlist[5];
double dobj;
...
XPRSgetpivots(prob,6,outlist,NULL,&dobj,&npiv,5);

Further information

1. If the variable in enters the basis and the problem is degenerate then several basic variables
are candidates for leaving the basis, and the number of potential candidates is returned in
npiv. A list of at most maxpiv of these candidates is returned in outlist which must be at
least maxpiv long. If variable in were to be pivoted in, then because the problem is degen-
erate, the resulting values of the objective function and all the variables do not depend on
which of the candidates from outlist is chosen to leave the basis. The value of the objective
is returned in dobj and the values of the variables into x.

2. Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS
to ROWS+SPAREROWS+COLS-1.

Related topics
XPRSgetpivotorder, XPRSpivot.

Console and Library Functions 98 Xpress-Optimizer Reference Manual

XPRSgetpresolvebasis

Purpose
Returns the current basis from memory into the user’s data areas. If the problem is presolved,
the presolved basis will be returned. Otherwise the original basis will be returned.

Synopsis
int XPRS_CC XPRSgetpresolvebasis(XPRSprob prob, int rstatus[], int

cstatus[]);

Arguments
prob The current problem.

rstatus Integer array of length ROWS to the basis status of the stack, surplus or artificial
variable associated with each row. The status will be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
May be NULL if not required.

cstatus Integer array of length COLS to hold the basis status of the columns in the constraint
matrix. The status will be one of:
0 variable is non-basic at lower bound, or superbasic at zero if the variable has

no lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.
May be NULL if not required.

Example
The following obtains and outputs basis information on a presolved problem prior to the
global search:

XPRSprob prob;
int i, cols, *cstatus;
...
XPRSreadprob(prob,"myglobalprob","");
XPRSminim(prob,"");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
cstatus = malloc(cols*sizeof(int));
XPRSgetpresolvebasis(prob,NULL,cstatus);
for(i=0;i<cols;i++)
printf("Column %d: %d\n", i, cstatus[i]);
XPRSglobal(prob);

Related topics
XPRSgetbasis, XPRSloadbasis, XPRSloadpresolvebasis.

Console and Library Functions 99 Xpress-Optimizer Reference Manual

XPRSgetpresolvemap

Purpose
Returns the mapping of the row and column numbers from the presolve problem back to the
original problem.

Synopsis
int XPRS_CC XPRSgetpresolvemap(XPRSprob prob, int rowmap[], int

colmap[]);

Arguments
prob The current problem.

rowmap Integer array of length ROWS where the row maps will be returned.

colmap Integer array of length COLS where the column maps will be returned.

Example
The following reads in a (Mixed) Integer Programming problem and gets the mapping for the
rows and columns back to the original problem following optimization of the linear relax-
ation. The elimination operations of the presolve are turned off so that a one-to-one mapping
between the presolve problem and the original problem.

XPRSreadprob(prob,"MyProb","");
XPRSsetintcontrol(prob,XPRS_PRESOLVEOPS,255);
XPRSmaxim(prob,"");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
colmap = malloc(cols*sizeof(int));
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
rowmap = malloc(rows*sizeof(int));
XPRSgetpresolvemap(prob,rowmap,colmap);

Further information
In order to get a one-to-one mappng between the presolve problem and the original problem
the elimination operations of the presolve must be turned off using;

XPRSsetintcontrol(prob,XPRS_PRESOLVEOPS,255);

Related topics
5.2.

Console and Library Functions 100 Xpress-Optimizer Reference Manual

XPRSgetpresolvesol

Purpose
Returns the solution for the presolved problem from memory.

Synopsis
int XPRS_CC XPRSgetpresolvesol(XPRSprob prob, double x[], double slack[],

double dual[], double dj[]);

Arguments
prob The current problem.

x Double array of length COLS where the values of the primal variables will be re-
turned. May be NULL if not required.

slack Double array of length ROWS where the values of the slack variables will be re-
turned. May be NULL if not required.

dual Double array of length ROWSwhere the values of the dual variables will be returned.
May be NULL if not required.

dj Double array of length COLS where the reduced cost for each variable will be re-
turned. May be NULL if not required.

Example
The following reads in a (Mixed) Integer Programming problem and displays the solution to
the presolved problem following optimization of the linear relaxation:

XPRSreadprob(prob,"MyProb","");
XPRSmaxim(prob,"");
XPRSgetintattrib(prob,XPRS_COLS,&cols);
x = malloc(cols*sizeof(double));
XPRSgetpresolvesol(prob,x,NULL,NULL,NULL);
for(i=0;i<cols;i++)
printf("Presolved x(%d) = %g\n",i,x[i]);
XPRSglobal(prob);

Further information

1. If the problem has not been presolved, the solution in memory will be returned.

2. The solution to the original problem should be returned using the related function
XPRSgetlpsol.

Related topics
XPRSgetlpsol, 5.2.

Console and Library Functions 101 Xpress-Optimizer Reference Manual

XPRSgetprobname

Purpose
Returns the current problem name.

Synopsis
int XPRS_CC XPRSgetprobname(XPRSprob prob, char *probname);

Arguments
prob The current problem.

probname A string of up to 200 characters to contain the current problem name.

Example
The following returns the problem name into probname:

char probname[200];
...
XPRSgetprobname(prob,probname);

Related topics
XPRSsetprobname.

Console and Library Functions 102 Xpress-Optimizer Reference Manual

XPRSgetqobj

Purpose
Returns a single quadratic objective function coefficient corresponding to the variable pair
(icol, jcol) of the Hessian matrix.

Synopsis
int XPRS_CC XPRSgetqobj(XPRSprob prob, int icol, int jcol, double *dval);

Arguments
prob The current problem.

icol Column index for the first variable in the quadratic term.

jcol Column index for the second variable in the quadratic term.

dval Pointer to a double value where the objective function coefficient is to be placed.

Example
The following returns the coefficient of the x0

2 term in the objective function, placing it in the
variable value :

double value;
...
XPRSgetqobj(prob,0,0,&value);

Further information
dval is the coefficient in the quadratic Hessian matrix. For example, if the objective function
has the term [3x1x2 + 3x2x1]/2 the value retrieved by XPRSgetqobj is 3.0 and if the objective
function has the term [6x1

2]/2 the value retrieved by XPRSgetqobj is 6.0.

Related topics
XPRSchgqobj, XPRSchgmqobj.

Console and Library Functions 103 Xpress-Optimizer Reference Manual

XPRSgetrhs

Purpose
Returns the right hand side elements for the rows in a given range.

Synopsis
int XPRS_CC XPRSgetrhs(XPRSprob prob, double rhs[], int first, int last);

Arguments
prob The current problem.

rhs Double array of length last-first+1 where the right hand side elements are to
be placed.

first First row in the range.

last Last row in the range.

Example
The following example retrieves the right hand side values of the problem:

int rows;
double *rhs;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
rhs = (double *) malloc(sizeof(double)*rows);
XPRSgetrhs(prob,rhs,0,rows-1);

Related topics
XPRSchgrhs, XPRSchgrhsrange, XPRSgetrhsrange.

Console and Library Functions 104 Xpress-Optimizer Reference Manual

XPRSgetrhsrange

Purpose
Returns the right hand side range values for the rows in a given range.

Synopsis
int XPRS_CC XPRSgetrhsrange(XPRSprob prob, double range[], int first, int

last);

Arguments
prob The current problem.

range Double array of length last-first+1 where the right hand side range values are
to be placed.

first First row in the range.

last Last row in the range.

Example
The following returns right hand side range values for all rows in the matrix:

int rows;
double *range;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
range = malloc(rows*sizeof(double));
XPRSgetrhsrange(prob,range,0,rows);

Related topics
XPRSchgrhs, XPRSchgrhsrange, XPRSgetrhs, XPRSrange.

Console and Library Functions 105 Xpress-Optimizer Reference Manual

XPRSgetrowrange

Purpose
Returns the row ranges computed by XPRSrange.

Synopsis
int XPRS_CC XPRSgetrowrange(XPRSprob prob, double upact[], double

loact[], double uup[], double udn[]);

Arguments
prob The current problem.

upact Double array of length ROWS for the upper row activities.

loact Double array of length ROWS for the lower row activities.

uup Double array of length ROWS for the upper row unit costs.

udn Double array of length ROWS for the lower row unit costs.

Example
The following computes row ranges and returns them:

int rows;
double *upact, *loact, *uup, *udn;
...
XPRSrange(prob);
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
upact = malloc(rows*sizeof(double));
loact = malloc(rows*sizeof(double));
uup = malloc(rows*sizeof(double));
udn = malloc(rows*sizeof(double));
...
XPRSgetrowrange(prob,upact,loact,uup,udn);

Further information
The activities and unit costs are obtained from the range file (problem_name.rng). The mean-
ing of the upper and lower column activities and upper and lower unit costs in the ASCII range
files is described in Appendix A.

Related topics
XPRSchgrhsrange, XPRSgetcolrange.

Console and Library Functions 106 Xpress-Optimizer Reference Manual

XPRSgetrows

Purpose
Returns the nonzeros in the constraint matrix for the rows in a given range.

Synopsis
int XPRS_CC XPRSgetrows(XPRSprob prob, int mstart[], int mclind[], double

dmatval[], int size, int *nels, int first, int last);

Arguments
prob The current problem.

mstart Integer array which will be filled with the indices indicating the starting offsets in
the mclind and dmatval arrays for each requested row. It must be of length at
least last-first+2. Column i starts at position mstart[i] in the mrwind and
dmatval arrays, and has mstart[i+1]-mstart[i] elements in it. May be NULL if
not required.

mclind Integer arrays of length size which will be filled with the column indices of the
nonzero elements for each row. May be NULL if not required.

dmatval Double array of length size which will be filled with the nonzero element values.
May be NULL if not required.

size Maximum number of elements to be retrieved.

nels Pointer to the integer where the number of nonzero elements in the mclind and
dmatval arrays will be returned. If the number of nonzero elements is greater that
size, then only size elements will be returned. If nels is smaller that size, then
only nels will be returned.

first First row in the range.

last Last row in the range.

Example
The following example returns and displays at most six nonzero matrix entries in the first two
rows:

int size=6, nels, mstart[3], mclind[6];
double dmatval[6];
...
XPRSgetrows(prob,mstart,mclind,dmatval,size,&nels,0,1);
for(i=0;i<nels;i++) printf("\t%2.1f\n",dmtval[i]);

Further information
It is possible to obtain just the number of elements in the range of columns by replacing
mstart, mclind and dmatval by NULL. In this case, size must be set to 0 to indicate that
the length of arrays passed is 0.

Related topics
XPRSgetcols, XPRSgetrowrange, XPRSgetrowtype.

Console and Library Functions 107 Xpress-Optimizer Reference Manual

XPRSgetrowtype

Purpose
Returns the row types for the rows in a given range.

Synopsis
int XPRS_CC XPRSgetrowtype(XPRSprob prob, char qrtype[], int first, int

last);

Arguments
prob The current problem.

qrtype Character array of length last-first+1 characters where the row types will be
returned:
N indicates a free constraint;
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint.

first First row in the range.

last Last row in the range.

Example
The following example retrieves row types into an array qrtype :

int rows;
char *qrtype;
...
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
qrtype = (char *) malloc(sizeof(char)*rows);
XPRSgetrowtype(prob,qrtype,0,rows-1);

Related topics
XPRSchgrowtype, XPRSgetrowrange, XPRSgetrows.

Console and Library Functions 108 Xpress-Optimizer Reference Manual

XPRSgetscaledinfeas

Purpose
Returns a list of scaled infeasible primal and dual variables for the original problem. If the
problem is currently presolved, it is postsolved before the function returns.

Synopsis
int XPRS_CC XPRSgetscaledinfeas(XPRSprob prob, int *npv, int *nps, int

*nds, int *ndv, int mx[], int mslack[], int mdual[], int mdj[]);

Arguments
prob The current problem.

npv Number of primal infeasible variables.

nps Number of primal infeasible rows.

nds Number of dual infeasible rows.

ndv Number of dual infeasible variables.

mx Integer array of length npv where the primal infeasible variables will be returned.
May be NULL if not required.

mslack Integer array of length nps where the primal infeasible rows will be returned. May
be NULL if not required.

mdual Integer array of length nds where the dual infeasible rows will be returned. May
be NULL if not required.

mdj Integer array of length ndv where the dual infeasible variables will be returned.
May be NULL if not required.

Error value
422 A solution is not available.

Related controls

Double

FEASTOL Zero tolerance on RHS.

OPTIMALITYTOL Reduced cost tolerance.

Example
In this example, XPRSgetscaledinfeas is first called with nulled integer arrays to get the
number of infeasible entries. Then space is allocated for the arrays and the function is again
called to fill them in.

int *mx, *mslack, *mdual, *mdj, npv, nps, nds, ndv;
...
XPRSgetscaledinfeas(prob, &npv, &nps, &nds, &ndv,

NULL, NULL, NULL, NULL);

mx = malloc(npv * sizeof(int));
mslack = malloc(nps * sizeof(int));
mdual = malloc(nds * sizeof(int));
mdj = malloc(ndv * sizeof(int));
XPRSgetscaledinfeas(prob, &npv, &nps, &nds, &ndv,

mx, mslack, mdual, mdj);

Further information
If any of the last four arguments are set to NULL, the corresponding number of infeasibilities
is still returned.

Related topics
XPRSgetiis, XPRSgetinfeas, XPRSiis.

Console and Library Functions 109 Xpress-Optimizer Reference Manual

XPRSgetsol

Purpose
This function is deprecated and will be removed in version 18. Users should use the XPRSgetlpsol
or XPRSgetmipsol functions instead. It is included for compatibility with version 16 and is
used to obtain the solution values following optimization.

Synopsis
int XPRS_CC XPRSgetsol(XPRSprob prob, double x[], double slack[], double

dual[], double dj[]);

Arguments
prob The current problem.

x Double array of length COLS where the values of the primal variables will be re-
turned. May be NULL if not required.

slack Double array of length ROWS where the values of the slack variables will be re-
turned. May be NULL if not required.

dual Double array of length ROWSwhere the values of the dual variables will be returned.
May be NULL if not required.

dj Double array of length COLS where the reduced cost for each variable will be re-
turned. May be NULL if not required.

Related controls

Integer

SOLUTIONFILE Enable/disable the binary solution file.

Example
The following sequence of commands will get the solution (x) at the top node and the optimal
MIP solution (y) for a problem:

int cols;
double *x, *y;
...
XPRSmaxim(prob,"");
XPRSgetintattrib(prob,XPRS_ORIGINALCOLS,&cols);
x = malloc(cols*sizeof(double));
XPRSgetsol(prob,x,NULL,NULL,NULL);
XPRSglobal(prob);
y = malloc(cols*sizeof(double));
XPRSgetsol(prob,y,NULL,NULL,NULL);

Further information

1. If the matrix is modified after calling XPRSmaxim or XPRSminim, then the solution will no
longer be available.

2. If the problem has been presolved, then XPRSgetsol returns the solution to the original
problem. The only way to obtain the presolved solution is to call the related function,
XPRSgetpresolvesol.

Related topics
XPRSgetlpsol, XPRSgetmipsol.

Console and Library Functions 110 Xpress-Optimizer Reference Manual

XPRSgetstrattrib

Purpose
Enables users to recover the values of various string problem attributes. Problem attributes are
set during loading and optimization of a problem.

Synopsis
int XPRS_CC XPRSgetstrattrib(XPRSprob prob, int ipar, char *cval);

Arguments
prob The current problem.

ipar Problem attribute whose value is to be returned. A full list of all problem attributes
may be found in 8, or from the list in the xprs.h header file.

cval Pointer to a string where the value of the attribute (plus null terminator) will be
returned.

Example
The following retrieves the name of the matrix just loaded:

char matrixname[256];
...
XPRSreadprob(prob,"myprob","");
XPRSgetstrattrib(prob, XPRS_MATRIXNAME, matrixname);

Related topics
XPRSgetdblattrib, XPRSgetintattrib.

Console and Library Functions 111 Xpress-Optimizer Reference Manual

XPRSgetstrcontrol

Purpose
Returns the value of a given string control parameters.

Synopsis
int XPRS_CC XPRSgetstrcontrol(XPRSprob prob, int ipar, char *cgval);

Arguments
prob The current problem.

ipar Control parameter whose value is to be returned. A full list of all controls may be
found in 7, or from the list in the xprs.h header file.

cgval Pointer to a string where the value of the control (plus null terminator) will be
returned.

Example
In the following, the value of MPSBOUNDNAME is retrieved and displayed:

char mpsboundname[256];
...
XPRSgetstrcontrol(prob, XPRS_MPSBOUNDNAME, mpsboundname);
printf("Name = %s\n", mpsboundname);

Related topics
XPRSgetdblcontrol, XPRSgetintcontrol, XPRSsetstrcontrol.

Console and Library Functions 112 Xpress-Optimizer Reference Manual

XPRSgetub

Purpose
Returns the upper bounds for the columns in a given range.

Synopsis
int XPRS_CC XPRSgetub(XPRSprob prob, double ub[], int first, int last);

Arguments
prob The current problem.

ub Double array of length last-first+1 where the upper bounds are to be placed.

first First column in the range.

last Last column in the range.

Example
The following example retrieves the upper bounds for the columns of the current problem:

int cols;
double *ub;
...
XPRSgetintattrib(prob, XPRS_COLS, &cols);
ub = (double *) malloc(sizeof(double)*ncol);
XPRSgetub(prob, ub, 0, ncol-1);

Further information
Values greater than or equal to XPRS_PLUSINFINITY should be interpreted as infinite; values
less than or equal to XPRS_MINUSINFINITY should be interpreted as infinite and negative.

Related topics
XPRSchgbounds, XPRSgetlb.

Console and Library Functions 113 Xpress-Optimizer Reference Manual

XPRSgetunbvec

Purpose
Returns the index vector which causes the primal simplex or dual simplex algorithm to deter-
mine that a matrix is primal or dual unbounded respectively.

Synopsis
int XPRS_CC XPRSgetunbvec(XPRSprob prob, int *junb);

Arguments
prob The current problem.

junb Pointer to an integer where the vector causing the problem to be detected as
being primal or dual unbounded will be returned. In the dual simplex case, the
vector is the leaving row for which the dual simplex detected dual unbounded-
ness. In the primal simplex case, the vector is the entering row junb (if junb is
in the range 0 to ROWS-1) or column (variable) junb-ROWS-SPAREROWS (if junb is
between ROWS+SPAREROWS and ROWS+SPAREROWS+COLS-1) for which the primal
simplex detected primal unboundedness.

Error value
91 A current problem is not available.

Further information
When solving using the dual simplex method, if the problem is primal infeasible then
XPRSgetunbvec returns the pivot row where dual unboundedness was detected. Also note
that when solving using the dual simplex method, if the problem is primal unbounded then
XPRSgetunbvec returns -1 since the problem is dual infeasible and not dual unbounded.

Related topics
XPRSgetinfeas, XPRSmaxim and XPRSminim.

Console and Library Functions 114 Xpress-Optimizer Reference Manual

XPRSgetversion

Purpose
Returns the full Optimizer version number in the form 15.10.03, where 15 is the majorrelease,
10 is the minor release, and 03 is the build number.

Synopsis
int XPRS_CC XPRSgetversion(char *version);

Argument
version Buffer long enough to hold the version string (plus a null terminator). This should

be at least 16 characters.

Related controls

Integer

VERSION The Optimizer version number

Example
The following calls XPRSgetversion to return version information at the start of the pro-
gram:

char version[16];
XPRSgetversion(version);
printf("Xpress-Optimizer version %s\n",version);
XPRSinit(NULL);

Further information
This function supercedes the VERSION control, which only returns the first two parts of the
version number. Relase 2004 versions of the Optimizer have a three-part version number.

Related topics
XPRSinit.

Console and Library Functions 115 Xpress-Optimizer Reference Manual

XPRSglobal GLOBAL

Purpose
Starts the global search for an integer solution after solving the LP relaxation with XPRSmaxim
(MAXIM) or XPRSminim (MINIM) or continues a global search if it has been interrupted.

Synopsis
int XPRS_CC XPRSglobal(XPRSprob prob);
GLOBAL

Argument
prob The current problem.

Related controls

Integer

BACKTRACK Node selection criterion.

BRANCHCHOICE Once a global entity has been selected for branching, this control deter-
mines whether the branch with the minimum or maximum estimate is fol-
lowed first.

BREADTHFIRST Limit for node selection criterion.

COVERCUTS Number of rounds of lifted cover inequalities at top node.

CPUTIME 1 for CPU time; 0 for elapsed time.

CUTDEPTH Maximum depth in the tree at which cuts are generated.

CUTFREQ Frequency at which cuts are generated in the tree search.

CUTSTRATEGY Specifies the cut strategy.

DEFAULTALG Algorithm to use with the tree search.

GOMCUTS Number of rounds of Gomory cuts at the top node.

KEEPMIPSOL Number of integer solutions to store.

MAXMIPSOL Maximum number of MIP solutions to find.

MAXNODE Maximum number of nodes in Branch and Bound search.

MAXSLAVE Number of slave processors used for parallel MIP search.

MAXTIME Maximum time allowed.

MIPLOG Global print flag.

MIPPRESOLVE Type of integer preprocessing to be performed.

NODESELECTION Node selection control.

REFACTOR Indicates whether to re-factorize the optimal basis.

SBBEST Number of infeasible global entities on which to perform strong branch-
ing.

SBITERLIMIT Number of dual iterations to perform strong branching.

SBSELECT The size of the candidate list of global entities for strong branching.

TREECOVERCUTS Number of rounds of lifted cover inequalities in the tree.

TREEGOMCUTS Number of rounds of Gomory cuts in the tree.

VARSELECTION Node selection degradator estimate control.
Double

DEGRADEFACTOR Factor to multiply estimated degradations by.

MIPABSCUTOFF Cutoff set after an LP optimizer command.

MIPABSSTOP Absolute optimality stopping criterion.

MIPADDCUTOFF Amount added to objective function to give new cutoff.

MIPRELCUTOFF Percentage cutoff.

MIPRELSTOP Relative optimality stopping criterion.

MIPTARGET Target object function for global.

Console and Library Functions 116 Xpress-Optimizer Reference Manual

MIPTOL Integer feasibility tolerance.

PSEUDOCOST Default pseudo cost in node degradation estimation.

Example 1 (Library)
The following example inputs a problem fred.mat, solves the LP and the global problem
before printing the solution to file.

XPRSreadprob(prob,"fred","");
XPRSmaxim(prob,"");
XPRSglobal(prob);
XPRSwriteprtsol(prob);

Example 2 (Console)

The equivalent set of commands for the Console Optimizer are:

READPROB fred
MAXIM
GLOBAL
WRITEPRTSOL

Further information

1. When an optimal LP solution has been found with XPRSmaxim (MAXIM) or XPRSminim (MINIM),
the search for an integer solution is started using XPRSglobal (GLOBAL). In many cases
XPRSglobal (GLOBAL) is to be called directly after XPRSmaxim (MAXIM)/XPRSminim (MINIM). In
such circumstances this can be achieved slightly more efficiently using the g flag to XPRSmaxim
(MAXIM)/XPRSminim (MINIM).

2. If a global search is interrupted and XPRSglobal (GLOBAL) is subsequently called again, the
search will continue where it left off. To restart the search at the top node you need to call
either XPRSinitglobal or XPRSpostolve (POSTSOLVE).

3. The controls described for XPRSmaxim (MAXIM) and XPRSminim (MINIM) can also be used to
control the XPRSglobal (GLOBAL) algorithm.

4. (Console) The global search may be interrupted by typing CTRL-C as long as the user has not
already typed ahead.

5. A summary log of six columns of information is output every n nodes, where -n is the value of
MIPLOG (see A.9).

6. Optimizer library users can check the final status of the global search using the MIPSTATUS
problem attribute.

7. The Optimizer supports global (i.e. active node list) files in excess of 2 GigaBytes by spread-
ing the data over multiple files. The initial global file is given the name probname.glb and
subsequent files are named probname.glb.1, probname.glb.2,.... No individual file will be
bigger than 2GB.

Related topics
XPRSfixglobal (FIXGLOBAL), XPRSinitglobal, XPRSmaxim (MAXIM)/XPRSminim (MINIM),
A.9.

Console and Library Functions 117 Xpress-Optimizer Reference Manual

XPRSgoal GOAL

Purpose
Perform goal programming.

Synopsis
int XPRS_CC XPRSgoal(XPRSprob prob, const char *filename, const char

*flags);
GOAL [filename] [-flags]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name from which the directives
are to be read (a .gol extension will be added).

flags Flags to pass to XPRSgoal (GOAL):
o optimization process logs to be displayed;
l treat integer variables as linear;
f write output into a file filename.grp.

Related controls

Integer

KEEPMIPSOL Number of partial solutions to store when using pre-emptive goal program-
ming.

Example 1 (Library)
In the following example, goal programming is carried out on a problem, goalex, taking
instructions from the file gb1.gol:

XPRSreadprob(prob,"goalex","");
XPRSgoal(prob,"gb1","fo");

Example 2 (Console)
Suppose we have a problem where the weight for objective function OBJ1 is unknown and we
wish to perform goal programming, maximizing this row and relaxing the resulting constraint
by 5% of the optimal value, then the following sequence will solve this problem:

READPROB
GOAL
P
O
OBJ1
MAX
P
5
<empty line>

Further information

Console and Library Functions 118 Xpress-Optimizer Reference Manual

1. The command XPRSgoal (GOAL) used with objective functions allows the user to find solutions
of problems with more than one objective function. XPRSgoal (GOAL) used with constraints
enables the user to find solutions to infeasible problems. The goals are the constraints re-
laxed at the beginning to make the problem feasible. Then one can see how many of these
relaxed constraints can be met, knowing the penalty of making the problem feasible (in the
Archimedian case) or knowing which relaxed constraints will never be met (in the pre-emptive
case).

2. (Console) If the optional filename is specified when GOAL is used, the responses to the
prompts are read from filename.gol. If there is an invalid answer to a prompt, goal pro-
gramming will stop and control will be returned to the Optimizer.

3. It is not always possible to use the output of one of the goal problems as an input for further
study because the coefficients for the objective function, the right hand side and the row type
may all have changed.

4. In the Archimedian/objective function option, the fixed value of the resulting objective func-
tion will be the linear combination of the right hand sides of the objective functions involved.

Related topics
5.5.

Console and Library Functions 119 Xpress-Optimizer Reference Manual

HELP

Purpose
Provides quick reference help for console users of the Optimizer.

Synopsis
HELP
HELP commands
HELP controls
HELP attributes
HELP [command-name]
HELP [control-name]
HELP [attribute-name]

Example
This command is used by calling it at the Console Optimizer command line:

HELP MAXTIME

Related topics
None.

Console and Library Functions 120 Xpress-Optimizer Reference Manual

XPRSiis IIS

Purpose
Initiates the search for Irreducible Infeasible Sets (IIS) amongst problems which are linear in-
feasible.

Synopsis
int XPRS_CC XPRSiis(XPRSprob prob, const char *flags);
IIS [-flags]

Arguments
prob The current problem.

flags Flags to pass to XPRSiis (IIS). Can be set to the following:
o display IIS information and optimization process logs on screen;
f write IIS information into a file problem_name.iis.
If no flags are set, only the IIS information will be displayed to the screen.

Related controls

Integer

MAXIIS Number of Irreducible Infeasible Sets to be found.

Example 1 (Library)

This example searches for IISs and then questions the problem attribute NUMIIS to determine
how many were found:

int iis;
...
XPRSiis(prob,"f");
XPRSgetintattrib(prob, XPRS_NUMIIS, &iis);
printf("number of IISs = %d\n", iis);

Example 2 (Console)
Calling the command on its own begins a search for as many IISs as have been specified by the
control MAXIIS:

IIS

Further information

1. A model may have several infeasibilities. Repairing a single IIS may not make the model fea-
sible. For this reason the Optimizer can find an IIS for each of the infeasibilities in a model.
If the control MAXIIS is set to a positive integer value then the XPRSiis (IIS) command will
stop if MAXIIS IISs have been found. By default the control MAXIIS is set to -1, in which case
an IIS is found for each of the independent infeasibilities in the model.

2. The problem attribute, NUMIIS, allows the user to recover the number of IISs found in a par-
ticular search. See Example 1 for details of this.

Related topics
XPRSgetiis, 3.2.

Console and Library Functions 121 Xpress-Optimizer Reference Manual

XPRSinit

Purpose
Initializes the Optimizer library. This must be called before any other library routines.

Synopsis
int XPRS_CC XPRSinit(const char *xpress);

Argument
xpress The directory where the Xpress-MP password file is located. Users should employ a

value of NULL unless otherwise advised, allowing the standard initialization direc-
tories to be checked.

Example
The following is the usual way of calling XPRSinit :

if(XPRSinit(NULL)) printf("Problem with XPRSinit\n");

Further information

1. Whilst error checking should always be used on all library function calls, it is especially impor-
tant to do so with the initialization functions, since a majority of errors encountered by users
are caused at the initialization stage. Any nonzero return code indicates that no license could
be found. In such circumstances the application should be made to exit. A return code of 32,
however, indicates that a student license has been found and the software will work, but with
restricted functionality and problem capacity.

2. In multi-threaded applications where all threads are equal, XPRSinit may be called by each
thread prior to using the library. Whilst the process of initialization will be carried out only
once, this guarantees that the library functions will be available to each thread as necessary. In
applications with a clear master thread, spawning other Optimizer threads, initialization need
only be called by the master thread.

Related topics
XPRScreateprob, XPRSfree.

Console and Library Functions 122 Xpress-Optimizer Reference Manual

XPRSinitglobal

Purpose
Reinitialises the global tree search. By default if XPRSglobal is interrupted and called again
the global search will continue from where it left off. If XPRSinitglobal is called after the
first call to XPRSglobal, the global search will start from the top node when XPRSglobal is
called again.

Synopsis
int XPRS_CC XPRSinitglobal(XPRSprob prob);

Argument
prob The current problem.

Example
The following initializes the global search before attempting to solve the problem again:

XPRSinitglobal(prob);
XPRSmaxim(prob,"g");

Related topics
XPRSglobal, XPRSmaxim (MAXIM)/XPRSminim (MINIM).

Console and Library Functions 123 Xpress-Optimizer Reference Manual

XPRSinterrupt

Purpose
Interrupts the optimizer algorithms.

Synopsis
int XPRS_CC XPRSinterrupt(XPRSprob prob, int reason);

Arguments
prob The current problem.

reason The reason for stopping. Possible reasons are:
XPRS_STOP_TIMELIMIT time limit hit;
XPRS_STOP_CTRLC control C hit;
XPRS_STOP_NODELIMIT node limit hit;
XPRS_STOP_ITERLIMIT iteration limit hit;
XPRS_STOP_MIPGAP MIP gap is sufficiently small;
XPRS_STOP_SOLLIMIT solution limit hit;
XPRS_STOP_USER user interrupt.

Further information
The XPRSinterrupt command can be called from any callback.

Related topics
None.

Console and Library Functions 124 Xpress-Optimizer Reference Manual

XPRSloadbasis

Purpose
Loads a basis from the user’s areas.

Synopsis
int XPRS_CC XPRSloadbasis(XPRSprob prob, const int rstatus[], const int

cstatus[]);

Arguments
prob The current problem.

rstatus Integer array of length ROWS containing the basis status of the slack, surplus or
artificial variable associated with each row. The status must be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.
3 slack or surplus is super-basic.

cstatus Integer array of length COLS containing the basis status of each of the columns in
the constraint matrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has

no lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example
This example loads a problem and then reloads a (previously optimized) basis from a similar
problem to speed up the optimization:

XPRSreadprob(prob,"problem","");
XPRSloadbasis(prob,rstatus,cstatus);
XPRSminim(prob,"");

Further information
If the problem has been altered since saving an advanced basis, you may want to alter the basis
as follows before loading it:

• Make new variables non-basic at their lower bound (cstatus[icol]=0), unless a variable
has an infinite lower bound and a finite upper bound, in which case make the variable
non-basic at its upper bound (cstatus[icol]=2);

• Make new constraints basic (rstatus[jrow]=1);

• Try not to delete basic variables, or non-basic constraints.

Related topics
XPRSgetbasis, XPRSgetpresolvebasis, XPRSloadpresolvebasis.

Console and Library Functions 125 Xpress-Optimizer Reference Manual

XPRSloadcuts

Purpose
Loads cuts from the cut pool into the matrix. Without calling XPRSloadcuts the cuts will
remain in the cut pool but will not be active at the node. Cuts loaded at a node remain active
at all descendant nodes unless they are deleted using XPRSdelcuts.

Synopsis
int XPRS_CC XPRSloadcuts(XPRSprob prob, int itype, int interp, int ncuts,

XPRScut mcutind[]);

Arguments
prob The current problem.

itype Cut type.

interp The way in which the cut type is interpreted:
-1 load all cuts;
1 treat cut types as numbers;
2 treat cut types as bit maps - load cut if any bit matches any bit set in

itype;
3 treat cut types as bit maps - 0 load cut if all bits match those set in

itype.
ncuts Number of cuts to load. A value of -1 indicates load all cuts of type itype.

mcutind Array containing pointers to the cuts to be loaded into the matrix. This array may
be NULL if ncuts is -1, otherwise it has length ncuts. Any indices of -1 will be
ignored so that the array mindex returned from XPRSstorecuts can be passed
directly to XPRSloadcuts.

Related topics
XPRSaddcuts, XPRSdelcpcuts, XPRSdelcuts, XPRSgetcplist, 5.4.

Console and Library Functions 126 Xpress-Optimizer Reference Manual

XPRSloaddirs

Purpose
Loads directives into the matrix.

Synopsis
int XPRS_CC XPRSloaddirs(XPRSprob prob, int ndir, const int mcols[],

const int mpri[], const char qbr[], const double dupc[], const
double ddpc[]);

Arguments
prob The current problem.

ndir Number of directives.

mcols Integer array of length ndir containing the column numbers. A negative value
indicates a set number (the first set being -1, the second -2, and so on).

mpri Integer array of length ndir containing the priorities for the columns or sets. Pri-
orities must be between 0 and 1000. May be NULL if not required.

qbr Character array of length ndir specifying the branching direction for each column
or set:
U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be NULL if not required.

dupc Double array of length ndir containing the up pseudo costs for the columns or
sets. May be NULL if not required.

ddpc Double array of length ndir containing the down pseudo costs for the columns or
sets. May be NULL if not required.

Related topics
XPRSgetdirs, XPRSloadpresolvedirs, XPRSreaddirs.

Console and Library Functions 127 Xpress-Optimizer Reference Manual

XPRSloadglobal

Purpose
Used to load a global problem in to the Optimizer data structures. Integer, binary, partial
integer, semi-continuous and semi-continuous integer variables can be defined, together with
sets of type 1 and 2. The reference row values for the set members are passed as an array
rather than specifying a reference row.

Synopsis
int XPRS_CC XPRSloadglobal(XPRSprob prob, const char *probname, int ncol,

int nrow, const char qrtype[], const double rhs[], const double
range[], const double obj[], const int mstart[], const int mnel[],
const int mrwind[], const double dmatval[], const double dlb[],
const double dub[], int ngents, int nsets, const char qgtype[],
const int mgcols[], const double dlim[], const char qstype[],
const int msstart[], const int mscols[], const double dref[]);

Arguments
prob The current problem.

probname A string of up to 200 characters containing a name for the problem.

ncol Number of structural columns in the matrix.

nrow Number of rows in the matrix not (including the objective row). Objective coeffi-
cients must be supplied in the obj array, and the objective function should not be
included in any of the other arrays.

qrtype Character array of length nrow containing the row types:
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients. The right
hand side value for a range row gives the upper bound on the row.

range Double array of length nrow containing the range values for range rows. Values
for all other rows will be ignored. May be NULL if not required. The lower bound
on a range row is the right hand side value minus the range value. The sign of the
range value is ignored - the absolute value is used in all cases.

obj Double array of length ncol containing the objective function coefficients.

mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start
of the elements for each column. This array is of length ncol or, if mnel is NULL,
length ncol+1. If mnel is NULL, the extra entry of mstart, mstart[ncol], con-
tains the position in the mrwind and dmatval arrays at which an extra column
would start, if it were present. In C, this value is also the length of the mrwind and
dmatval arrays.

mnel Integer array of length ncol containing the number of nonzero elements in each
column. May be NULL if not required. This array is not required if the non-zero
coefficients in the mrwind and dmatval arrays are continuous, and the mstart
array has ncol+1 entries as described above. It may be NULL if not required.

mrwind Integer arrays containing the row indices for the nonzero elements in each col-
umn. If the indices are input contiguously, with the columns in ascending order,
then the length of mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL,
mstart[ncol].

dmatval Double array containing the nonzero element values length as for mrwind.

dlb Double array of length ncol containing the lower bounds on the columns. Use
XPRS_MINUSINFINITY to represent a lower bound of minus infinity.

dub Double array of length ncol containing the upper bounds on the columns. Use
XPRS_PLUSINFINITY to represent an upper bound of plus infinity.

Console and Library Functions 128 Xpress-Optimizer Reference Manual

ngents Number of binary, integer, semi-continuous, semi-continuous integer and partial
integer entities.

nsets Number of SOS1 and SOS2 sets.

qgtype Character array of length ngents containing the entity types:
B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integer variables.

mgcols Integer array length ngents containing the column indices of the global entities.

dlim Double array length ngents containing the integer limits for the partial integer
variables and lower bounds for semi-continuous and semi-continuous integer vari-
ables (any entries in the positions corresponding to binary and integer variables will
be ignored). May be NULL if not required.

qstype Character array of length nsets containing the set types:
1 SOS1 type sets;
2 SOS2 type sets.
May be NULL if not required.

msstart Integer array containing the offsets in the mscols and dref arrays indicating the
start of the sets. This array is of length nsets+1, the last member containing the
offset where set nsets+1 would start. May be NULL if not required.

mscols Integer array of length msstart[nsets]-1 containing the columns in each set.
May be NULL if not required.

dref Double array of length msstart[nsets]-1 containing the reference row entries
for each member of the sets. May be NULL if not required.

Related controls

Integer

EXTRACOLS Number of extra columns to be allowed for.

EXTRAELEMS Number of extra matrix elements to be allowed for.

EXTRAMIPENTS Number of extra global entities to be allowed for.

EXTRAPRESOLVE Number of extra elements to allow for in presolve.

EXTRAROWS Number of extra rows to be allowed for.

KEEPNROWS Status for nonbinding rows.

SCALING Type of scaling.

Double

MATRIXTOL Zero tolerance on matrix elements.

SOSREFTOL Minimum gap between reference row entries.

Example
The following specifies an integer problem, globalEx, corresponding to:

maximize: x + 2y

subject to: 3x + 2y ≤ 400

x + 3y ≤ 200

with both x and y integral:

char probname[] = "globalEx";
int ncol = 2, nrow = 2;
char qrtype[] = {"L","L"};
double rhs[] = {400.0, 200.0};
int mstart[] = {0, 2, 4};

Console and Library Functions 129 Xpress-Optimizer Reference Manual

int mrwind[] = {0, 1, 0, 1};
double dmatval[] = {3.0, 1.0, 2.0, 3.0};
double objcoefs[] = {1.0, 2.0};
double dlb[] = {0.0, 0.0};
double dub[] = {200.0, 200.0};

int ngents = 2;
int nsets = 0;
char qgtype[] = {"I","I"};
int mgcols[] = {0,1};
...
XPRSloadglobal(prob, probname, ncol, nrow, qrtype, rhs, NULL,

objcoefs, mstart, NULL, mrwind,
dmatval, dlb, dub, ngents, nsets, qgtype, mgcols,
NULL, NULL, NULL, NULL, NULL);

Further information

1. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0
to ncol-1 respectively.

2. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Op-
timizer library header file.

3. Semi-continuous lower bounds are taken from the dlim array. If this is NULL then they are
given a default value of 1.0. If a semi-continuous variable has a positive lower bound then
this will be used as the semi-continuous lower bound and the lower bound on the variable will
be set to zero.

Related topics
XPRSaddsetnames, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Console and Library Functions 130 Xpress-Optimizer Reference Manual

XPRSloadlp

Purpose
Enables the user to pass a matrix directly to the Optimizer, rather than reading the matrix from
a file.

Synopsis
int XPRS_CC XPRSloadlp(XPRSprob prob, const char *probname, int ncol,

int nrow, const char qrtype[], const double rhs[], const double
range[], const double obj[], const int mstart[], const int mnel[],
const int mrwind[], const double dmatval[], const double dlb[],
const double dub[]);

Arguments
prob The current problem.

probname A string of up to 200 characters containing a names for the problem.

ncol Number of structural columns in the matrix.

nrow Number of rows in the matrix (not including the objective). Objective coefficients
must be supplied in the obj array, and the objective function should not be in-
cluded in any of the other arrays.

qrtype Character array of length nrow containing the row types:
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients of the rows.
The right hand side value for a range row gives the upper bound on the row.

range Double array of length nrow containing the range values for range rows. Values
for all other rows will be ignored. May be NULL if not required. The lower bound
on a range row is the right hand side value minus the range value. The sign of the
range value is ignored - the absolute value is used in all cases.

obj Double array of length ncol containing the objective function coefficients.

mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start
of the elements for each column. This array is of length ncol or, if mnel is NULL,
length ncol+1. If mnel is NULL, the extra entry of mstart, mstart[ncol], con-
tains the position in the mrwind and dmatval arrays at which an extra column
would start, if it were present. In C, this value is also the length of the mrwind and
dmatval arrays.

mnel Integer array of length ncol containing the number of nonzero elements in each
column. May be NULL if not required. This array is not required if the non-zero
coefficients in the mrwind and dmatval arrays are continuous, and the mstart
array has ncol+1 entries as described above. It may be NULL if not required.

mrwind Integer array containing the row indices for the nonzero elements in each col-
umn. If the indices are input contiguously, with the columns in ascending order,
the length of the mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL,
mstart[ncol].

dmatval Double array containing the nonzero element values; length as for mrwind.

dlb Double array of length ncol containing the lower bounds on the columns. Use
XPRS_MINUSINFINITY to represent a lower bound of minus infinity.

dub Double array of length ncol containing the upper bounds on the columns. Use
XPRS_PLUSINFINITY to represent an upper cound of plus infinity.

Related controls

Integer

Console and Library Functions 131 Xpress-Optimizer Reference Manual

EXTRACOLS Number of extra columns to be allowed for.

EXTRAELEMS Number of extra matrix elements to be allowed for.

EXTRAPRESOLVE Number of extra elements to allow for in presolve.

EXTRAROWS Number of extra rows to be allowed for.

KEEPNROWS Status for nonbinding rows.

SCALING Type of scaling.

Double

MATRIXTOL Zero tolerance on matrix elements.

Example
Given an LP problem:

maximize: x + y

subject to: 2x ≥ 3

x + 2y ≥ 3

x + y ≥ 1

the following shows how this may be loaded into the Optimizer using XPRSloadlp:

char probname[] = "small";
int ncol = 2, nrow = 3;
char qrtype[] = {"G","G","G"};
double rhs[] = { 3 , 3 , 1 };
double obj[] = { 1 , 1 };
int mstart[] = { 0 , 3 , 5 };
int mrwind[] = { 0 , 1 , 2 , 1 , 2 };
double dmatval[] = { 2 , 1 , 1 , 2 , 1 };
double dlb[] = { 0 , 0 };
double dub[] = {XPRS_PLUSINFINITY,XPRS_PLUSINFINITY};

XPRSloadlp(prob, probname, ncol, nrow, qrtype, rhs, NULL,
obj, mstart, NULL, mrwind, dmatval, dlb, dub)

Further information

1. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0
to ncol-1 respectively.

2. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Op-
timizer library header file.

3. For a range constraint, the value in the rhs array specifies the upper bound on the constraint,
while the value in the range array specifies the range on the constraint. So a range constraint
j is interpreted as:

rhsj − |rangej| ≤
∑

i

aijxi ≤ rhsj

Related topics
XPRSloadglobal, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

Console and Library Functions 132 Xpress-Optimizer Reference Manual

XPRSloadmipsol

Purpose
Loads a MIP solution for the problem into the optimizer.

Synopsis
int XPRS_CC XPRSloadmipsol(XPRSprob prob, const double dsol[], int

*status);

Arguments
prob The current problem.

dsol Double array of length COLS (for the original problem and not the presolve prob-
lem) containing the values of the variables.

status Pointer to an int where the status will be returned. The status is one of:

-1 Solution rejected because an error occurred;

0 Solution accepted;

1 Solution rejected because it is infeasible;

2 Solution rejected because it is cut off;

3 Solution rejected because the LP reoptimization was interrupted.

Example
This example loads a problem and then loads a solution found previously for the problem to
help speed up the MIP search:

XPRSreadprob(prob,"problem",""):
XPRSloadmipsol(prob,dsol,&status);
XPRSminim(prob,"g");

Further information
The values for the continuous variables in the dsol array are ignored and are calculated by
fixing the integer variables and reoptimizing.

Related topics
XPRSgetmipsol.

Console and Library Functions 133 Xpress-Optimizer Reference Manual

XPRSloadmodelcuts

Purpose
Specifies that a set of rows in the matrix will be treated as model cuts.

Synopsis
int XPRS_CC XPRSloadmodelcuts(XPRSprob prob, int nmod, const int

mrows[]);

Arguments
prob The current problem.

nmod The number of model cuts.

mrows An array of row indices to be treated as cuts.

Error value
268 Cannot perform operation on presolved matrix.

Example
This sets the first six matrix rows as model cuts in the global problem myprob.

int mrows[] = {0,1,2,3,4,5}
...
XPRSloadmodelcuts(prob,6,mrows);
XPRSminim(prob,"g");

Further information

1. During presolve the model cuts are removed from the matrix. Following optimization, the
violated model cuts are added back into the matrix and the matrix re-optimized. This continues
until no violated cuts remain.

2. The model cuts must be "true" model cuts, in the sense that they are redundant at the optimal
MIP solution. The Optimizer does not guarantee to add all violated model cuts, so they must
not be required to define the optimal MIP solution.

Related topics
5.4.

Console and Library Functions 134 Xpress-Optimizer Reference Manual

XPRSloadpresolvebasis

Purpose
Loads a presolved basis from the user’s areas.

Synopsis
int XPRS_CC XPRSloadpresolvebasis(XPRSprob prob, const int rstatus[],

const int cstatus[]);

Arguments
prob The current problem.

rstatus Integer array of length ROWS containing the basis status of the slack, surplus or
artificial variable associated with each row. The status must be one of:
0 slack, surplus or artificial is non-basic at lower bound;
1 slack, surplus or artificial is basic;
2 slack or surplus is non-basic at upper bound.

cstatus Integer array of length COLS containing the basis status of each of the columns in
the matrix. The status must be one of:
0 variable is non-basic at lower bound or superbasic at zero if the variable has

no lower bound;
1 variable is basic;
2 variable is at upper bound;
3 variable is super-basic.

Example
The following example saves the presolved basis for one problem, loading it into another:

int rows, cols, *rstatus, *cstatus;
...
XPRSreadprob(prob,"myprob","");
XPRSminim(prob,"");
XPRSgetintattrib(prob,XPRS_ROWS,&rows);
XPRSgetintattrib(prob,XPRS_COLS,&cols);
rstatus = malloc(rows*sizeof(int));
cstatus = malloc(cols*sizeof(int));
XPRSgetpresolvebasis(prob,rstatus,cstatus);
XPRSreadprob(prob2,"myotherprob","");
XPRSminim(prob2,"");
XPRSloadpresolvebasis(prob2,rstatus,cstatus);

Related topics
XPRSgetbasis, XPRSgetpresolvebasis, XPRSloadbasis.

Console and Library Functions 135 Xpress-Optimizer Reference Manual

XPRSloadpresolvedirs

Purpose
Loads directives into the presolved matrix.

Synopsis
int XPRS_CC XPRSloadpresolvedirs(XPRSprob prob, int ndir, const int

mcols[], const int mpri[], const char qbr[], const double dupc[],
const double ddpc[]);

Arguments
prob The current problem.

ndir Number of directives.

mcols Integer array of length ndir containing the column numbers. A negative value
indicates a set number (-1 being the first set, -2 the second, and so on).

mpri Integer array of length ndir containing the priorities for the columns or sets. May
be NULL if not required.

qbr Character array of length ndir specifying the branching direction for each column
or set:
U the entity is to be forced up;
D the entity is to be forced down;
N not specified.
May be NULL if not required.

dupc Double array of length ndir containing the up pseudo costs for the columns or
sets. May be NULL if not required.

ddpc Double array of length ndir containing the down pseudo costs for the columns or
sets. May be NULL if not required.

Example
The following loads priority directives for column 0 in the matrix:

int mcols[] = {0}, mpri[] = {1};
...
XPRSminim(prob,"");
XPRSloadpresolvedirs(prob,1,mcols,mpri,NULL,NULL,NULL);
XPRSminim(prob,"g");

Related topics
XPRSgetdirs, XPRSloaddirs.

Console and Library Functions 136 Xpress-Optimizer Reference Manual

XPRSloadqglobal

Purpose
Used to load a global problem with quadratic objective coefficients in to the Optimizer data
structures. Integer, binary, partial integer, semi-continuous and semi-continuous integer vari-
ables can be defined, together with sets of type 1 and 2. The reference row values for the set
members are passed as an array rather than specifying a reference row.

Synopsis
int XPRS_CC XPRSloadqglobal(XPRSprob prob, const char *probname, int

ncol, int nrow, const char qrtype[], const double rhs[], const
double range[], const double obj[], const int mstart[], const int
mnel[], const int mrwind[], const double dmatval[], const double
dlb[], const double dub[], const int nqtr, const int mqc1[], const
int mqc2[], const double dqe[], const int ngents, const int nsets,
const char qgtype[], const int mgcols[], const double dlim[],
const char qstype[], const int msstart[], const int mscols[],
const double dref[]);

Arguments
prob The current problem.

probname A string of up to 200 characters containing a name for the problem.

ncol Number of structural columns in the matrix.

nrow Number of rows in the matrix (not including the objective). Objective coefficients
must be supplied in the obj array, and the objective function should not be in-
cluded in any of the other arrays.

qrtype Character array of length nrow containing the row type:
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients. The right
hand side value for a range row gives the upper bound on the row.

range Double array of length nrow containing the range values for range rows. The values
in the range array will only be read for R type rows. The entries for other type rows
will be ignored. May be NULL if not required. The lower bound on a range row
is the right hand side value minus the range value. The sign of the range value is
ignored - the absolute value is used in all cases.

obj Double array of length ncol containing the objective function coefficients.

mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start
of the elements for each column. This array is of length ncol or, if mnel is NULL,
length ncol+1.

mnel Integer array of length ncol containing the number of nonzero elements in each
column. May be NULL if not required. This array is not required if the non-zero
coefficients in the mrwind and dmatval arrays are continuous, and the mstart
array has ncol+1 entries as described above. It may be NULL if not required.

mrwind Integer arrays containing the row indices for the nonzero elements in each col-
umn. If the indices are input contiguously, with the columns in ascending order,
then the length of mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL,
mstart[ncol].

dmatval Double array containing the nonzero element values length as for mrwind.

dlb Double array of length ncol containing the lower bounds on the columns. Use
XPRS_MINUSINFINITY to represent a lower bound of minus infinity.

dub Double array of length ncol containing the upper bounds on the columns. Use
XPRS_PLUSINFINITY to represent an upper bound of plus infinity.

Console and Library Functions 137 Xpress-Optimizer Reference Manual

nqtr Number of quadratic terms.

mqc1 Integer array of size nqtr containing the column index of the first variable in each
quadratic term.

mqc2 Integer array of size nqtr containing the column index of the second variable in
each quadratic term.

dqe Double array of size nqtr containing the quadratic coefficients.

ngents Number of binary, integer, semi-continuous, semi-continuous integer and partial
integer entities.

nsets Number of SOS1 and SOS2 sets.

qgtype Character array of length ngents containing the entity types:
B binary variables;
I integer variables;
P partial integer variables;
S semi-continuous variables;
R semi-continuous integers.

mgcols Integer array length ngents containing the column indices of the global entities.

dlim Double array length ngents containing the integer limits for the partial integer
variables and lower bounds for semi-continuous and semi-continuous integer vari-
ables (any entries in the positions corresponding to binary and integer variables will
be ignored). May be NULL if not required.

qstype Character array of length nsets containing:
1 SOS1 type sets;
2 SOS2 type sets.
May be NULL if not required.

msstart Integer array containing the offsets in the mscols and dref arrays indicating the
start of the sets. This array is of length nsets+1, the last member containing the
offset where set nsets+1 would start. May be NULL if not required.

mscols Integer array of length msstart[nsets]-1 containing the columns in each set.
May be NULL if not required.

dref Double array of length msstart[nsets]-1 containing the reference row entries
for each member of the sets. May be NULL if not required.

Related controls

Integer

EXTRACOLS Number of extra columns to be allowed for.

EXTRAELEMS Number of extra matrix elements to be allowed for.

EXTRAMIPENTS Number of extra global entities to be allowed for.

EXTRAPRESOLVE Number of extra elements to allow for in presolve.

EXTRAROWS Number of extra rows to be allowed for.

KEEPNROWS Status for nonbinding rows.

SCALING Type of scaling.

Double

MATRIXTOL Zero tolerance on matrix elements.

SOSREFTOL Minimum gap between reference row entries.

Example
Minimize -6x1 + 2x1

2 - 2x1x2 + 2x2
2 subject to x1 + x2 ≤ 1.9, where x1 must be an integer:

int nrow = 1, ncol = 2, nquad = 3;
int mstart[] = {0, 1, 2};
int mrwind[] = {0, 0};
double dmatval[] = {1, 1};
double rhs[] = {1.9};

Console and Library Functions 138 Xpress-Optimizer Reference Manual

char qrtype[] = {"L"};
double lbound[] = {0, 0};
double ubound[] = {XPRS_PLUSINFINITY, XPRS_PLUSINFINITY};

double obj[] = {-6, 0};
int mqc1[] = {0, 0, 1};
int mqc2[] = {0, 1, 1};
double dquad[] = {4, -2, 4};

int ngents = 1, nsets = 0;
int mgcols[] = {0};
char qgtype[]={’I’};

double *primal, *dual;

primal = malloc(ncol*sizeof(double));
dual = malloc(nrow*sizeof(double));
...
XPRSloadqglobal(prob, "myprob", ncol, nrow, qrtype, rhs,

NULL, obj, mstart, NULL, mrwind,
dmatval, lbound, ubound, nquad, mqc1, mqc2,
dquad, ngents, nsets, qgtype, mgcols, NULL,
NULL, NULL, NULL, NULL)

Further information

1. The objective function is of the form c’x+x’Qx where Q is positive semi-definite for minimiza-
tion problems and negative semi-definite for maximization problems. If this is not the case the
optimization algorithms may converge to a local optimum or may not converge at all. Note
that only the upper or lower triangular part of the Q matrix is specified.

2. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0
to ncol-1 respectively.

3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Op-
timizer library header file.

Related topics
XPRSaddsetnames, XPRSloadglobal, XPRSloadlp, XPRSloadqp, XPRSreadprob.

Console and Library Functions 139 Xpress-Optimizer Reference Manual

XPRSloadqp

Purpose
Used to load a quadratic problem into the Optimizer data structure. Such a problem may have
quadratic terms in its objective function, although not in its constraints.

Synopsis
int XPRS_CC XPRSloadqp(XPRSprob prob, const char *probname, int ncol,

int nrow, const char qrtype[], const double rhs[], const double
range[], const double obj[], const int mstart[], const int mnel[],
const int mrwind[], const double dmatval[], const double dlb[],
const double dub[], int nqtr, const int mqc1[], const int mqc2[],
const double dqe[]);

Arguments
prob The current problem.

probname A string of up to 200 characters containing a names for the problem.

ncol Number of structural columns in the matrix.

nrow Number of rows in the matrix (not including the objective row). Objective coeffi-
cients must be supplied in the obj array, and the objective function should not be
included in any of the other arrays.

qrtype Character array of length nrow containing the row types:
L indicates a ≤ constraint;
E indicates an = constraint;
G indicates a ≥ constraint;
R indicates a range constraint;
N indicates a nonbinding constraint.

rhs Double array of length nrow containing the right hand side coefficients of the rows.
The right hand side value for a range row gives the upper bound on the row.

range Double array of length nrow containing the range values for range rows. Values for
all other rows will be ignored. May be NULL if there are no ranged constraints. The
lower bound on a range row is the right hand side value minus the range value.
The sign of the range value is ignored - the absolute value is used in all cases.

obj Double array of length ncol containing the objective function coefficients.

mstart Integer array containing the offsets in the mrwind and dmatval arrays of the start
of the elements for each column. This array is of length ncol or, if mnel is NULL,
length ncol+1. If mnel is NULL the extra entry of mstart, mstart[ncol], con-
tains the position in the mrwind and dmatval arrays at which an extra column
would start, if it were present. In C, this value is also the length of the mrwind and
dmatval arrays.

mnel Integer array of length ncol containing the number of nonzero elements in each
column. May be NULL if all elements are contiguous and mstart[ncol] contains
the offset where the elements for column ncol+1 would start. This array is not
required if the non-zero coefficients in the mrwind and dmatval arrays are contin-
uous, and the mstart array has ncol+1 entries as described above. It may be NULL
if not required.

mrwind Integer array containing the row indices for the nonzero elements in each col-
umn. If the indices are input contiguously, with the columns in ascending order,
the length of the mrwind is mstart[ncol-1]+mnel[ncol-1] or, if mnel is NULL,
mstart[ncol].

dmatval Double array containing the nonzero element values; length as for mrwind.

dlb Double array of length ncol containing the lower bounds on the columns. Use
XPRS_MINUSINFINITY to represent a lower bound of minus infinity.

dub Double array of length ncol containing the upper bounds on the columns. Use
XPRS_PLUSINFINITY to represent an upper bound of plus infinity.

nqtr Number of quadratic terms.

Console and Library Functions 140 Xpress-Optimizer Reference Manual

mqc1 Integer array of size nqtr containing the column index of the first variable in each
quadratic term.

mqc2 Integer array of size nqtr containing the column index of the second variable in
each quadratic term.

dqe Double array of size nqtr containing the quadratic coefficients.

Related controls

Integer

EXTRACOLS Number of extra columns to be allowed for.

EXTRAELEMS Number of extra matrix elements to be allowed for.

EXTRAPRESOLVE Number of extra elements to allow for in presolve.

EXTRAROWS Number of extra rows to be allowed for.

KEEPNROWS Status for nonbinding rows.

SCALING Type of scaling.
Double

MATRIXTOL Zero tolerance on matrix elements.

Example
Minimize -6x1 + 2x1

2 - 2x1x2 + 2x2
2 subject to x1 + x2 ≤ 1.9:

int nrow = 1, ncol = 2, nquad = 3;
int mstart[] = {0, 1, 2};
int mrwind[] = {0, 0};
double dmatval[] = {1, 1};
double rhs[] = {1.9};
char qrtype[] = {"L"};
double lbound[] = {0, 0};
double ubound[] = {XPRS_PLUSINFINITY,XPRS_PLUSINFINITY};

double obj[] = {-6, 0};
int mqc1[] = {0, 0, 1};
int mqc2[] = {0, 1, 1};
double dquad[] = {4, -2, 4};

double *primal, *dual;

primal = malloc(ncol*sizeof(double));
dual = malloc(nrow*sizeof(double));
...
XPRSloadqp(prob, "example", ncol, nrow, qrtype, rhs,

NULL, obj, mstart, NULL, mrwind, dmatval,
lbound, ubound, nquad, mqc1, mqc2, dquad)

Further information

1. The objective function is of the form c’x+x’Qx where Q is positive semi-definite for minimiza-
tion problems and negative semi-definite for maximization problems. If this is not the case the
optimization algorithms may converge to a local optimum or may not converge at all. Note
that only the upper or lower triangular part of the Q matrix is specified.

2. The row and column indices follow the usual C convention of going from 0 to nrow-1 and 0
to ncol-1 respectively.

3. The double constants XPRS_PLUSINFINITY and XPRS_MINUSINFINITY are defined in the Op-
timizer library header file.

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSreadprob.

Console and Library Functions 141 Xpress-Optimizer Reference Manual

XPRSloadsecurevecs

Purpose
Allows the user to mark rows and columns in order to prevent the presolve removing these
rows and columns from the matrix.

Synopsis
int XPRS_CC XPRSloadsecurevecs(XPRSprob prob, int nr, int nc, int mrow[],

int mcol[]);

Arguments
prob The current problem.

nr Number of rows to be marked.

nc Number of columns to be marked.

mrow Integer array of length nr containing the rows to be marked. May be NULL if not
required.

mcol Integer array of length nc containing the columns to be marked. May be NULL if
not required.

Example
This sets the first six rows and the first four columns to not be removed during presolve.

int mrow[] = {0,1,2,3,4,5};
int mcol[] = {0,1,2,3};
...
XPRSreadprob(prob,"myprob","");
XPRSloadsecurevecs(prob,6,4,mrow,mcol);
XPRSminim(prob,"");

Related topics
5.2.

Console and Library Functions 142 Xpress-Optimizer Reference Manual

XPRSmaxim, XPRSminim MAXIM, MINIM

Purpose
Begins a search for the optimal LP solution.

Synopsis
int XPRS_CC XPRSmaxim(XPRSprob prob, const char *flags);
int XPRS_CC XPRSminim(XPRSprob prob, const char *flags);
MAXIM [-flags]
MINIM [-flags]

Arguments
prob The current problem.

flags Flags to pass to XPRSmaxim (MAXIM) or XPRSminim (MINIM). The default is "" or
NULL, in which case the algorithm used is determined by the DEFAULTALG control.
If the argument includes:
b the model will be solved using the Newton barrier method;
p the model will be solved using the primal simplex algorithm;
d the model will be solved using the dual simplex algorithm;
l (lower case L), the model will be solved as a linear model ignoring the dis-

creteness of global variables;
n (lower case N), the network part of the model will be identified and solved

using the network simplex algorithm;
g the global model will be solved, calling XPRSglobal (GLOBAL).
Certain combinations of options may be used where this makes sense so, for exam-
ple, pg will solve the LP with the primal algorithm and then go on to perform the
global search.

Related controls

Integer

AUTOPERTURB Whether automatic perturbation is performed.

BARITERLIMIT Maximum number of Newton Barrier iterations.

BARORDER Ordering algorithm for the Cholesky factorization.

BAROUTPUT Newton barrier: level of solution output.

BARTHREADS Max number of threads to run.

BIGMMETHOD Specifies "Big M" method, or phaseI/phaseII.

CACHESIZE Cache size in Kbytes for the Newton barrier.

CPUTIME 1 for CPU time; 0 for elapsed time.

CRASH Type of crash.

CROSSOVER Newton barrier crossover control.

DEFAULTALG Algorithm to use with the tree search.

DENSECOLLIMIT Columns with this many elements are considered dense.

DUALGRADIENT Pricing method for the dual algorithm.

INVERTFREQ Invert frequency.

INVERTMIN Minimum number of iterations between inverts.

KEEPBASIS Whether to use previously loaded basis.

LPITERLIMIT Iteration limit for the simplex algorithm.

LPLOG Frequency and type of simplex algorithm log.

MAXTIME Maximum time allowed.

PRESOLVE Degree of presolving to perform.

PRESOLVEOPS Specifies the operations performed during presolve.

PRICINGALG Type of pricing to be used.

REFACTOR Indicates whether to re-factorize the optimal basis.

Console and Library Functions 143 Xpress-Optimizer Reference Manual

TRACE Control of the infeasibility diagnosis during presolve.

Double

BARDUALSTOP Newton barrier tolerance for dual infeasibilities.

BARGAPSTOP Newton barrier tolerance for relative duality gap.

BARPRIMALSTOP Newton barrier tolerance for primal infeasibilities.

BARSTEPSTOP Newton barrier minimal step size.

BIGM Infeasibility penalty.

CHOLESKYTOL Zero tolerance in the Cholesky decomposition.

ELIMTOL Markowitz tolerance for elimination phase of presolve.

ETATOL Zero tolerance on eta elements.

FEASTOL Zero tolerance on RHS.

MARKOWITZTOL Markowitz tolerance for the factorization.

MIPABSCUTOFF Cutoff set after an LP optimizer command. (Dual only)

OPTIMALITYTOL Reduced cost tolerance.

PENALTY Maximum absolute penalty variable coefficient.

PERTURB Perturbation value.

PIVOTTOL Pivot tolerance.

PPFACTOR Partial pricing candidate list sizing parameter.

RELPIVOTTOL Relative pivot tolerance.

Example 1 (Library)

XPRSmaxim(prob,"b");

This maximizes the current problem using the Newton barrier method.

Example 2 (Console)or child::*[1]=child::file[1]

MINIM -g

This minimizes the current problem and commences the global search.

Further information

1. The algorithm used to optimize is determined by the DEFAULTALG control. By default, the dual
simplex is used for LP and MIP problems and the barrier is used for QP problems.

2. The d and p flags can be used with the n flag to complete the solution of the model with either
the dual or primal algorithms once the network algorithm has solved the network part of the
model.

3. The b flag cannot be used with the n flag.

4. The dual simplex algorithm is a two phase algorithm which can remove dual infeasibilities.

5. (Console) If the user prematurely terminates the solution process by typing CTRL-C, the iterative
procedure will terminate at the first "safe" point.

Related topics
XPRSglobal (GLOBAL), XPRSreadbasis (READBASIS), XPRSgoal (GOAL), 4, A.8.

Console and Library Functions 144 Xpress-Optimizer Reference Manual

XPRSobjsa

Purpose
Returns upper and lower sensitivity ranges for specified objective function coefficients. If the
objective coefficients are varied within these ranges the current basis remains optimal and the
reduced costs remain valid.

Synopsis
int XPRS_CC XPRSobjsa(XPRSprob prob, int nels, const int mindex[], double

lower[], double upper[]);

Arguments
prob The current problem.

nels Number of objective function coefficients whose sensitivity are sought.

mindex Integer array of length nels containing the indices of the columns whose objective
function coefficients sensitivity ranges are required.

lower Double array of length nels where the objective function lower range values are
to be returned.

upper Double array of length nels where the objective function upper range values are
to be returned.

Example
Here we obtain the objective function ranges for the three columns: 2, 6 and 8:

mindex[0] = 2; mindex[1] = 8; mindex[2] = 6;
XPRSobjsa(prob,3,mindex,lower,upper);

After which lower and upper contain:

lower[0] = 5.0; upper[0] = 7.0;
lower[1] = 3.8; upper[1] = 5.2;
lower[2] = 5.7; upper[2] = 1e+20;

Meaning that the current basis remains optimal when 5. 0 ≤ C2 ≤ 7. 0, 3. 8 ≤ C8 ≤ 5. 2 and
5. 7 ≤ C6, Ci being the objective coefficient of column i.

Further information
XPRSobjsa can only be called when an optimal solution to the current LP has been found. It
cannot be used when the problem is MIP presolved.

Related topics
XPRSrhssa.

Console and Library Functions 145 Xpress-Optimizer Reference Manual

XPRSpivot

Purpose
Performs a simplex pivot by bringing variable in into the basis and removing out.

Synopsis
int XPRS_CC XPRSpivot(XPRSprob prob, int in, int out);

Arguments
prob The current problem.

in Index of row or column to enter basis.

out Index of row or column to leave basis.

Error values
425 in is invalid (out of range or already basic).

426 out is invalid (out of range or not eligible, e.g. nonbasic, zero pivot, etc.).

Related controls

Double

PIVOTTOL Pivot tolerance.

RELPIVOTTOL Relative pivot tolerance.

Example
The following brings the 7th variable into the basis and removes the 5th:

XPRSpivot(prob,6,4)

Further information
Row indices are in the range 0 to ROWS-1, whilst columns are in the range ROWS+SPAREROWS
to ROWS+SPAREROWS+COLS-1.

Related topics
XPRSgetpivotorder, XPRSgetpivots.

Console and Library Functions 146 Xpress-Optimizer Reference Manual

XPRSpostsolve POSTSOLVE

Purpose
Postsolve the current matrix when it is in a presolved state.

Synopsis
int XPRS_CC XPRSpostsolve(XPRSprob prob);
POSTSOLVE

Argument
prob The current problem.

Further information
A problem is left in a presolved state whenever a LP or MIP optimization does not complete.
In these cases XPRSpostsolve (POSTSOLVE) can be called to get the problem back into its
original state.

Related topics
XPRSminim, XPRSmaxim

Console and Library Functions 147 Xpress-Optimizer Reference Manual

XPRSpresolvecut

Purpose
Presolves a cut formulated in terms of the original variables such that it can be added to a
presolved matrix.

Synopsis
int XPRS_CC XPRSpresolvecut(XPRSprob prob, char qrtype, double drhso, int

nzo, const int mcolso[], const double dvalo[], double *drhsp, int

*nzp, int mcolsp[], double dvalp[], int *status);

Arguments
prob The current problem.

qrtype The row type of the cut:
L indicates a ≤ cut;
E indicates a = cut;
G indicates a ≥ cut.

drhso The right-hand side constant of the cut to presolve.

nzo Number of elements in the mcolso and dvalo arrays.

mcolso Integer array of length nzo containing the column indices of the cut to presolve.

dvalo Double array of length nzo containing the non-zero coefficients of the cut to pre-
solve.

drhsp Pointer to the double where the presolved right-hand side will be returned.

nzp Pointer to the integer where the number of elements in the mcolsp and dvalp
arrays will be returned.

mcolsp Integer array which will be filled with the column indices of the presolved cut. It
must be allocated to hold at least COLS elements.

dvalp Double array which will be filled with the coefficients of the presolved cut. It must
be allocated to hold at least COLS elements.

status Status of the presolved cut:
0 The cut was successfully presolved;
1 Presolving the cut failed.

Related controls

Integer

PRESOLVE Turns presolve on or off.

PRESOLVEOPS Selects the presolve operations.

Example
Suppose we want to add the cut 2x1 + x2 ≤ 1 to our presolved matrix. This could be done in
the following way:

int mindo[] = { 1, 2 };
int dvalo[] = { 2.0, 1.0 };
char qrtype = "L";
double drhso = 1.0;
int nzp, status, mtype, mstart[2], *mindp;
double drhsp, *dvalp;
...
XPRSpresolvecut(prob, qrtype, drhso, 2, mindo, dvalo, &drhsp,

&nzp, mindp, dvalp, &status);
if (!status) {
mtype = 0;
mstart[0] = 0; mstart[1] = nzp;
XPRSaddcuts(prob, 1, &mtype, &qrtype, &drhsp, mstart, mindp,

dvalp);
}

Console and Library Functions 148 Xpress-Optimizer Reference Manual

Further information
The are certain presolve operations that can prevent presolving a cut successfully. These are
singleton column removal, duplicate column removal and variable eliminations. Thus, bits
0, 5 and 8 (total value 289) of PRESOLVEOPS should be cleared before calling XPRSminim or
XPRSmaxim on a matrix. Furthermore, bit 11 (value 2048) should be set to prevent some further
reductions that conflict with presolving cuts. A safe settting of PRESOLVEOPS is therefore 2270.

Related topics
XPRSaddcuts, XPRSstorecuts.

Console and Library Functions 149 Xpress-Optimizer Reference Manual

PRINTRANGE

Purpose
Writes the ranging information to the screen. The binary range file (.rng) must already exist,
created by XPRSrange (RANGE).

Synopsis
PRINTRANGE

Related controls

Integer

MAXPAGELINES Number of lines between page breaks.

Double

OUTPUTTOL Zero tolerance on print values.

Further information
See WRITEPRTRANGE for more information.

Related topics
XPRSgetcolrange, XPRSgetrowrange, XPRSrange (RANGE), XPRSwriteprtsol,
XPRSwriterange, A.5.

Console and Library Functions 150 Xpress-Optimizer Reference Manual

PRINTSOL

Purpose
Writes the current solution to the screen.

Synopsis
PRINTSOL

Related controls

Integer

MAXPAGELINES Number of lines between page breaks.

Double

OUTPUTTOL Zero tolerance on print values.

Further information
See WRITEPRTSOL for more information.

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSwriteprtsol.

Console and Library Functions 151 Xpress-Optimizer Reference Manual

QUIT

Purpose
Terminates the Console Optimizer, returning a zero exit code to the operating system. Alias
for EXIT.

Synopsis
QUIT

Example
The command is called simply as:

QUIT

Further information

1. Fatal error conditions return nonzero exit values which may be of use to the host operating
system. These are described in 9.

2. If you wish to return an exit code reflecting the final solution status, then use the STOP com-
mand instead.

Related topics
STOP, XPRSsave (SAVE).

Console and Library Functions 152 Xpress-Optimizer Reference Manual

XPRSrange RANGE

Purpose
Calculates the ranging information for a problem and saves it to the binary ranging file problem_-
name.rng.

Synopsis
int XPRS_CC XPRSrange(XPRSprob prob);
RANGE

Argument
prob The current problem.

Example 1 (Library)
This example computes the ranging information following optimization and outputs the solu-
tion to a file leonor.rrt:

XPRSreadprob(prob,"leonor","");
XPRSmaxim(prob,"");
XPRSrange(prob);
XPRSwriteprtrange(prob);

Example 2 (Console)
The following example is equivalent for the console, except the output is sent to the screen
instead of a file:

READPROB leonor
MAXIM
RANGE
PRINTRANGE

Further information

1. A basic optimal solution to the problem must be available, i.e. XPRSmaxim (MAXIM) or
XPRSminim (MINIM) must have been called (with crossover used if the Newton Barrier algo-
rithm is being used) and an optimal solution found.

2. The information calculated by XPRSrange (RANGE) enables the user to do sophisticated
postoptimal analysis of the problem. In particular, the user may find the ranges over
which the right hand sides can vary without the optimal basis changing, the ranges over
which the shadow prices hold, and the activities which limit these changes. See func-
tions XPRSgetcolrange, XPRSgetrowrange, XPRSwriteprtrange (WRITEPRTRANGE) and/or
XPRSwriterange (WRITERANGE) to obtain the values calculated

3. It is not impossible to range on a MIP problem. The global entities should be fixed us-
ing XPRSfixglobal (FIXGLOBAL) first and the remaining LP resolved - see XPRSfixglobal
(FIXGLOBAL).

Related topics
XPRSgetcolrange, XPRSgetrowrange, XPRSwriteprtrange (WRITEPRTRANGE),
XPRSwriterange (WRITERANGE).

Console and Library Functions 153 Xpress-Optimizer Reference Manual

XPRSreadbasis READBASIS

Purpose
Instructs the Optimizer to read in a previously saved basis from a file.

Synopsis
int XPRS_CC XPRSreadbasis(XPRSprob prob, const char *filename, const char

*flags);
READBASIS [-flags] [filename]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name from which the basis is
to be read. If omitted, the default problem_name is used with a .bss extension.

flags Flags to pass to XPRSreadbasis (READBASIS):
i output the internal presolved basis.
t input a compact advanced form of the basis;

Example 1 (Library)
If an advanced basis is available for the current problem the Optimizer input might be:

XPRSreadprob(prob,"filename","");
XPRSreadbasis(prob,"","");
XPRSmaxim(prob,"g");

This reads in a matrix file, inputs an advanced starting basis and maximizes the MIP.

Example 2 (Console)
An equivalent set of commands for the Console user may look like:

READPROB
READBASIS
MAXIM -g

Further information

1. The only check done when reading compact basis is that the number of rows and columns in
the basis agrees with the current number of rows and columns.

2. XPRSreadbasis (READBASIS) will read the basis for the original problem even if the matrix
has been presolved. The Optimizer will read the basis, checking that it is valid, and will display
error messages if it detects inconsistencies.

Related topics
XPRSloadbasis, XPRSwritebasis (WRITEBASIS).

Console and Library Functions 154 Xpress-Optimizer Reference Manual

XPRSreadbinsol READBINSOL

Purpose
Reads a solution from a binary solution file.

Synopsis
int XPRS_CC XPRSreadbinsol(XPRSprob prob, const char *filename, const

char *flags);
READBINSOL [-flags] [filename]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name from which the solution
is to be read. If omitted, the default problem_name is used with a .sol extension.

flags Flags to pass to XPRSreadbinsol (READBINSOL):
m load the solution as a solution for the MIP.

Example 1 (Library)
A previously saved solution can be loaded into memory and a print file created from it with
the following commands:

XPRSreadprob(prob, "myprob", "");
XPRSreadbinsol(prob, "", "");
XPRSwriteprtsol(prob, "", "");

Example 2 (Console)
An equivalent set of commands to the above for console users would be:

READPROB
READBINSOL
WRITEPRTSOL

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSwritebinsol (WRITEBINSOL), XPRSwritesol
(WRITESOL), XPRSwriteprtsol (WRITEPRTSOL).

Console and Library Functions 155 Xpress-Optimizer Reference Manual

XPRSreaddirs READDIRS

Purpose
Reads a directives file to help direct the global search.

Synopsis
int XPRS_CC XPRSreaddirs(XPRSprob prob, const char *filename);
READDIRS [filename]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name from which the directives
are to be read. If omitted (or NULL), the default problem_name is used with a .dir
extension.

Related controls

Double

PSEUDOCOST Default pseudo cost in node degradation estimation.

Example 1 (Library)
The following example reads in directives from the file sue.dir for use with the problem,
steve:

XPRSreadprob(prob,"steve","");
XPRSreaddirs(prob,"sue");
XPRSminim(prob,"g");

Example 2 (Console)or child::*[1]=child::file[1]

READPROB
READDIRS
MINIM -g

This is the most usual form at the console. It will attempt to read in a directives file with the
current problem name and an extension of .dir.

Further information

Console and Library Functions 156 Xpress-Optimizer Reference Manual

1. Directives cannot be read in after a model has been presolved, so unless presolve has been
disabled by setting PRESOLVE to 0, this command must be issued before XPRSmaxim (MAXIM)
or XPRSminim (MINIM).

2. Directives can be given relating to priorities, forced branching directions, pseudo costs and
model cuts. There is a priority value associated with each global entity. The lower the number,
the more likely the entity is to be selected for branching; the higher, the less likely. By default,
all global entities have a priority value of 500 which can be altered with a priority entry in
the directives file. In general, it is advantageous for the entity’s priority to reflect its relative
importance in the model. Priority entries with values in excess of 1000 are illegal and are
ignored. A full description of the directives file format may be found in A.6.

3. By default, XPRSglobal (GLOBAL) will explore the branch expected to yield the best integer
solution from each node, irrespective of whether this forces the global entity up or down.
This can be overridden with an UP or DN entry in the directives file, which forces XPRSglobal
(GLOBAL) to branch up first or down first on the specified entity.

4. Pseudo-costs are estimates of the unit cost of forcing an entity up or down. By default
XPRSglobal (GLOBAL) uses dual information to calculate estimates of the unit up and down
costs and these are added to the default pseudo costs which are set to the PSEUDOCOST control.
The default pseudo costs can be overridden by a PU or PD entry in the directives file.

5. If model cuts are used, then the specified constraints are removed from the matrix and added
to the Optimizer cut pool, and only put back in the matrix when they are violated by an LP
solution at one of the nodes in the global search.

6. If creating a directives file by hand, wild cards can be used to specify several vectors at once,
for example PR x1* 2 will give all global entities whose names start with x1 a priority of 2.

Related topics
XPRSloaddirs, A.6.

Console and Library Functions 157 Xpress-Optimizer Reference Manual

XPRSreadprob READPROB

Purpose
Reads an (X)MPS or LP format matrix from file.

Synopsis
int XPRS_CC XPRSreadprob(XPRSprob prob, const char *probname, const char

*flags);
READPROB [-flags] [probname]

Arguments
prob The current problem.

probname The file name, a string of up to 200 characters from which the problem is to be
read. If omitted (console users only), the default problem_name is used with various
extensions - see below.

flags Flags to be passed:
l only probname.lp is searched for;
b read in a problem in the mp-model binary interface file format.

The files probname.bif and probname.sol, generated by mp-model’s
BIFGENERATE command, are required.

z read input file in gzip format from a .gz file [Console only]

Related controls

Integer

EXTRACOLS Number of extra columns to be allowed for.

EXTRAELEMS Number of extra matrix elements to be allowed for.

EXTRAMIPENTS Number of extra global entities to be allowed for.

EXTRAPRESOLVE Number of extra elements to allow for in presolve.

EXTRAROWS Number of extra rows to be allowed for.

KEEPNROWS Status for nonbinding rows.

MPSECHO Whether MPS comments are to be echoed.

MPSERRIGNORE Number of minor errors to ignore.

MPSFORMAT Specifies format of MPS files.

MPSNAMELENGTH Maximum name length in characters.

SCALING Type of scaling.

Double

MATRIXTOL Zero tolerance on matrix elements.

SOSREFTOL Minimum gap between reference row entries.

String

MPSBOUNDNAME The active bound name.

MPSOBJNAME Name of objective function row.

MPSRANGENAME Name of range.

MPSRHSNAME Name of right hand side.

Example 1 (Library)

XPRSreadprob(prob,"myprob","");

This instructs the Optimizer to read an MPS format matrix from the first file found out of
myprob.mat, myprob.mps or (in LP format) myprob.lp.

Example 2 (Console)or child::*[1]=child::file[1]

READPROB -l

Console and Library Functions 158 Xpress-Optimizer Reference Manual

This instructs the Optimizer to read an LP format matrix from the file problem_name .lp.

Further information

1. If no flags are given, file types are searched for in the order: .mat, .mps, .lp. Matrix files are
assumed to be in XMPS or MPS format unless their file extension is .lp in which case they must
be LP files.

2. If probname has been specified, the problem name is changed to probname, ignoring any
extension.

3. XPRSreadprob (READPROB) will take as the objective function the first N type row in the
matrix, unless the string parameter MPSOBJNAME has been set, in which case the objective row
sought will be the one named by MPSOBJNAME. Similarly, if non-blank, the string parameters
MPSRHSNAME, MPSBOUNDNAME and MPSRANGENAME specify the right hand side, bound and
range sets to be taken. For example:
MPSOBJNAME="Cost"
MPSRHSNAME="RHS 1"
READPROB

The treatment of N type rows other than the objective function depends on the KEEPNROWS
control. If KEEPNROWS is 1 the rows and their elements are kept in memory; if it is 0 the rows
are retained, but their elements are removed; and if it is -1 the rows are deleted entirely. The
performance impact of retaining such N type rows will be small unless the presolve has been
disabled by setting PRESOLVE to 0 prior to optimization.

4. The Optimizer checks that the matrix file is in a legal format and displays error messages if it
detects errors. When the Optimizer has read and verified the problem, it will display summary
problem statistics.

5. By default, the MPSFORMAT control is set to -1 and XPRSreadprob (READPROB) determines
automatically whether the MPS files are in free or fixed format. If MPSFORMAT is set to 0, fixed
format is assumed and if it is set to 1, free format is assumed. Fields in free format MPS files are
delimited by one or more blank characters. The keywords NAME, ROWS, COLUMNS, QUADOBJ,
SETS, RHS, RANGES and BOUNDS must start in column one and no vector name may contain
blanks. If a special ordered set is specified with a reference row, its name may not be the same
as that of a column. Note that numeric values which contain embedded spaces (for example
after unary minus sign) will not be read correctly unless MPSFORMAT is set to 0.

6. If the problem is not to be scaled automatically, set the parameter SCALING to 0 before issuing
the XPRSreadprob (READPROB) command.

7. Long MPS vector names are supported in MPS files, LP files, directives files and basis files. The
MPSNAMELENGTH control specifies the maximum number of characters in MPS vector names
and must be set before the file is read in. Internally it is rounded up to the smallest multiple
of 8, and must not exceed 64.

Related topics
XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp.

Console and Library Functions 159 Xpress-Optimizer Reference Manual

XPRSrestore RESTORE

Purpose
Restores the Optimizer’s data structures from a file created by XPRSsave (SAVE). Optimization
may then recommence from the point at which the file was created.

Synopsis
int XPRS_CC XPRSrestore(XPRSprob prob, const char *probname);
RESTORE [probname]

Arguments
prob The current problem.

probname A string of up to 200 characters containing the problem name.

Example 1 (Library)

XPRSrestore(prob,"")

Example 2 (Console)or child::*[1]=child::file[1]

RESTORE

Further information

1. This routine restores the data structures from the file problem_name.svf that was created by
a previous execution of XPRSsave (SAVE). The file problem_name.sol is also required and,
if recommencing optimization in a global search, the files problem_name.glb and problem_-
name.ctp are required too. Note that .svf files are particular to the release of the Optimizer
used to create them. They can only be read using the same release Optimizer as used to create
them.

2. (Console) The main use for XPRSsave (SAVE) and XPRSrestore (RESTORE) is to enable the
user to interrupt a long optimization run using CTRL-C, and save the Optimizer status with the
ability to restart it later from where it left off. It might also be used to save the optimal status
of a problem when the user then intends to implement several uses of XPRSalter (ALTER) on
the problem, re-optimizing each time from the saved status.

Related topics
XPRSalter (ALTER), XPRSsave (SAVE).

Console and Library Functions 160 Xpress-Optimizer Reference Manual

XPRSrhssa

Purpose
Returns upper and lower sensitivity ranges for specified right hand side (RHS) function coeffi-
cients. If the RHS coefficients are varied within these ranges the current basis remains optimal
and the reduced costs remain valid.

Synopsis
int XPRS_CC XPRSrhssa(XPRSprob prob, int nels, const int mindex[], double

lower[], double upper[]);

Arguments
prob The current problem.

nels Integer and number of RHS coefficients whose sensitivity ranges are sought.

mindex Integer array of length nels containing the indices of the rows whose RHS coeffi-
cients sensitivity ranges are required.

lower Double array of length nels where the RHS lower range values are to be returned.

upper Double array of length nels where the RHS upper range values are to be returned.

Example
Here we obtain the RHS function ranges for the three columns: 2, 6 and 8:

mindex[0] = 2; mindex[1] = 8; mindex[2] = 6;
XPRSrhssa(prob,3,mindex,lower,upper);

After which lower and upper contain:

lower[0] = 5.0; upper[0] = 7.0;
lower[1] = 3.8; upper[1] = 5.2;
lower[2] = 5.7; upper[2] = 1e+20;

Meaning that the current basis remains optimal when 5.0 ≤ rhs2, 3.8 ≤ rhs8 ≤ 5.2 and 5.7 ≤
rhs6, rhsi being the RHS coefficient of row i.

Further information
XPRSrhssa can only be called when an optimal solution to the current LP has been found. It
cannot be used when the problem is MIP presolved.

Related topics
XPRSobjsa.

Console and Library Functions 161 Xpress-Optimizer Reference Manual

XPRSsave SAVE

Purpose
Saves the current data structures, i.e. matrices, control settings and problem attribute settings
to file and terminates the run so that optimization can be resumed later.

Synopsis
int XPRS_CC XPRSsave(XPRSprob prob);
SAVE

Argument
prob The current problem.

Example 1 (Library)

XPRSsave(prob);

Example 2 (Console)or child::*[1]=child::file[1]

SAVE

Further information
The data structures are written to the file problem_name.svf. Optimization may recom-
mence from the same point when the data structures are restored by a call to XPRSrestore
(RESTORE). Under such circumstances, the file problem_name.sol and, if a branch and bound
search is in progress, the global files problem_name.glb and problem_name.ctp are also re-
quired. These files will be present after execution of XPRSsave (SAVE), but will be modified
by subsequent optimization, so no optimization calls may be made after the call to XPRSsave
(SAVE). Note that the .svf files created are particular to the release of the Optimizer used to
create them. They can only be read using the same release Optimizer as used to create them.

Related topics
XPRSrestore (RESTORE).

Console and Library Functions 162 Xpress-Optimizer Reference Manual

XPRSscale SCALE

Purpose
Re-scales the current matrix.

Synopsis
int XPRS_CC XPRSscale(XPRSprob prob, const int mrscal[], const int

mcscal[]);
SCALE

Arguments
prob The current problem.

mrscal Integer array of size ROWS containing the powers of 2 with which to scale the rows,
or NULL if not required.

mcscal Integer array of size COLS containing the powers of 2 with which to scale the
columns, or NULL if not required.

Related controls

Integer

SCALING Type of scaling.

Example 1 (Library)

XPRSreadprob(prob,"jovial","");
XPRSalter(prob,"serious");
XPRSscale(prob,NULL,NULL);
XPRSminim(prob,"");

This reads the MPS file jovial.mat, modifies it according to instructions in the file serious.alt,
rescales the matrix and seeks the minimum objective value.

Example 2 (Console)
The equivalent set of commands for the Console user would be:

READPROB jovial
ALTER serious
SCALE
MINIM

Further information

1. If mrscal and mcscal are both non-NULL then they will be used to scale the matrix. Other-
wise the matrix will be scaled according to the control SCALING. This routine may be useful
when the current matrix has been modified by calls to routines such as XPRSalter (ALTER),
XPRSchgmcoef and XPRSaddrows.

2. XPRSscale (SCALE) cannot be called if the current matrix is presolved.

Related topics
XPRSalter (ALTER), XPRSreadprob (READPROB).

Console and Library Functions 163 Xpress-Optimizer Reference Manual

XPRSsetbranchbounds

Purpose
Specifies the bounds previously stored using XPRSstorebounds that are to be applied in order
to branch on a user global entity. This routine can only be called from the user separate callback
function, XPRSsetcbsepnode.

Synopsis
int XPRS_CC XPRSsetbranchbounds(XPRSprob prob, const void *mindex);

Arguments
prob The current problem.

mindex Pointer previously defined in a call to XPRSstorebounds that references the stored
bounds to be used to separate the node.

Example
This example defines a user separate callback function for the global search:

XPRSsetcbsepnode(prob,nodeSep,void);

where the function nodeSep is defined as follows:

int nodeSep(XPRSprob prob, void *obj int ibr, int iglsel,
int ifup, double curval)

{
void *index;
double dbd;

if(ifup)
{
dbd = ceil(curval);
XPRSstorebounds(prob, 1, &iglsel, "L", &dbd, &index);

}
else
{
dbd = floor(curval);
XPRSstorebounds(prob, 1, &iglsel, "U", &dbd, &index);

}
XPRSsetbranchbounds(prob, index);
return 0;

}

Related topics
XPRSloadcuts, XPRSsetcbestimate, XPRSsetcbsepnode, XPRSstorebounds, 5.4.

Console and Library Functions 164 Xpress-Optimizer Reference Manual

XPRSsetbranchcuts

Purpose
Specifies the pointers to cuts in the cut pool that are to be applied in order to branch on a
user global entity. This routine can only be called from the user separate callback function,
XPRSsetcbsepnode.

Synopsis
int XPRS_CC XPRSsetbranchcuts(XPRSprob prob, int ncuts, XPRScut

mindex[]);

Arguments
prob The current problem.

ncuts Number of cuts to apply.

mindex Array containing the pointers to the cuts in the cut pool that are to be applied.

Related topics
XPRSgetcpcutlist, XPRSloadcuts, XPRSsetcbestimate, XPRSsetcbsepnode,
XPRSstorecuts, 5.4.

Console and Library Functions 165 Xpress-Optimizer Reference Manual

XPRSsetcbbarlog

Purpose
Declares a barrier log callback function, called at each iteration during the interior point algo-
rithm.

Synopsis
int XPRS_CC XPRSsetcbbarlog (XPRSprob prob, int (XPRS_CC *fubl)(XPRSprob

my_prob, void *my_object), void *object);

Arguments
prob The current problem.

fubl The callback function itself. This takes two arguments, my_prob and my_object,
and has an integer return value. If the value returned by fubl is nonzero, the
solution process will be interrupted. This function is called at every barrier iteration.

my_prob The problem passed to the callback function, fubl.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbbarlog.

object A user-defined object to be passed to the callback function, fubl.

Example
This simple example prints a line to the screen for each iteration of the algorithm.

XPRSsetcbbarlog(prob,barLog,NULL);
XPRSmaxim(prob,"b");

The callback function might resemble:

int XPRS_CC barLog(XPRSprob prob, void *object)
{
printf("Next barrier iteration\n");

}

Further information
If the callback function returns a nonzero value, the Optimizer run will be interrupted.

Related topics
XPRSsetcbgloballog, XPRSsetcblplog, XPRSsetcbmessage.

Console and Library Functions 166 Xpress-Optimizer Reference Manual

XPRSsetcbchgbranch

Purpose
Declares a branching variable callback function, called every time a new branching variable is
set or selected during the MIP search.

Synopsis
int XPRS_CC XPRSsetcbchgbranch(XPRSprob prob, void (XPRS_CC

*fucb)(XPRSprob my_prob, void *my_object, int *entity, int *up,
double *estdeg), void *object);

Arguments
prob The current problem.

fucb The callback function, which takes five arguments, my_prob, my_object, entity,
up and estdeg, and has no return value. This function is called every time a new
branching variable or set is selected.

my_prob The problem passed to the callback function, fucb.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbchgbranch.

entity A pointer to the variable or set on which to branch. Ordinary global variables are
identified by their column index, i.e. 0, 1,...(COLS- 1) and by their set index, i.e. 0,
1,...,(SETS- 1).

up If entity is a variable, this is 1 if the upward branch is to be made first, or 0
otherwise. If entity is a set, this is 3 if the upward branch is to be made first, or 2
otherwise.

estdeg The estimated degradation at the node.

object A user-defined object to be passed to the callback function, fucb.

Example
The following example demonstrates use of the branching rule to branch on the most violated
integer of binary during the global search:

typedef struct {
double* soln;
char* type;
double tol;
int cols;

} solutionData;
...
solutionData nodeData;
...
XPRSminim(prob,"");
XPRSsetintcontrol(prob, XPRS_MIPLOG, 3);
XPRSsetintcontrol(prob, XPRS_CUTSTRATEGY, 0);

/* setup data */
XPRSgetintattrib(prob, XPRS_COLS, &(nodeData.cols));
XPRSgetdblcontrol(prob, XPRS_MATRIXTOL, &(nodeData.tol));
nodeData.soln =
(double*) malloc(sizeof(double)*nodeData.cols);

nodeData.type =
(char*) malloc(sizeof(char)*nodeData.cols);

XPRSgetcoltype(prob, nodeData.type, 0, nodeData.cols-1);

XPRSsetcbchgbranch(prob, varSelection, &nodeData);
XPRSglobal(prob);

The callback function might resemble:

Console and Library Functions 167 Xpress-Optimizer Reference Manual

void XPRS_CC varSelection(XPRSprob prob, void* vdata,
int *iColumn, int *iUp, double *dEstimate)

{
double dDist, dUpDist, dDownDist, dGreatestDist=0;
int iCol;

solutionData *nodeData = (solutionData*) vdata;
XPRSgetpresolvesol(prob, (*nodeData).soln, NULL, NULL,

NULL);
for(iCol=0;iCol<(*nodeData).cols;iCol++)
if((*nodeData).type[iCol]==’I’ ||

(*nodeData).type[iCol]==’B’)
{
dUpDist=ceil((*nodeData).soln[iCol]) -

(*nodeData).soln[iCol];
dDownDist = (*nodeData).soln[iCol] -

floor((*nodeData).soln[iCol]);
dDist = (dUpDist>dDownDist)?dUpDist:dDownDist;
if(dDownDist > (*nodeData).tol &&

dUpDist > (*nodeData).tol)
if(dDist > dGreatestDist)
{

*iColumn = iCol;
dGreatestDist = dDist;

}
}

}

Further information
The arguments initially contain the default values of the branching variable, branching vari-
able, branching direction and estimated degradation. If they are changed then the Optimizer
will use the new values, if they are not changed then the default values will be used.

Related topics
XPRSsetcbchgnode, XPRSsetcboptnode, XPRSsetcbinfnode, XPRSsetcbintsol,
XPRSsetcbnodecutoff, XPRSsetcbprenode.

Console and Library Functions 168 Xpress-Optimizer Reference Manual

XPRSsetcbchgnode

Purpose
Declares a node selection callback function. This is called every time the code backtracks to
select a new node during the MIP search.

Synopsis
int XPRS_CC XPRSsetcbchgnode(XPRSprob prob, void (XPRS_CC *fusn)(XPRSprob

my_prob, void *my_object, int *nodnum), void *object);

Arguments
prob The current problem.

fusn The callback function which takes three arguments, my_prob, my_object and nodnum,
and has no return value. This function is called every time a new node is selected.

my_prob The problem passed to the callback function, fusn.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbchgnode.

nodnum A pointer to the number of the node, nodnum, selected by the Optimizer. By chang-
ing the value pointed to by this argument, the selected node may be changed with
this function.

object A user-defined object to be passed to the callback function, fusn.

Related controls

Integer

NODESELECTION Node selection control.

Example
The following prints out the node number every time a new node is selected during the global
search:

XPRSminim(prob,"");
XPRSsetintcontrol(prob,XPRS_MIPLOG,3);
XPRSsetintcontrol(prob,XPRS_NODESELECTION,2);
XPRSsetcbchgnode(prob,nodeSelection,NULL);
XPRSglobal(prob);

The callback function may resemble:

XPRS_CC void nodeSelection(XPRSprob prob, void *object,
int *Node)

{
printf("Node number %d\n", *Node);

}

See the example depthfirst.c on the Xpress-MP CD-ROM.

Related topics
XPRSsetcboptnode, XPRSsetcbinfnode, XPRSsetcbintsol, XPRSsetcbnodecutoff,
XPRSsetcbchgbranch, XPRSsetcbprenode.

Console and Library Functions 169 Xpress-Optimizer Reference Manual

XPRSsetcbcutlog

Purpose
Declares a cut log callback function, called each time the cut log is printed.

Synopsis
int XPRS_CC XPRSsetcbcutlog(XPRSprob prob, int (XPRS_CC *fucl)(XPRSprob

my_prob, void *my_object), void *object);

Arguments
prob The current problem.

fucl The callback function which takes two arguments, my_prob and my_object, and
has an integer return value.

my_prob The problem passed to the callback function, fucl.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbcutlog.

object A user-defined object to be passed to the callback function, fucl.

Related topics
XPRSsetcbcutmgr, XPRSsetcbfreecutmgr, XPRSsetcbinitcutmgr.

Console and Library Functions 170 Xpress-Optimizer Reference Manual

XPRSsetcbcutmgr

Purpose
Declares a user-defined cut manager routine, called at each node of the Branch and Bound
search.

Synopsis
int XPRS_CC XPRSsetcbcutmgr(XPRSprob prob, int (XPRS_CC *fcme)(XPRSprob

my_prob, void *my_object), void *object);

Arguments
prob The current problem

fcme The callback function which takes two arguments, my_prob and my_object, and
has an integer return value. This function is called at each node in the Branch and
Bound search.

my_prob The problem passed to the callback function, fcme.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbcutmgr.

object A user-defined object to be passed to the callback function, fcme.

Related controls

Integer

EXTRAELEMS Number of extra matrix elements to be allowed for.

EXTRAROWS Number of extra rows to be allowed for.

Further information

1. For maximum efficiency, the space-allocating controls EXTRAROWS, EXTRAELEMS should be
specified by the user if their values are known. If this is not done, resizing will occur auto-
matically, but more space may be allocated than the user requires.

2. The cut manager routine will be called repeatedly at each node until it returns a value of 0.
The sub-problem is automatically optimized if any cuts are added or deleted.

3. The Xpress-Optimizer ensures that cuts added to a node are automatically restored at descen-
dant nodes. To do this, all cuts are stored in a cut pool and the Optimizer keeps track of which
cuts from the cut pool must be restored at each node.

Related topics
XPRSsetcbcutlog, XPRSsetcbfreecutmgr, XPRSsetcbinitcutmgr.

Console and Library Functions 171 Xpress-Optimizer Reference Manual

XPRSsetcbdestroymt

Purpose
Declares a destroy MIP thread callback function, called every time a MIP thread is destroyed by
the parallel MIP code.

Synopsis
int XPRS_CC XPRSsetcbdestroymt(XPRSprob prob, void (XPRS_CC

*fmt)(XPRSprob my_prob, void *my_object), void *object);

Arguments
prob The current thread problem.

fmt The callback function which takes two arguments, my_prob and my_object, and
has no return value.

my_prob The thread problem passed to the callback function.

my_object The user-defined object passed to the callback function.

object A user-defined object to be passed to the callback function.

Related controls

Integer

MIPTHREADS Number of MIP threads to create.

Further information
This callback is useful for freeing up any user data created in the MIP thread callback.

Related topics
XPRSsetcbmipthread.

Console and Library Functions 172 Xpress-Optimizer Reference Manual

XPRSsetcbestimate

Purpose
Declares an estimate callback function. If defined, it will be called at each node of the branch
and bound tree to determine the estimated degradation from branching the user’s global
entities.

Synopsis
int XPRS_CC XPRSsetcbestimate(XPRSprob prob, int (XPRS_CC *fbe)(XPRSprob

my_prob, void *my_object, int *iglsel, int *iprio, double

*degbest, double *degworst, double *curval, int *ifupx, int

*nglinf, double *degsum, int *nbr), void *object);

Arguments
prob The current problem.

fbe The callback function which takes eleven arguments, my_prob, my_object, iglsel,
iprio, degbest, degworst, curval, ifupx, nglinf, degsum and nbr, and has an
integer return value. This function is called at each node of the Branch and Bound
search.

my_prob The problem passed to the callback function, fbe.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbestimate.

iglsel Selected user global entity (must be non-negative).

iprio Priority of selected user global entity.

degbest Estimated degradation from branching on selected user entity in preferred direc-
tion.

degworst Estimated degradation from branching on selected user entity in worst direction.

curval Current value of user global entities.

ifupx Preferred branch on user global entity (0,...,nbr-1).

nglinf Number of infeasible user global entities.

degsum Sum of estimated degradations of satisfying all user entities.

nbr Number of branches.

object A user-defined object to be passed to the callback function, fbe.

Related topics
XPRSsetbranchcuts, XPRSsetcbsepnode, XPRSstorecuts.

Console and Library Functions 173 Xpress-Optimizer Reference Manual

XPRSsetcbfreecutmgr

Purpose
Declares a user termination routine to be called at the end of the Branch and Bound search.

Synopsis
int XPRS_CC XPRSsetcbfreecutmgr(XPRSprob prob, int (XPRS_CC

*fcms)(XPRSprob my_prob, void *my_object), void *object);

Arguments
prob The current problem.

fcms The callback function which takes two arguments, my_prob and my_object, and
has an integer return value.

my_prob The problem passed to the callback function, fcms.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbfreecutmgr.

object A user-defined object to be passed to the callback function, fcms.

Related topics
XPRSsetcbcutlog, XPRSsetcbcutmgr, XPRSsetcbinitcutmgr.

Console and Library Functions 174 Xpress-Optimizer Reference Manual

XPRSsetcbgloballog

Purpose
Declares a global log callback function, called each time the global log is printed.

Synopsis
int XPRS_CC XPRSsetcbgloballog(XPRSprob prob, int (XPRS_CC

*fugl)(XPRSprob my_prob, void *my_object), void *object);

Arguments
prob The current problem.

fugl The callback function which takes two arguments, my_prob and my_object, and
has an integer return value. This function is called whenever the global log is
printed as determined by the MIPLOG control.

my_prob The problem passed to the callback function, fugl.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbgloballog.

object A user-defined object to be passed to the callback function, fugl.

Related controls

Integer

MIPLOG Global print flag.

Example
The following example prints at each node of the global search the node number and its
depth:

XPRSsetintcontrol(prob, XPRS_MIPLOG, 3);
XPRSsetcbgloballog(prob, globalLog, NULL);
XPRSminim(prob,"g");

The callback function may resemble:

XPRS_CC int globalLog(XPRSprob prob, void *data)
{
int nodes, nodedepth;

XPRSgetintattrib(prob, XPRS_NODEDEPTH, &nodedepth);
XPRSgetintattrib(prob, XPRS_NODES, &nodes);
printf("Node %d with depth %d has just been processed\n",

nodes, nodedepth);

return 0;
}

See the example depthfirst.c on the Xpress-MP CD-ROM.

Further information
If the callback function returns a nonzero value, the global search will be interrupted.

Related topics
XPRSsetcbbarlog, XPRSsetcblplog, XPRSsetcbmessage.

Console and Library Functions 175 Xpress-Optimizer Reference Manual

XPRSsetcbinfnode

Purpose
Declares a user optimal node callback function, called after the current node has been found
to be infeasible during the Branch and Bound search.

Synopsis
int XPRS_CC XPRSsetcbinfnode(XPRSprob prob, void (XPRS_CC *fuin)(XPRSprob

my_prob, void *my_object), void *object);

Arguments
prob The current problem

fuin The callback function which takes two arguments, my_prob and my_object, and
has no return value. This function is called after the current node has been found
to be infeasible.

my_prob The problem passed to the callback function, fuin.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbinfnode.

object A user-defined object to be passed to the callback function, fuin.

Related controls

Integer

NODESELECTION Node selection control.

Example
The following notifies the user whenever an infeasible node is found during the global search:

XPRSsetintcontrol(prob,XPRS_NODESELECTION,2);
XPRSsetcbinfnode(prob,nodeInfeasible,NULL);
XPRSmaxim(prob,"g");

The callback function may resemble:

void XPRS_CC nodeInfeasible(XPRSprob prob, void *obj)
{
int node;
XPRSgetintattrib(prob, XPRS_NODES, &node);
printf("Node %d infeasible\n", node);

}

See the example depthfirst.c on the Xpress-MP CD-ROM.

Related topics
XPRSsetcbchgnode, XPRSsetcboptnode, XPRSsetcbintsol, XPRSsetcbnodecutoff,
XPRSsetcbchgbranch, XPRSsetcbprenode.

Console and Library Functions 176 Xpress-Optimizer Reference Manual

XPRSsetcbinitcutmgr

Purpose
Declares a user callback routine, called to initialize the cut manager.

Synopsis
int XPRS_CC XPRSsetcbinitcutmgr(XPRSprob prob, int (XPRS_CC

*fcmi)(XPRSprob my_prob, void *my_object), void *object);

Arguments
prob The current problem.

fcmi The callback function which takes two arguments, my_prob and my_object, and
has an integer return value.

my_prob The problem passed to the callback function, fcmi.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbinitcutmgr.

object A user-defined object to be passed to the callback function, fcmi.

Related topics
XPRSsetcbcutlog, XPRSsetcbcutmgr, XPRSsetcbfreecutmgr.

Console and Library Functions 177 Xpress-Optimizer Reference Manual

XPRSsetcbintsol

Purpose
Declares a user integer solution callback function, called every time an integer solution is found
by heuristics or during the Branch and Bound search.

Synopsis
int XPRS_CC XPRSsetcbintsol(XPRSprob prob, void (XPRS_CC *fuis)(XPRSprob

my_prob, void *my_object), void *object);

Arguments
prob The current problem.

fuis The callback function which takes two arguments, my_prob and my_object, and
has no return value. This function is called if the current node is found to have an
integer feasible solution, i.e. every time an integer feasible solution is found.

my_prob The problem passed to the callback function, fuis.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbintsol.

object A user-defined object to be passed to the callback function, fuis.

Example
The following example prints integer solutions as they are discovered in the global search,
without using the solution file:

XPRSsetcbintsol(prob,printsol,NULL);
XPRSmaxim(prob,"g");

The callback function might resemble:

void XPRS_CC printsol(XPRSprob my_prob, void *my_object)
{
int i, cols, *x;
double objval;

XPRSgetintattrib(my_prob, XPRS_COLS, &cols);
XPRSgetdblattrib(my_prob, XPRS_LPOBJVAL, &objval);
x = malloc(cols * sizeof(int));
XPRSgetlpsol(my_prob, x, NULL, NULL, NULL);

printf("\nInteger solution found: %f\n", objval);
for(i=0;i<cols;i++) printf(" x[%d] = %d\n", i, x[i]);

}

Further information
This callback is useful if the user wants to retrieve the integer solution when it is found.

Related topics
XPRSsetcbchgnode, XPRSsetcboptnode, XPRSsetcbinfnode, XPRSsetcbnodecutoff,
XPRSsetcbchgbranch, XPRSsetcbprenode.

Console and Library Functions 178 Xpress-Optimizer Reference Manual

XPRSsetcblplog

Purpose
Declares a simplex log callback function which is called after every LPLOG iterations of the
simplex algorithm.

Synopsis
int XPRS_CC XPRSsetcblplog(XPRSprob prob, int (XPRS_CC *fuil)(XPRSprob

my_prob, void *my_object), void *object);

Arguments
prob The current problem.

fuil The callback function which takes two arguments, my_prob and my_object, and
has an integer return value. This function is called every LPLOG simplex iterations
including iteration 0 and the final iteration.

my_prob The problem passed to the callback function, fuil.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcblplog.

object A user-defined object to be passed to the callback function, fuil.

Related controls

Integer

LPLOG Frequency and type of simplex algorithm log.

Example
The following code sets a callback function, lpLog, to be called every 10 iterations of the
optimization:

XPRSsetintcontrol(prob,XPRS_LPLOG,10);
XPRSsetcblplog(prob,lpLog,NULL);
XPRSreadprob(prob,"problem","");
XPRSminim(prob,"");

The callback function may resemble:

int XPRS_CC lpLog(XPRSprob my_prob, void *my_object)
{
int iter; double obj;

XPRSgetintattrib(my_prob, XPRS_SIMPLEXITER, &iter);
XPRSgetdblattrib(my_prob, XPRS_LPOBJVAL, &obj);
printf("At iteration %d objval is %g\n", iter, obj);
return 0;

}

Further information
If the callback function returns a nonzero value the solution process will be interrupted.

Related topics
XPRSsetcbbarlog, XPRSsetcbgloballog, XPRSsetcbmessage.

Console and Library Functions 179 Xpress-Optimizer Reference Manual

XPRSsetcbmessage

Purpose
Declares an output callback function, called every time a text line is output by the Optimizer.

Synopsis
int XPRS_CC XPRSsetcbmessage(XPRSprob prob, void (XPRS_CC *fop)(XPRSprob

my_prob, void *my_object, const char *msg, int len, int msgtype),
void *object);

Arguments
prob The current problem.

fop The callback function which takes five arguments, my_prob, my_object, msg, len
and msgtype, and has no return value. Use a NULL value to cancel a callback func-
tion.

my_prob The problem passed to the callback function.

my_object The user-defined object passed to the callback function.

msg A null terminated character array (string) containing the message, which may sim-
ply be a new line.

len The length of the message string, excluding the null terminator.

msgtype Indicates the type of output message:
1 information messages;
2 (not used);
3 warning messages;
4 error messages.
A negative value indicates that the Optimizer is about to finish and the buffers
should be flushed at this time if the output is being redirected to a file.

object A user-defined object to be passed to the callback function.

Related controls

Integer

OUTPUTLOG All messages are disabled if set to zero.

Example
The following example simply sends all output to the screen (stdout):

XPRSsetcbmessage(prob,Message,NULL);

The callback function might resemble:

void XPRS_CC Message(XPRSprob my_prob, void* my_object,
const char *msg, int len, int msgtype)

{
switch(msgtype)
{
case 4: /* error */
case 3: /* warning */
case 2: /* dialogue */
case 1: /* information */

printf("%s\n", msg);
break;

default: /* exiting - buffers need flushing */
fflush(stdout);
break;

}
}

Console and Library Functions 180 Xpress-Optimizer Reference Manual

Further information

1. Any screen output is disabled automatically whenever a user output callback is set.

2. Screen output is never produced by the Optimizer DLL running under Windows. The only way
to enable screen output from the Optimizer DLL is to define this callback function and use it
to print the messages to the screen (stdout).

3. This function offers one method of handling the messages which describe any warnings and
errors that may occur during execution. Other methods are to check the return values of
functions and then get the error code using the ERRORCODE attribute, obtain the last er-
ror message directly using XPRSgetlasterror, or send messages direct to a log file using
XPRSsetlogfile.

4. Visual Basic, users must use the alternative function XPRSetcbmessageVB to define the call-
back; this is required because of the different way VB handles strings.

Related topics
XPRSsetcbbarlog, XPRSsetcbgloballog, XPRSsetcblplog, XPRSsetlogfile.

Console and Library Functions 181 Xpress-Optimizer Reference Manual

XPRSsetcbmipthread

Purpose
Declares a MIP thread callback function, called every time a MIP thread is started by the parallel
MIP code.

Synopsis
int XPRS_CC XPRSsetcbmipthread(XPRSprob prob, void (XPRS_CC

*fmt)(XPRSprob my_prob, void *my_object, XPRSprob thread_prob),
void *object);

Arguments
prob The current problem.

fmt The callback function which takes three arguments, my_prob, my_object and thread_-
prob, and has no return value.

my_prob The problem passed to the callback function.

my_object The user-defined object passed to the callback function.

thread_prob The problem pointer for the MIP thread

object A user-defined object to be passed to the callback function.

Related controls

Integer

MIPTHREADS Number of MIP threads to create.

Example
The following example clears the message callback for each of the MIP threads:

XPRSsetcbmipthread(prob,mipthread,NULL);

void XPRS_CC mipthread(XPRSprob my_prob, void* my_object,
XPRSprob mipthread)

{
/* clear the message callback*/
setcbmessage (mipthread,NULL,NULL);

}

Related topics
XPRSsetcbdestroymt.

Console and Library Functions 182 Xpress-Optimizer Reference Manual

XPRSsetcbnodecutoff

Purpose
Declares a user node cutoff callback function, called every time a node is cut off as a result of
an improved integer solution being found during the Branch and Bound search.

Synopsis
int XPRS_CC XPRSsetcbnodecutoff(XPRSprob prob, void (XPRS_CC

*fucn)(XPRSprob my_prob, void *my_object, int nodnum), void

*object);

Arguments
prob The current problem.

fucn The callback function, which takes three arguments, my_prob, my_object and
nodnum, and has no return value. This function is called every time a node is cut off
as the result of an improved integer solution being found.

my_prob The problem passed to the callback function, fucn.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbnodecutoff.

nodnum The number of the node that is cut off.

object A user-defined object to be passed to the callback function, fucn.

Example
The following notifies the user whenever a node is cutoff during the global search:

XPRSsetcbnodecutoff(prob,Cutoff,NULL);
XPRSmaxim(prob,"g");

The callback function might resemble:

void XPRS_CC Cutoff(XPRSprob prob, void *obj, int node)
{
printf("Node %d cutoff\n", node);

}

See the example depthfirst.c on the Xpress-MP CD-ROM.

Further information
This function allows the user to keep track of the eligible nodes.

Related topics
XPRSsetcbchgnode, XPRSsetcboptnode, XPRSsetcbinfnode, XPRSsetcbintsol,
XPRSsetcbchgbranch, XPRSsetcbprenode.

Console and Library Functions 183 Xpress-Optimizer Reference Manual

XPRSsetcboptnode

Purpose
Declares an optimal node callback function, called after an optimal solution for the current
node has been found during the Branch and Bound search.

Synopsis
int XPRS_CC XPRSsetcboptnode(XPRSprob prob, void (XPRS_CC *fuon)(XPRSprob

my_prob, void *my_object, int *feas), void *object);

Arguments
prob The current problem.

fuon The callback function which takes three arguments, my_prob, my_object and feas,
and has no return value.

my_prob The problem passed to the callback function, fuon.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcboptnode.

feas The feasibility status. If set to a nonzero value by the user, the current node will be
declared infeasible.

object A user-defined object to be passed to the callback function, fuon.

Example
The following prints an optimal solution once found:

XPRSsetcboptnode(prob,nodeOptimal,NULL);
XPRSmaxim(prob,"g");

The callback function might resemble:

void XPRS_CC nodeOptimal(XPRSprob prob, void *obj, int *feas)
{
int node;
double objval;

XPRSgetintattrib(prob, XPRS_NODES, &node);
printf("NodeOptimal: node number %d\n", node);
XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &objval);
printf("\tObjective function value = %f\n", objval);

}

See the example depthfirst.c on the Xpress-MP CD-ROM.

Further information
The cost of optimizing the node will be avoided if the node is declared to be infeasible from
this callback function.

Related topics
XPRSsetcbchgnode, XPRSsetcbinfnode, XPRSsetcbintsol, XPRSsetcbnodecutoff,
XPRSsetcbchgbranch, XPRSsetcbprenode.

Console and Library Functions 184 Xpress-Optimizer Reference Manual

XPRSsetcbprenode

Purpose
Declares a preprocess node callback function, called before the node has been optimized, so
the solution at the node will not be available.

Synopsis
int XPRS_CC XPRSsetcbprenode(XPRSprob prob, void (XPRS_CC *fupn)(XPRSprob

my_prob, void *my_object, int *nodinfeas), void *object);

Arguments
prob The current problem.

fupn The callback function, which takes three arguments, my_prob, my_object and
nodinfeas, and has no return value. This function is called before a node is re-
optimized and the node may be made infeasible by setting *nodinfeas to 1.

my_prob The problem passed to the callback function, fupn.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbprenode.

nodinfeas Whether or not the node is infeasible. If the node is found to be infeasible during
preprocessing, this is set to 1 indicating that the node should not be re-optimized.

object A user-defined object to be passed to the callback function, fupn.

Example
The following example notifies the user before each node is processed:

XPRSsetcbprenode(prob, preNode, NULL);
XPRSminim(prob,"g");

The callback function might resemble:

void XPRS_CC preNode(XPRSprob prob, void* data, int *Nodinfeas)
{

Nodinfeas = 0; / set to 1 if node is infeasible */
}

Related topics
XPRSsetcbchgnode, XPRSsetcbinfnode, XPRSsetcbintsol, XPRSsetcbnodecutoff,
XPRSsetcboptnode.

Console and Library Functions 185 Xpress-Optimizer Reference Manual

XPRSsetcbsepnode

Purpose
Declares a separate callback function to specify how to separate a node in the Branch and
Bound tree using a global object. A node can be separated by applying either cuts or bounds
to each node. These are stored in the cut pool.

Synopsis
int XPRS_CC XPRSsetcbsepnode(XPRSprob prob, int (XPRS_CC *fse)(XPRSprob

my_prob, void *my_object, int ibr, int iglsel, int ifup, double
curval), void *object);

Arguments
prob The current problem.

fse The callback function, which takes six arguments, my_prob, my_object, ibr, iglsel,
ifup and curval, and has an integer return value.

my_prob The problem passed to the callback function, fse.

my_object The user-defined object passed as object when setting up the callback with
XPRSsetcbsepnode.

ibr The branch number.

iglsel The global entity number.

ifup The direction of branch on the global entity (same as ibr).

curval Current value of the global entity.

object A user-defined object to be passed to the callback function, fse .

Example
This example minimizes a problem, before defining a user separate callback function for the
global search:

XPRSminim(prob,"");
XPRSsetcbsepnode(prob,nodeSep,NULL);
XPRSglobal(prob);

where the function nodeSep may be defined as follows:

int nodeSep(XPRSprob my_prob, void *my_object, int ibr,
int iglsel, int ifup, double curval)

{
XPRScut index;
double dbd;

if(ifup)
{
dbd = floor(xval);
XPRSstorebounds(my_prob, 1, &iglsel, "U", &dbd, &index);

}
else
{
dbd = ceil(xval);
XPRSstorebounds(my_prob, 1, &iglsel, "L", &dbd, &index);

}
XPRSsetbranchcuts(my_prob, 1, &index);
return 0;

}

Further information

Console and Library Functions 186 Xpress-Optimizer Reference Manual

1. The user separate routine is called nbr times where nbr is returned by the estimate callback
function, XPRSsetcbestimate. This allows multi-way branching to be performed.

2. The bounds and/or cuts to be applied at a node must be specified in the user separate routine
by calling XPRSsetbranchcuts.

Related topics
XPRSsetbranchcuts, XPRSsetcbestimate, XPRSstorecuts.

Console and Library Functions 187 Xpress-Optimizer Reference Manual

XPRSsetdblcontrol

Purpose
Sets the value of a given double control parameter.

Synopsis
int XPRS_CC XPRSsetdblcontrol(XPRSprob prob, int ipar, double dsval);

Arguments
prob The current problem.

ipar Control parameter whose value is to be set. A full list of all controls may be found
in 7, or from the list in the xprs.h header file.

dsval Value to which the control parameter is to be set.

Example
The following sets the double control DEGRADEFACTOR to 1.0:

XPRSsetdblcontrol(prob, XPRS_DEGRADEFACTOR, 1.0);

Related topics
XPRSgetdblcontrol, XPRSsetintcontrol, XPRSsetstrcontrol.

Console and Library Functions 188 Xpress-Optimizer Reference Manual

XPRSsetdefaultcontrol

Purpose
Sets a single control to its default value.

Synopsis
int XPRS_CC XPRSsetdefaultcontrol(XPRSprob prob, int ipar);

Arguments
prob The current problem.

ipar Integer, double or string control parameter whose default value is to be set. A full
list of all controls may be found in 7, or from the list in the xprs.h header file.

Example
The following turns off presolve to solve a problem, before resetting it to its default value and
solving it again:

XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSmaxim(prob, "g");
XPRSwriteprtsol(prob);
XPRSsetdefaultcontrol(prob, XPRS_PRESOLVE);
XPRSmaxim(prob, "g");

Related topics
XPRSsetdefaults, XPRSsetintcontrol, XPRSsetdblcontrol, XPRSsetstrcontrol.

Console and Library Functions 189 Xpress-Optimizer Reference Manual

XPRSsetdefaults

Purpose
Sets all controls to their default values. Must be called before the problem is read or loaded by
XPRSreadprob, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp.

Synopsis
int XPRS_CC XPRSsetdefaults(XPRSprob prob);

Argument
prob The current problem.

Example
The following turns off presolve to solve a problem, before resetting the control defaults,
reading it and solving it again:

XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSmaxim(prob, "g");
XPRSwriteprtsol(prob);
XPRSsetdefaults(prob);
XPRSreadprob(prob);
XPRSmaxim(prob, "g");

Related topics
XPRSsetdefaultcontrol, XPRSsetintcontrol, XPRSsetdblcontrol,
XPRSsetstrcontrol.

Console and Library Functions 190 Xpress-Optimizer Reference Manual

XPRSsetintcontrol

Purpose
Sets the value of a given integer control parameter.

Synopsis
int XPRS_CC XPRSsetintcontrol(XPRSprob prob, int ipar, int isval);

Arguments
prob The current problem.

ipar Control parameter whose value is to be set. A full list of all controls may be found
in 7, or from the list in the xprs.h header file.

isval Value to which the control parameter is to be set.

Example
The following sets the control PRESOLVE to 0, turning off the presolve facility prior to opti-
mization:

XPRSsetintcontrol(prob, XPRS_PRESOLVE, 0);
XPRSmaxim(prob, "");

Further information
Some of the integer control parameters, such as SCALING, are bitmaps, with each bit control-
ling different behavior. Bit 0 has value 1, bit 1 has value 2, bit 2 has value 4, and so on.

Related topics
XPRSgetintcontrol, XPRSsetdblcontrol, XPRSsetstrcontrol.

Console and Library Functions 191 Xpress-Optimizer Reference Manual

XPRSsetlogfile

Purpose
This directs all Optimizer output to a log file.

Synopsis
int XPRS_CC XPRSsetlogfile(XPRSprob prob, const char *filename);

Arguments
prob The current problem.

filename The name of the file to which all output will be directed. If set to NULL, redirection
of the output will stop and all screen output will be turned back on (except for DLL
users where screen output is always turned off).

Example
The following directs output to the file logfile.log:

XPRSinit(NULL);
XPRScreateprob(&prob);
XPRSsetlogfile(prob,"logfile.log");

Further information

1. It is recommended that a log file be set up for each problem being worked on, since it provides
a means for obtaining any errors or warnings output by the Optimizer during the solution
process.

2. If output is redirected with XPRSsetlogfile all screen output will be turned off.

3. Alternatively, an output callback can be defined using XPRSsetcbmessage, which will be
called every time a line of text is output. Defining a user output callback will turn all screen
output off. To discard all output messages the OUTPUTLOG integer control can be set to 0.

Related topics
XPRSsetcbmessage.

Console and Library Functions 192 Xpress-Optimizer Reference Manual

XPRSsetmessagestatus SETMESSAGESTATUS

Purpose
Manages suppression of messages.

Synopsis
int XPRS_CC XPRSsetmessagestatus(XPRSprob prob, int errcode, int status);
SETMESSAGESTATUS errcode [status]

Arguments
prob The problem for which message errcode is to have its suppression status changed;

pass NULL if the message should have the status apply globally to all problems.

errcode The id number of the message. Refer to the section 9 for a list of possible message
numbers.

status Non-zero if the message is not suppressed; 0 otherwise. If a value for status is
not supplied in the command-line call then the console optimizer prints the value
of the suppression status to screen i.e., non-zero if the message is not suppressed;
0 otherwise.

Example 1 (Library)
Attempting to optimize a problem that has no matrix loaded gives error 91. The following
code uses XPRSsetmessagestatus to suppress the error message:

XPRScreateprob(&prob);
XPRSsetmessagestatus(prob,91,0);
XPRSminim(prob,"");

Example 2 (Console)
An equivalent set of commands for the Console user may look like:

SETMESSAGESTATUS 91 0
MINIM

Further information
If a message is suppressed globally then the message can only be enabled for any problem once
the global suppression is removed with a call to XPRSsetmessagestatus with prob passed as
NULL.

Related topics
XPRSgetmessagestatus.

Console and Library Functions 193 Xpress-Optimizer Reference Manual

XPRSsetprobname SETPROBNAME

Purpose
Sets the current default problem name. This command is rarely used.

Synopsis
int XPRS_CC XPRSsetprobname(XPRSprob prob, const char *probname);
SETPROBNAME probname

Arguments
prob The current problem.

probname A string of up to 200 characters containing the problem name.

Example 1 (Library)
The following sets the current problem name to jo:

char sProblem[]="jo";
...
XPRSsetprobname(prob,sProblem);

Example 2 (Console)or child::*[1]=child::file[1]

READPROB bob
MINIM
SETPROBNAME jim
READPROB

The above will read the problem bob and then read the problem jim.

Related topics
XPRSreadprob (READPROB).

Console and Library Functions 194 Xpress-Optimizer Reference Manual

XPRSsetstrcontrol

Purpose
Used to set the value of a given string control parameter.

Synopsis
int XPRS_CC XPRSsetstrcontrol(XPRSprob prob, int ipar, const char

*csval);

Arguments
prob The current problem.

ipar Control parameter whose value is to be set. A full list of all controls may be found
in 7, or from the list in the xprs.h header file.

csval A string containing the value to which the control is to be set (plus a null termina-
tor).

Example
The following sets the control MPSOBJNAME to "Profit":

XPRSsetstrcontrol(prob, XPRS_MPSOBJNAME, "Profit");

Related topics
XPRSgetstrcontrol, XPRSsetdblcontrol, XPRSsetintcontrol.

Console and Library Functions 195 Xpress-Optimizer Reference Manual

STOP

Purpose
Terminates the Console Optimizer, returning an exit code to the operating system. This is useful
for batch operations.

Synopsis
STOP

Example
The following example inputs a matrix file, lama.mat, runs a global optimization on it and
then exits:

READPROB lama
MAXIM -g
STOP

Further information
This command may be used to terminate the Optimizer as with the QUIT command. It sets an
exit value which may be inspected by the host operating system or invoking program.

Related topics
QUIT.

Console and Library Functions 196 Xpress-Optimizer Reference Manual

XPRSstorebounds

Purpose
Stores bounds for node separation using user separate callback function.

Synopsis
int XPRS_CC XPRSstorebounds(XPRSprob prob, int nbnds, const int mcols[],

const char qbtype[], const double dbds[], void **mindex);

Arguments
prob The current problem.

nbnds Number of bounds to store.

mcols Array containing the column indices.

qbtype Array containing the bounds types:
U indicates an upper bound;
L indicates a lower bound.

dbds Array containing the bound values.

mindex Pointer that the user will use to reference the stored bounds for the optimizer in
XPRSsetbranchbounds.

Example
This example defines a user separate callback function for the global search:

XPRSsetcbsepnode(prob,nodeSep,void);

where the function nodeSep is defined as follows:

int nodeSep(XPRSprob prob, void *obj int ibr, int iglsel,
int ifup, double curval)

{
void *index;
double dbd;

if(ifup)
{
dbd = ceil(curval);
XPRSstorebounds(prob, 1, &iglsel, "L", &dbd, &index);

}
else
{
dbd = floor(curval);
XPRSstorebounds(prob, 1, &iglsel, "U", &dbd, &index);

}
XPRSsetbranchbounds(prob, index);
return 0;

}

Related topics
XPRSsetbranchbounds, XPRSsetcbestimate, XPRSsetcbsepnode.

Console and Library Functions 197 Xpress-Optimizer Reference Manual

XPRSstorecuts

Purpose
Stores cuts into the cut pool, but does not apply them to the current node. These cuts must
be explicitly loaded into the matrix using XPRSloadcuts or XPRSsetbranchcuts before they
become active.

Synopsis
int XPRS_CC XPRSstorecuts(XPRSprob prob, int ncuts, int nodupl, const

int mtype[], const char qrtype[], const double drhs[], const
int mstart[], XPRScut mindex[], const int mcols[], const double
dmatval[]);

Arguments
prob The current problem.

ncuts Number of cuts to add.

nodupl 0 do not exclude duplicates from the cut pool;
1 duplicates are to be excluded from the cut pool;
2 duplicates are to be excluded from the cut pool, ignoring cut type.

mtype Integer array of length ncuts containing the cut types. The cut types can be any
positive integer and are used to identify the cuts.

qrtype Character array of length ncuts containing the row types:
L indicates a ≤ row;
E indicates an = row;
G indicates a ≥ row.

drhs Double array of length ncuts containing the right hand side elements for the cuts.

mstart Integer array containing offsets into the mcols and dmtval arrays indicating the
start of each cut. This array is of length ncuts+1with the last element mstart[ncuts]
being where cut ncuts+1 would start.

mindex Array of length ncuts where the pointers to the cuts will be returned.

mcols Integer array of length mstart[ncuts]-1 containing the column indices in the
cuts.

dmatval Double array of length mstart[ncuts]-1 containing the matrix values for the
cuts.

Related controls

Double

MATRIXTOL Zero tolerance on matrix elements.

Further information

1. XPRSstorecuts can be used to eliminate duplicate cuts. If the nodupl parameter is set to
1, the cut pool will be checked for duplicate cuts with a cut type identical to the cuts being
added. If a duplicate cut is found the new cut will only be added if its right hand side value
makes the cut stronger. If the cut in the pool is weaker than the added cut it will be removed
unless it has been applied to an active node of the tree. If nodupl is set to 2 the same test is
carried out on all cuts, ignoring the cut type.

2. XPRSstorecuts returns a list of the cuts added to the cut pool in the mindex array. If the
cut is not added to the cut pool because a stronger cut exits a NULL will be returned. The
mindex array can be passed directly to XPRSloadcuts or XPRSsetbranchcuts to load the
most recently stored cuts into the matrix.

3. The columns and elements of the cuts must be stored contiguously in the mcols and dmtval
arrays passed to XPRSstorecuts. The starting point of each cut must be stored in the mstart
array. To determine the length of the final cut the mstart array must be of length ncuts+1
with the last element of this array containing where the cut ncuts+1 would start.

Console and Library Functions 198 Xpress-Optimizer Reference Manual

Related topics
XPRSloadcuts XPRSsetbranchcuts, XPRSsetcbestimate, XPRSsetcbsepnode, 5.4.

Console and Library Functions 199 Xpress-Optimizer Reference Manual

XPRSwritebasis WRITEBASIS

Purpose
Writes the current basis to a file for later input into the Optimizer.

Synopsis
int XPRS_CC XPRSwritebasis(XPRSprob prob, const char *filename, const

char *flags);
WRITEBASIS [-flags] [filename]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name from which the basis is
to be written. If omitted, the default problem_name is used with a .bss extension.

flags Flags to pass to XPRSwritebasis (WRITEBASIS):
i output the internal presolved basis.
t output a compact advanced form of the basis.

Example 1 (Library)
After an LP has been solved it may be desirable to save the basis for future input as an advanced
starting point for other similar problems. This may save significant amounts of time if the LP is
complex. The Optimizer input commands might then be:

XPRSreadprob(prob, "myprob", "");
XPRSmaxim(prob, "");
XPRSwritebasis(prob, "", "");
XPRSglobal(prob);

This reads in a matrix file, maximizes the LP, saves the basis and performs a global search.
Saving an IP basis is generally not very useful, so in the above example only the LP basis is
saved.

Example 2 (Console)
An equivalent set of commands to the above for console users would be:

READPROB
MAXIM
WRITEBASIS
GLOBAL

Further information

1. The c flag is only useful for later input to a similar problem using the t flag with
XPRSreadbasis (READBASIS).

2. If the Newton barrier algorithm has been used for optimization then crossover must have
been performed before there is a valid basis. This basis can then only be used for restarting
the simplex (primal or dual) algorithm.

3. XPRSwritebasis (WRITEBASIS) will output the basis for the original problem even if the
matrix has been presolved.

Related topics
XPRSgetbasis, XPRSreadbasis (READBASIS).

Console and Library Functions 200 Xpress-Optimizer Reference Manual

XPRSwritebinsol WRITEBINSOL

Purpose
Writes the current MIP or LP solution to a binary solution file for later input into the Optimizer.

Synopsis
int XPRS_CC XPRSwritebinsol(XPRSprob prob, const char *filename, const

char *flags);
WRITEBINSOL [-flags] [filename]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name to which the solution is
to be written. If omitted, the default problem_name is used with a .sol extension.

flags Flags to pass to XPRSwritebinsol (WRITEBINSOL):
x output the LP solution.

Example 1 (Library)
After an LP has been solved or a MIP solution has been found the solution can be saved to file.
If a MIP solution exists it will be written to file unless the -x flag is passed to XPRSwritebinsol
(WRITEBINSOL) in which case the LP solution will be written. The Optimizer input commands
might then be:

XPRSreadprob(prob, "myprob", "");
XPRSmaxim(prob, "g");
XPRSwritebinsol(prob, "", "");

This reads in a matrix file, maximizes the MIP and saves the last found MIP solution.

Example 2 (Console)
An equivalent set of commands to the above for console users would be:

READPROB
MAXIM -g
WRITEBINSOL

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSreadbinsol (READBINSOL), XPRSwritesol
(WRITESOL), XPRSwriteprtsol (WRITEPRTSOL).

Console and Library Functions 201 Xpress-Optimizer Reference Manual

XPRSwriteomni WRITEOMNI

Purpose
Writes the current solution to the binary OMNI format file SOLFILE, as recorded in the solution
file problem_name .sol. Optionally the current matrix may also be written. All information
is appended to this file.

Synopsis
int XPRS_CC XPRSwriteomni(XPRSprob prob);
WRITEOMNI

Argument
prob The current problem.

Related controls

Integer

OMNIFORMAT Whether to include matrix coefficients in OMNI output.

SOLUTIONFILE The binary solution file must be enabled.

String

OMNIDATANAME Data for OMNI data name field.

Example 1 (Library)

XPRSreadprob(prob, "bob", "");
XPRSminim(prob, "");
XPRSsetintcontrol(prob, XPRS_OMNIFORMAT, 1);
XPRSwriteomni(prob);
XPRSreadprob(prob, "jo", "");
XPRSsetstrcontrol(prob, XPRS_OMNIDATANAME, "Jo");
XPRSminim(prob, "");
XPRSwriteomni(prob);

Will put two solutions on SOLFILE, the first taking the contents of the data name field from
the problem name in bob.mat, the second having its data name field "Jo".

Example 2 (Console)
An equivalent set of commands at the Console would be the following:

READPROB bob
MINIM
OMNIFORMAT = 1
WRITEOMNI
READPROB jo
OMNIDATANAME = "Jo"
MINIM
WRITEOMNI

Console and Library Functions 202 Xpress-Optimizer Reference Manual

Further information

1. To conform with OMNI standards the output is appended to the file called SOLFILE. If this
file already exists the output of XPRSwriteomni (WRITEOMNI) will be appended to SOLFILE,
otherwise SOLFILE is created in the current working directory. The file is written in OMNI Stan-
dard Format, as defined in the document "OMNI Standard Interface to Various Optimizers",
available from Haverly Systems. Note that the status codes generated are "OPTM", "INFE",
"FEAS" and "UNBD". Some early versions of the OMNI format specification used other codes.

2. The MHDR, MROW and MCOL data are only generated if the control OMNIFORMAT is set nonzero
before the call to XPRSwriteomni (WRITEOMNI), for example:

READPROB
MINIM
WRITEBASIS
OMNIFORMAT = 1
WRITEOMNI
QUIT

3. The data name field in the OMNI format (bytes 8 to 15, starting at 0) is filled from the control
OMNIDATANAME, which should be set prior to a call of XPRSwriteomni (WRITEOMNI).

Console and Library Functions 203 Xpress-Optimizer Reference Manual

XPRSwriteprob WRITEPROB

Purpose
Writes the current problem to an MPS or LP file.

Synopsis
int XPRS_CC XPRSwriteprob(XPRSprob prob, const char *filename, const char

*flags);
WRITEPROB [-flags] [filename]

Arguments
prob The current problem.

filename A string of up to 200 characters to contain the file name to which the problem is
to be written. If omitted, the default problem_name is used with a .mat extension,
unless the l flag is used in which case the extension is .lp.

flags Flags, which can be one or more of the following:
p full precision of numerical values;
o one element per line;
n scaled;
s scrambled vector names;
l output in LP format;
x output MPS file in hexadecimal format.

Example 1 (Library)
The following example outputs the current problem in full precision, LP format with scrambled
vector names to the file problem_name.lp.

XPRSwriteprob(prob, "", "lps");

Example 2 (Console)or child::*[1]=child::file[1]

WRITEPROB -p C:myprob

This instructs the Optimizer to write an MPS matrix to the file myprob.mat on the C: drive in
full precision.

Further information
If XPRSloadlp, XPRSloadglobal, XPRSloadqglobal or XPRSloadqp is used to obtain a ma-
trix then there is no association between the objective function and the N rows in the ma-
trix and so a separate N row (called __OBJ___) is created when you do an XPRSwriteprob
(WRITEPROB). Also if you do an XPRSreadprob (READPROB) and then change either the ob-
jective row or the N row in the matrix corresponding to the objective row, you lose the asso-
ciation between the two and the __OBJ___ row is created when you do an XPRSwriteprob
(WRITEPROB). To remove the objective row from the matrix when doing an XPRSreadprob
(READPROB), set KEEPNROWS to -1 before XPRSreadprob (READPROB).

The hexadecimal format is useful for saving the exact internal precision of the matrix.

Warning: If XPRSreadprob (READPROB) is used to input a problem, then the input file will
be overwritten by XPRSwriteprob (WRITEPROB) if a new filename is not specified.

Related topics
XPRSreadprob (READPROB).

Console and Library Functions 204 Xpress-Optimizer Reference Manual

XPRSwriteprtrange WRITEPRTRANGE

Purpose
Writes the ranging information to a fixed format ASCII file, problem_name.rrt. The binary
range file (.rng) must already exist, created by XPRSrange (RANGE).

Synopsis
int XPRS_CC XPRSwriteprtrange(XPRSprob prob);
WRITEPRTRANGE

Argument
prob The current problem.

Related controls

Integer

MAXPAGELINES Number of lines between page breaks.

Double

OUTPUTTOL Zero tolerance on print values.

Example 1 (Library)
The following example solves the LP problem and then calls XPRSrange (RANGE) before out-
putting the result to file for printing:

XPRSreadprob(prob, "myprob", "");
XPRSmaxim(prob, "");
XPRSrange(prob);
XPRSwriteprttange(prob);

Example 2 (Console)
An equivalent set of commands for the Console user would be:

READPROB
MAXIM
RANGE
WRITEPRTRANGE

Further information

1. (Console) There is an equivalent command PRINTRANGE which outputs the same informa-
tion to the screen. The format is the same as that output to file by XPRSwriteprtrange
(WRITEPRTRANGE), except that the user is permitted to enter a response after each screen if
further output is required.

2. The fixed width ASCII format created by this command is not as readily useful as that
produced by XPRSwriterange (WRITERANGE). The main purpose of XPRSwriteprtrange
(WRITEPRTRANGE) is to create a file that can be printed. The format of this fixed format range
file is described in Appendix A.

Related topics
XPRSgetcolrange, XPRSgetrowrange, XPRSrange (RANGE), XPRSwriteprtsol,
XPRSwriterange, A.5.

Console and Library Functions 205 Xpress-Optimizer Reference Manual

XPRSwriteprtsol WRITEPRTSOL

Purpose
Writes the current solution to a fixed format ASCII file, problem_name .prt.

Synopsis
int XPRS_CC XPRSwriteprtsol(XPRSprob prob, const char *filename, const

char *flags);
WRITEPRTSOL [filename] [-flags]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name to which the solution is
to be written. If omitted, the default problem_name will be used. The extension
.prt will be appended.

flags Flags for XPRSwriteprtsol (WRITEPRTSOL) are:
x write the LP solution instead of the current MIP solution.

Related controls

Integer

MAXPAGELINES Number of lines between page breaks.

Double

OUTPUTTOL Zero tolerance on print values.

Example 1 (Library)
This example shows the standard use of this function, outputting the solution to file immedi-
ately following optimization:

XPRSreadprob(prob, "myprob", "");
XPRSmaxim(prob, "");
XPRSwriteprtsol(prob, "", "");

Example 2 (Console)or child::*[1]=child::file[1]

READPROB
MAXIM
PRINTSOL

are the equivalent set of commands for Console users who wish to view the output directly on
screen.

Further information

1. (Console) There is an equivalent command PRINTSOL which outputs the same information to
the screen. The format is the same as that output to file by XPRSwriteprtsol (WRITEPRTSOL),
except that the user is permitted to enter a response after each screen if further output is
required.

2. The fixed width ASCII format created by this command is not as readily useful as that produced
by XPRSwritesol (WRITESOL). The main purpose of XPRSwriteprtsol (WRITEPRTSOL) is to
create a file that can be sent directly to a printer. The format of this fixed format ASCII file is
described in Appendix A.

3. To create a prt file for a previously saved solution, the solution must first be loaded with the
XPRSreadbinsol (READBINSOL) function.

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSreadbinsol XPRSwritebinsol,
XPRSwriteprtrange, XPRSwritesol, A.4.

Console and Library Functions 206 Xpress-Optimizer Reference Manual

XPRSwriterange WRITERANGE

Purpose
Writes the ranging information to a CSV format ASCII file, problem_name.rsc (and .hdr). The
binary range file (.rng) must already exist, created by XPRSrange (RANGE) and an associated
header file.

Synopsis
int XPRS_CC XPRSwriterange(XPRSprob prob, const char *filename, const

char *flags);
WRITERANGE [filename] [-flags]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name to which the solution is
to be written. If omitted, the default problem_name will be used. The extensions
.hdr and .rsc will be appended to the filename.

flags Flags to control which optional fields are output:
s sequence number;
n name;
t type;
b basis status;
a activity;
c cost (column), slack (row).
If no flags are specified, all fields are output.

Related controls

Double

OUTPUTTOL Zero tolerance on print values.

String

OUTPUTMASK Mask to restrict the row and column names output to file.

Example 1 (Library)
At its most basic, the usage of XPRSwriterange (WRITERANGE) is similar to that of XPRSwriteprtrange
(WRITEPRTRANGE), except that the output is intended as input to another program. The fol-
lowing example shows its use:

XPRSreadprob(prob, "myprob", "");
XPRSminim(prob, "");
XPRSrange(prob);
XPRSwriterange(prob, "", "");

Example 2 (Console)or child::*[1]=child::file[1]

RANGE
WRITERANGE -nbac

This example would output just the name, basis status, activity, and cost (for columns) or slack
(for rows) for each vector to the file problem_name.rsc. It would also output a number of
other fields of ranging information which cannot be enabled/disabled by the user.

Further information

Console and Library Functions 207 Xpress-Optimizer Reference Manual

1. The following fields are always present in the .rsc file, in the order specified. See the de-
scription of the ASCII range files in Appendix A for details of their interpretation.For rows, the
lower and upper cost entries are zero. If a limiting process or activity does not exist, the field
is blank, delimited by double quotes.

• lower activity

• unit cost down

• upper cost (or lower profit if maximizing)

• limiting process down

• status of down limiting process

• upper activity

• unit cost up

• lower cost (or upper profit if maximizing)

• limiting process up

• status of up limiting process

2. The control OUTPUTMASK may be used to control which vectors are reported to the ASCII file.
Only vectors whose names match OUTPUTMASK are output. This is set to "????????" by de-
fault, so that all vectors are output.

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSwriteprtrange (WRITEPRTRANGE), XPRSrange
(RANGE), XPRSwritesol (WRITESOL), A.5.

Console and Library Functions 208 Xpress-Optimizer Reference Manual

XPRSwritesol WRITESOL

Purpose
Writes the current solution to a CSV format ASCII file, problem_name.asc (and .hdr).

Synopsis
int XPRS_CC XPRSwritesol(XPRSprob prob, const char *filename, const char

*flags);
WRITESOL [filename] [-flags]

Arguments
prob The current problem.

filename A string of up to 200 characters containing the file name to which the solution is
to be written. If omitted, the default problem_name will be used. The extensions
.hdr and .asc will be appended.

flags Flags to control which optional fields are output:
s sequence number;
n name;
t type;
b basis status;
a activity;
c cost (columns), slack (rows);
l lower bound;
u upper bound;
d dj (column; reduced costs), dual value (rows; shadow prices);
r right hand side (rows).
If no flags are specified, all fields are output.
Additional flags:
e outputs every MIP or goal programming solution saved;
p outputs in full precision;
q only outputs vectors with nonzero optimum value;
x output the current LP solution instead of the MIP solution.

Related controls

Double

OUTPUTTOL Zero tolerance on print values.

String

OUTPUTMASK Mask to restrict the row and column names output to file.

Example 1 (Library)
In this example the basis status is output (along with the sequence number) following opti-
mization:

XPRSreadprob(prob, "richard", "");
XPRSminim(prob, "");
XPRSwritesol(prob, "", "sb");

Example 2 (Console)
Suppose we wish to produce files containing

• the names and values of variables starting with the letter X which are nonzero and

• the names, values and right hand sides of constraints starting with CO2.

The Optimizer commands necessary to do this are:

OUTPUTMASK = "X???????"
WRITESOL XVALS -naq
OUTPUTMASK = "CO2?????"
WRITESOL CO2 -nar

Console and Library Functions 209 Xpress-Optimizer Reference Manual

Further information

1. The command produces two readable files: filename.hdr (the solution header file) and
filename.asc (the CSV foramt solution file). The header file contains summary informa-
tion, all in one line. The ASCII file contains one line of information for each row and column in
the problem. Any fields appearing in the .asc file will be in the order the flags are described
above. The order that the flags are specified by the user is irrelevant.

2. Additionally, the mask control OUTPUTMASK may be used to control which names are reported
to the ASCII file. Only vectors whose names match OUTPUTMASK are output. OUTPUTMASK is set
by default to "????????", so that all vectors are output.

3. If KEEPMIPSOL has been used to store a number of MIP or goal programming solutions, the
e flag can be used to output solution information for every solution kept. The best solution
found is still output to problem_name.hdr and problem_name.asc. Any other solutions are
output to the header files problem_name.hd0, problem_name. hd1,... and ASCII solution
files problem_name.as0, problem_name.as1,....

Related topics
XPRSgetlpsol, XPRSgetmipsol, XPRSwriterange (WRITERANGE), XPRSwriteprtsol
(WRITEPRTSOL).

Console and Library Functions 210 Xpress-Optimizer Reference Manual

Chapter 7

Control Parameters

Various controls exist within the Optimizer to govern the solution procedure and the form of
output. The majority of these take integer values and act as switches between various types
of behavior. The tolerances on values are double precision, and there are a few controls which
are character strings, setting names to structures. Any of these may be altered by the user to
enhance performance of the Optimizer. However, it should be noted that the default values
provided have been found to work well in practice over a range of problems and caution
should be exercised if they are changed.

7.1 Retrieving and Changing Control Values

Console Xpress users may obtain control values by issuing the control name at the Optimizer
prompt, >, and hitting the RETURN key. Controls may be set using the assignment syntax:

control_name = new_value

where new_value is an integer value, double or string as appropriate. For character strings,
the name must be enclosed in single quotes and all eight characters must be given.

Users of the Xpress-MP Libraries are provided with the following set of functions for setting
and obtaining control values:

XPRSgetintcontrol XPRSgetdblcontrol XPRSgetstrcontrol

XPRSsetintcontrol XPRSsetdblcontrol XPRSsetstrcontrol

It is an important point that the controls as listed in this chapter must be prefixed with XPRS_
to be used with the Xpress-MP Libraries and failure to do so will result in an error. An example
of their usage is as follows:

XPRSgetintcontrol(prob, XPRS_PRESOLVE, &presolve);
printf("The value of PRESOLVE is %d\n", presolve);
XPRSsetintcontrol(prob, XPRS_PRESOLVE, 1-presolve);
printf("The value of PRESOLVE is now %d\n", 1-presolve);

AUTOPERTURB

Description Simplex: This indicates whether automatic perturbation is performed. If this is set
to 1, the problem will be perturbed by the amount PERTURB whenever the simplex
method encounters an excessive number of degenerate pivot steps, thus preventing
the Optimizer being hindered by degeneracies.

211 Xpress-Optimizer Reference Manual

Type Integer

Values 0 No perturbation performed.

1 Automatic perturbation is performed.

Default value 1

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BACKTRACK

Description Branch and Bound: This determines how the next node in the tree search is selected
for processing.

Type Integer

Values 1 If MIPTARGET is not set, choose the node with the best estimate. If MIPTAR-
GET is set (by the user or by the global search previously finding an integer so-
lution), the choice is based on the Forrest-Hirst-Tomlin Criterion, which takes
into account the best current integer solution and seeks a new node which
represents a large potential improvement.

2 Always choose the node with the best estimated solution.

3 Always choose the node with the best bound on the solution.

Default value 3

Affects routines XPRSglobal (GLOBAL).

BARCRASH

Description Newton barrier: This determines the type of crash used for the crossover. During
the crash procedure, an initial basis is determined which attempts to speed up the
crossover. A good choice at this stage will significantly reduce the number of it-
erations required to crossover to an optimal solution. The possible values increase
proportionally to their time-consumption.

Type Integer

Values 0 Turns off all crash procedures.

1-6 Available strategies with 1 being conservative and 6 being aggressive.

Default value 4

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARDUALSTOP

Description Newton barrier: This is a convergence parameter, representing the tolerance for dual
infeasibilities. If the difference between the constraints and their bounds in the dual
problem falls below this tolerance in absolute value, optimization will stop and the
current solution will be returned.

Type Double

Control Parameters 212 Xpress-Optimizer Reference Manual

Default value 1.0E-08

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARGAPSTOP

Description Newton barrier: This is a convergence parameter, representing the tolerance for the
relative duality gap. When the difference between the primal and dual objective
function values falls below this tolerance, the Optimizer determines that the optimal
solution has been found.

Type Double

Default value 1.0E-08

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARINDEFLIMIT

Description Newton Barrier. This limits the number of consecutive indefinite barrier iterations
that will be performed. The optimizer will try to minimize (resp. maximize) a QP
problem even if the Q matrix is not positive (resp. negative) semi-definite. However,
the optimizer may detect that the Q matrix is indefinite and this can result in the
optimizer not converging. This control specifies how many indefinite iterations may
occur before the optimizer stops and reports that the problem is indefinite. It is usual
to specify a value greater than one, and only stop after a series of indefinite matrices,
as the problem may be found to be indefinite incorrectly on a few iterations for
numerical reasons.

Type Integer

Default value 15

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARITERLIMIT

Description Newton barrier: The maximum number of iterations. While the simplex method usu-
ally performs a number of iterations which is proportional to the number of con-
straints (rows) in a problem, the barrier method standardly finds the optimal solution
to a given accuracy after a number of iterations which is independent of the problem
size. The penalty is rather that the time for each iteration increases with the size of
the problem. BARITERLIMIT specifies the maximum number of iterations which will
be carried out by the barrier.

Type Integer

Default value 200

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

Control Parameters 213 Xpress-Optimizer Reference Manual

BARORDER

Description Newton barrier: This specifies the ordering algorithm for the Cholesky factorization,
used to preserve the sparsity of the factorized matrix.

Type Integer

Values 0 Choose automatically.

1 Minimum degree method. This selects diagonal elements with the smallest
number of nonzeros in their rows or columns.

2 Minimum local fill method. This considers the adjacency graph of nonzeros
in the matrix and seeks to eliminate nodes that minimize the creation of new
edges.

3 Nested dissection method. This considers the adjacency graph and recursively
seeks to separate it into non-adjacent pieces.

Default value 0

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BAROUTPUT

Description Newton barrier: This specifies the level of solution output provided. Output is pro-
vided either after each iteration of the algorithm, or else can be turned off completely
by this parameter.

Type Integer

Values 0 No output.

1 At each iteration.

Default value 1

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARPRIMALSTOP

Description Newton barrier: This is a convergence parameter, indicating the tolerance for primal
infeasibilities. If the difference between the constraints and their bounds in the pri-
mal problem falls below this tolerance in absolute value, the Optimizer will terminate
and return the current solution.

Type Double

Default value 1.0E-08

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

Control Parameters 214 Xpress-Optimizer Reference Manual

BARSTEPSTOP

Description Newton barrier: A convergence parameter, representing the minimal step size. On
each iteration of the barrier algorithm, a step is taken along a computed search di-
rection. If that step size is smaller than BARSTEPSTOP, the Optimizer will terminate
and return the current solution.

Type Double

Default value 1.0E-10

Note If the barrier method is making small improvements on BARGAPSTOP on later iter-
ations, it may be better to set this value higher, to return a solution after a close
approximation to the optimum has been found.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARTHREADS

Description Newton barrier: The number of threads implemented to run the algorithm. This is
usually set to the number of processors when running Parallel Xpress-MP on a single
multi-processor machine.

Type Integer

Default value 1

Note The value of BARTHREADS depends on the user’s authorization. If it is set to a value
higher than that specified by the licence, then it will be reset by the Optimizer imme-
diately prior to optimization. Obtaining its value after the optimization will give an
indication of how many processors were actually used.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BIGM

Description The infeasibility penalty used if the "Big M" method is implemented.

Type Double

Default value Dependent on the matrix characteristics.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BIGMMETHOD

Description Simplex: This specifies whether to use the "Big M" method, or the standard phase
I (achieving feasibility) and phase II (achieving optimality). In the "Big M" method,
the objective coefficients of the variables are considered during the feasibility phase,
possibly leading to an initial feasible basis which is closer to optimal. The side-effects
involve possible round-off errors due to the presence of the "Big M" factor in the
problem.

Control Parameters 215 Xpress-Optimizer Reference Manual

Type Integer

Values 0 For phase I / phase II.

1 If "Big M" method to be used.

Default value 1

Note Reset by XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp,
XPRSloadqglobal and XPRSloadqp.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BRANCHCHOICE

Description Once a global entity has been selected for branching, this control determines whether
the branch with the minimum or the maximum estimate is solved first.

Type Integer

Values 0 Minimum estimate branch first.

1 Maximum estimate branch first.

Default value 0

Affects routines XPRSglobal (GLOBAL).

BREADTHFIRST

Description The number of nodes to include in the best-first search before switching to the local
first search (NODESELECTION = 4).

Type Integer

Default value 10

Affects routines XPRSglobal (GLOBAL).

CACHESIZE

Description Newton barrier: L2 cache size in kB (kilo bytes) of the CPU. On Intel (or compatible)
platforms a value of -1 may be used to determine the cache size automatically.

Type Integer

Default value -1

Note Specifying the correct L2 cache size can give a significant performance advantage
with the Newton barrier algorithm.

If the size is unknown, it is better to specify a smaller size.

If the size cannot be determined automatically on Intel (or compatible) platforms, a
default size of 512 kB is assumed.

For multi-processor machines, use the cache size of a single CPU.

Specify the size in kB: for example, 0.5 MB means 512 kB and a value of 512 should
be used when setting CACHESIZE.

Control Parameters 216 Xpress-Optimizer Reference Manual

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

CHOLESKYALG

Description Newton barrier: type of Cholesky factorization used.

Type Integer

Values 0 Pull Cholesky;

1 Push Cholesky.

Default value 0

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

CHOLESKYTOL

Description Newton barrier: The zero tolerance for pivot elements in the Cholesky decomposi-
tion of the normal equations coefficient matrix, computed at each iteration of the
barrier algorithm. If the absolute value of the pivot element is less than or equal to
CHOLESKYTOL, it merits special treatment in the Cholesky decomposition process.

Type Double

Default value 1.0E-15

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

COVERCUTS

Description Branch and Bound: The number of rounds of lifted cover inequalities at the top node.
A lifted cover inequality is an additional constraint that can be particularly effective
at reducing the size of the feasible region without removing potential integral solu-
tions. The process of generating these can be carried out a number of times, further
reducing the feasible region, albeit incurring a time penalty. There is usually a good
payoff from generating these at the top node, since these inequalities then apply to
every subsequent node in the tree search.

Type Integer

Default value -1 — determined automatically.

Affects routines XPRSglobal (GLOBAL).

CPUTIME

Description Which time to be used in reporting solution times.

Type Integer

Control Parameters 217 Xpress-Optimizer Reference Manual

Values 0 If elapsed time is to be used.

1 If CPU time is to be used.

Default value 1

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSglobal (GLOBAL).

CRASH

Description Simplex: This determines the type of crash used when the algorithm begins. Dur-
ing the crash procedure, an initial basis is determined which is as close to feasibility
and triangularity as possible. A good choice at this stage will significantly reduce
the number of iterations required to find an optimal solution. The possible values
increase proportionally to their time-consumption.

Type Integer

Values 0 Turns off all crash procedures.

1 For singletons only (one pass).

2 For singletons only (multi pass).

3 Multiple passes through the matrix considering slacks.

4 Multiple (≤ 10) passes through the matrix but only doing slacks at the very
end.

n>10 As for value 4 but performing at most n - 10 passes.

Default value 2

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

CROSSOVER

Description Newton barrier: This control determines whether the barrier method will cross over to
the simplex method when at optimal solution has been found, to provide an end basis
(see XPRSgetbasis, XPRSwritebasis) and advanced sensitivity analysis information
(see XPRSrange).

Type Integer

Values -1 Determined automatically.

0 No crossover.

1 Crossover to a basic solution.

Default value -1

Note The full primal and dual solution is available whether or not crossover is used. The
crossover must not be disabled if the barrier is used to reoptimize nodes of a MIP. By
default crossover will not be performed on QP and MIQP problems.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

Control Parameters 218 Xpress-Optimizer Reference Manual

CSTYLE

Description Convention used for numbering arrays.

Type Integer

Values 0 Indicates that the FORTRAN convention should be used for arrays (i.e. start-
ing from 1).

1 Indicates that the C convention should be used for arrays (i.e. starting from
0).

Default value 1

Affects routines All library routines which take arrays as arguments.

CUTDEPTH

Description Branch and Bound: Sets the maximum depth in the tree search at which cuts will
be generated. Generating cuts can take a lot of time, and is often less important at
deeper levels of the tree since tighter bounds on the variables have already reduced
the feasible region. A value of 0 signifies that no cuts will be generated.

Type Integer

Default value -1 — determined automatically.

Affects routines XPRSglobal (GLOBAL).

CUTFREQ

Description Branch and Bound: This specifies the frequency at which cuts are generated in the
tree search. If the depth of the node modulo CUTFREQ is zero, then cuts will be
generated.

Type Integer

Default value -1 — determined automatically.

Affects routines XPRSglobal (GLOBAL).

CUTSTRATEGY

Description Branch and Bound: This specifies the cut strategy. A more aggressive cut strategy,
generating a greater number of cuts, will result in fewer nodes to be explored, but
with an associated time cost in generating the cuts. The fewer cuts generated, the
less time taken, but the greater subsequent number of nodes to be explored.

Type Integer

Control Parameters 219 Xpress-Optimizer Reference Manual

Values -1 Automatic selection of the cut strategy.

0 No cuts.

1 Conservative cut strategy.

2 Moderate cut strategy.

3 Aggressive cut strategy.

Default value -1

Affects routines XPRSglobal (GLOBAL).

DEFAULTALG

Description This selects the algorithm that will be used to solve the LP if no algorithm flag is
passed to the optimization routines.

Type Integer

Values 1 Automatically determined.

2 Dual simplex.

3 Primal simplex.

4 Newton barrier.

Default value 1

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSglobal (GLOBAL).

DEGRADEFACTOR

Description Branch and Bound: Factor to multiply estimated degradations associated with an
unexplored node in the tree. The estimated degradation is the amount by which the
objective function is expected to worsen in an integer solution that may be obtained
through exploring a given node.

Type Double

Default value 1.0

Affects routines XPRSglobal (GLOBAL).

DENSECOLLIMIT

Description Newton barrier: Columns with more than DENSECOLLIMIT elements are considered
to be dense. Such columns will be handled specially in the Cholesky factorization of
this matrix.

Type Integer

Default value 0 — determined automatically.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

Control Parameters 220 Xpress-Optimizer Reference Manual

DUALGRADIENT

Description Simplex: This specifies the dual simplex pricing method.

Type Integer

Values -1 Determine automatically.

0 Devex.

1 Steepest edge.

Default value -1

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also PRICINGALG.

DUALIZE

Description Newton Barrier: This specifies whether the Newton Barrier method should solve the
dual problems.

Type Integer

Values -1 Determine automatically.

0 Solve the primal problem.

1 Solve the dual problem.

Default value -1

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

ELIMTOL

Description The Markowitz tolerance for the elimination phase of the presolve.

Type Double

Default value 1.0E-03

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

ETATOL

Description Zero tolerance on eta elements. During each iteration, the basis inverse is premul-
tiplied by an elementary matrix, which is the identity except for one column - the
eta vector. Elements of eta vectors whose absolute value is smaller than ETATOL are
taken to be zero in this step.

Type Double

Default value 1.0E-13

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSbtran, XPRSftran.

Control Parameters 221 Xpress-Optimizer Reference Manual

EXTRACOLS

Description The initial number of extra columns to allow for in the matrix. If columns are to be
added to the matrix, then, for maximum efficiency, space should be reserved for the
columns before the matrix is input by setting the EXTRACOLS control. If this is not
done, resizing will occur automatically, but more space may be allocated than the
user actually requires.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAROWS, EXTRAELEMS, EXTRAMIPENTS.

EXTRAELEMS

Description The initial number of extra matrix elements to allow for in the matrix, including coef-
ficients for cuts. If rows or columns are to be added to the matrix, then, for maximum
efficiency, space should be reserved for the extra matrix elements before the matrix
is input by setting the EXTRAELEMS control. If this is not done, resizing will occur
automatically, but more space may be allocated than the user actually requires. The
space allowed for cut coefficients is equal to the number of extra matrix elements
remaining after rows and columns have been added but before the global optimiza-
tion starts. EXTRAELEMS is set automatically by the optimizer when the matrix is first
input to allow space for cuts, but if you add rows or columns, this automatic setting
will not be updated. So if you wish cuts, either automatic cuts or user cuts, to be
added to the matrix and you are adding rows or columns, EXTRAELEMS must be set
before the matrix is first input, to allow space both for the cuts and any extra rows or
columns that you wish to add.

Type Integer

Default value Hardware/platform dependent.

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp, XPRSsetcbcutmgr.

See also EXTRACOLS, EXTRAROWS.

EXTRAMIPENTS

Description The initial number of extra global entities to allow for.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadqglobal.

Control Parameters 222 Xpress-Optimizer Reference Manual

EXTRAPRESOLVE

Description The initial number of extra elements to allow for in the presolve.

Type Integer

Default value Hardware/platform dependent.

Note The space required to store extra presolve elements is allocated dynamically, so it is
not necessary to set this control.

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

EXTRAROWS

Description The initial number of extra rows to allow for in the matrix, including cuts. If rows are
to be added to the matrix, then, for maximum efficiency, space should be reserved
for the rows before the matrix is input by setting the EXTRAROWS control. If this is
not done, resizing will occur automatically, but more space may be allocated than the
user actually requires. The space allowed for cuts is equal to the number of extra rows
remaining after rows have been added but before the global optimization starts.
EXTRAROWS is set automatically by the optimizer when the matrix is first input to
allow space for cuts, but if you add rows, this automatic setting will not be updated.
So if you wish cuts, either automatic cuts or user cuts, to be added to the matrix and
you are adding rows, EXTRAROWS must be set before the matrix is first input, to allow
space both for the cuts and any extra rows that you wish to add.

Type Integer

Default value Dependent on the matrix characteristics.

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp, XPRSsetcbcutmgr.

See also EXTRACOLS.

EXTRASETELEMS

Description The initial number of extra elements in sets to allow for in the matrix. If sets are to be
added to the matrix, then, for maximum efficiency, space should be reserved for the
set elements before the matrix is input by setting the EXTRASETELEMS control. If this
is not done, resizing will occur automatically, but more space may be allocated than
the user actually requires.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAMIPENTS, EXTRASETS.

Control Parameters 223 Xpress-Optimizer Reference Manual

EXTRASETS

Description The initial number of extra sets to allow for in the matrix. If sets are to be added to
the matrix, then, for maximum efficiency, space should be reserved for the sets before
the matrix is input by setting the EXTRASETS control. If this is not done, resizing will
occur automatically, but more space may be allocated than the user actually requires.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

See also EXTRAMIPENTS, EXTRASETELEMS.

FEASIBILITYPUMP

Description Branch and Bound: Decides if the Feasibility Pump heuristic should be run at the top
node.

Type Integer

Values 0 Turned off.

1 Always try the Feasibility Pump.

2 Try the Feasibility Pump only if other heuristics have failed to find an integer
solution.

Default value 0

Affects routines XPRSglobal (GLOBAL).

FEASTOL

Description This is the zero tolerance on right hand side values, bounds and range values, i.e. the
bounds of basic variables. If one of these is less than or equal to FEASTOL in absolute
value, it is treated as zero.

Type Double

Default value 1.0E-06

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSgetinfeas.

GOMCUTS

Description Branch and Bound: The number of rounds of Gomory cuts at the top node. These can
always be generated if the current node does not yield an integral solution. However,
Gomory cuts are not usually as effective as lifted cover inequalities in reducing the size
of the feasible region.

Control Parameters 224 Xpress-Optimizer Reference Manual

Type Integer

Default value -1 — determined automatically.

Affects routines XPRSglobal (GLOBAL).

HEURDEPTH

Description Branch and Bound: Sets the maximum depth in the tree search at which heuristics
will be used to find MIP solutions. It may be worth stopping the heuristic search for
solutions after a certain depth in the tree search. A value of 0 signifies that heuristics
will not be used.

Type Integer

Default value -1

Affects routines XPRSglobal (GLOBAL).

HEURDIVESPEEDUP

Description Branch and Bound: Changes the emphasis of the diving heuristic from solution quality
to diving speed.

Type Integer

Values -1 Automatic selection.

0-3 Emphasis bias from emphasis on quality (0) to emphasis on speed (3).

Default value -1

Affects routines XPRSglobal (GLOBAL).

See also HEURDIVESTRATEGY.

HEURDIVESTRATEGY

Description Branch and Bound: Chooses the strategy for the diving heuristic.

Type Integer

Values -1 Automatic selection of strategy.

0 Disables the diving heuristic.

1-10 Available pre-set strategies for rounding infeasible global entities and reop-
timizing during the heuristic dive.

Default value -1

Affects routines XPRSglobal (GLOBAL).

See also HEURSTRATEGY.

Control Parameters 225 Xpress-Optimizer Reference Manual

HEURFREQ

Description Branch and Bound: This specifies the frequency at which heuristics are used in the tree
search. Heuristics will only be used at a node if the depth of the node is a multiple of
HEURFREQ.

Type Integer

Default value -1

Affects routines XPRSglobal (GLOBAL).

HEURMAXSOL

Description Branch and Bound: This specifies the maximum number of heuristic solutions that will
be found in the tree search.

Type Integer

Default value -1

Affects routines XPRSglobal (GLOBAL).

HEURNODES

Description Branch and Bound: This specifies the maximum number of nodes at which heuristics
are used in the tree search.

Type Integer

Default value -1

Affects routines XPRSglobal (GLOBAL).

HEURSEARCHFREQ

Description Branch and Bound: This specifies how often the local search heuristic should be run
in the tree.

Type Integer

Values 0 Disabled in the tree.

n>0 Number of nodes between each run.

Default value 500

Affects routines XPRSglobal (GLOBAL).

See also HEURSTRATEGY.

Control Parameters 226 Xpress-Optimizer Reference Manual

HEURSTRATEGY

Description Branch and Bound: This specifies the heuristic strategy. On some problems it is worth
trying more comprehensive heuristic strategies by setting HEURSTRATEGY to 2 or 3.

Type Integer

Values -1 Automatic selection of heuristic strategy.

0 No heuristics.

1 Basic heuristic strategy.

2 Enhanced heuristic strategy.

3 Extensive heuristic strategy.

Default value -1

Affects routines XPRSglobal (GLOBAL).

INVERTFREQ

Description Simplex: The frequency with which the basis will be inverted. The basis is maintained
in a factorized form and on most simplex iterations it is incrementally updated to
reflect the step just taken. This is considerably faster than computing the full inverted
matrix at each iteration, although after a number of iterations the basis becomes
less well-conditioned and it becomes necessary to compute the full inverted matrix.
The value of INVERTFREQ specifies the maximum number of iterations between full
inversions.

Type Integer

Default value -1 — the frequency is determined automatically.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

INVERTMIN

Description Simplex: The minimum number of iterations between full inversions of the basis ma-
trix. See the description of INVERTFREQ for details.

Type Integer

Default value 3

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

KEEPBASIS

Description Simplex: This determines which basis to use for the next iteration. The choice is
between using that determined by the crash procedure at the first iteration, or using
the basis from the last iteration.

Control Parameters 227 Xpress-Optimizer Reference Manual

Type Integer

Values 0 Problem optimization starts from the first iteration, i.e. the previous basis is
ignored.

1 The previously loaded basis (last in memory) should be used.

Default value 1

Note This gets reset to the default value after optimization has started.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

KEEPMIPSOL

Description Branch and Bound: The number of integer solutions to store. During a global search,
any number of integer solutions may be found, which may or may not represent
optimal solutions. See XPRSglobal (GLOBAL). Goal Programming: The number of
partial solutions to store in the pre-emptive goal programming. Pre-emptive goal
programming solves a sequence of problems giving a sequence of partial solutions.
See XPRSgoal (GOAL). The stored solutions can only be accessed in a limited way -
see the notes below. An alternative method of storing multiple integer solutions
from the Optimizer library (or Mosel) is to use an integer solution callback function
to retrieve and store them - see XPRSsetcbintsol for details.

Type Integer

Values 1 store the best/final solution only.

n=2-11 store the n best/most recent solutions.

Default value 1

Note Multiple solutions are kept by storing them on separate binary solution files. The
best/final solution is stored on the default solution file, probname.sol, as usual.
The next best solution (if found) is stored on a solution file named probname.so0,
the next best on probname.so1, and so on up to probname.so9, or until there are
no further solutions. The only function able to access the multiple solution files is
XPRSwritesol (WRITESOL) - refer to its "e" flag. It is also possible to use other func-
tions that access the solution from the solution file by renaming a particular stored
solution file, e.g., probname.so3, to the default solution file probname.sol before
using the function. A list of functions that may be used to access the solution from
the solution file may be found under the SOLUTIONFILE control.

Affects routines XPRSglobal (GLOBAL), XPRSgoal (GOAL).

See also XPRSwritesol (WRITESOL) with its e flag; XPRSsetcbintsol.

KEEPNROWS

Description Status for nonbinding rows.

Type Integer

Values -1 Delete N type rows from the matrix.

0 Delete elements from N type rows leaving empty N type rows in the matrix.

1 Keep N type rows.

Default value 1

Control Parameters 228 Xpress-Optimizer Reference Manual

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp.

L1CACHE

Description Newton barrier: L1 cache size in kB (kilo bytes) of the CPU. On Intel (or compatible)
platforms a value of -1 may be used to determine the cache size automatically.

Type Integer

Default value Hardware/platform dependent.

Note Specifying the correct L1 cache size can give a significant performance advantage
with the Newton barrier algorithm.

If the size is unknown, it is better to specify a smaller size.

If the size cannot be determined automatically on Intel (or compatible) platforms, a
default size of 8 kB is assumed.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

LINELENGTH

Description Maximum line length for LP files.

Type Integer

Default value 512

Affects routines XPRSreadprob (READPROB)

LNPBEST

Description Number of infeasible global entities to create lift-and-project cuts for during each
round of Gomory cuts at the top node (see GOMCUTS).

Type Integer

Default value 50

Affects routines XPRSglobal.

LNPITERLIMIT

Description Number of iterations to perform in improving each lift-and-project cut.

Type Integer

Default value 10

Note By setting the number to zero a Gomory cut will be created instead.

Affects routines XPRSglobal (GLOBAL).

Control Parameters 229 Xpress-Optimizer Reference Manual

LPITERLIMIT

Description Simplex: The maximum number of iterations that will be performed before the opti-
mization process terminates. For MIP problems, this is the maximum total number of
iterations over all nodes explored by the Branch and Bound method.

Type Integer

Default value 2147483645

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

LPLOG

Description Simplex: The frequency at which the simplex log is printed.

Type Integer

Values n<0 Detailed output every -n iterations.

0 Log displayed at the end of the optimization only.

n>0 Summary output every n iterations.

Default value 100

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also A.8.

MARKOWITZTOL

Description The Markowitz tolerance used for the factorization of the basis matrix.

Type Double

Default value 0.01

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

MATRIXTOL

Description The zero tolerance on matrix elements. If the value of a matrix element is less than
or equal to MATRIXTOL in absolute value, it is treated as zero.

Type Double

Default value 1.0E-09

Affects routines XPRSreadprob (READPROB), XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadqp, XPRSalter (ALTER), XPRSaddcols, XPRSaddcuts, XPRSaddrows,
XPRSchgcoef, XPRSchgmcoef, XPRSstorecuts.

Control Parameters 230 Xpress-Optimizer Reference Manual

MAXCUTTIME

Description The maximum amount of time allowed for generation of cutting planes and reopti-
mization. The limit is checked during generation and no further cuts are added once
this limit has been exceeded.

Type Integer

Values 0 No time limit.

n>0 Stop cut generation after n seconds.

Default value 0

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSglobal (GLOBAL).

MAXIIS

Description This controls the number of Irreducible Infeasible Sets to be found using the XPRSiis
(IIS) function.

Type Integer

Values -1 Search for all IIS.

0 Do not search for IIS.

n>0 Search for the first n IIS.

Default value -1

Affects routines XPRSiis (IIS), XPRSgetiis.

MAXMIPSOL

Description Branch and Bound: This specifies a limit on the number of integer solutions to be
found by the Optimizer before it pauses and asks whether or not to continue. It is
possible that during optimization the Optimizer will find the same objective solution
from different nodes. However, MAXMIPSOL refers to the total number of integer
solutions found, and not necessarily the number of distinct solutions.

Type Integer

Default value 0

Affects routines XPRSglobal (GLOBAL).

MAXNODE

Description Branch and Bound: The maximum number of nodes that will be explored before the
Optimizer pauses and asks whether or not to continue.

Type Integer

Control Parameters 231 Xpress-Optimizer Reference Manual

Default value 100000000

Affects routines XPRSglobal (GLOBAL).

MAXPAGELINES

Description Number of lines between page breaks in printable output.

Type Integer

Default value 23

Affects routines XPRSwriteprtsol (WRITEPRTSOL), XPRSwriteprtrange (WRITEPRTRANGE).

MAXTIME

Description The maximum time in seconds that the Optimizer will run before it terminates, in-
cluding the problem setup time and solution time. For MIP problems, this is the total
time taken to solve all the nodes.

Type Integer

Values 0 No time limit.

n>0 If an integer solution has been found, stop MIP search after n seconds, oth-
erwise continue until an integer solution is finally found.

n<0 Stop in LP or MIP search after n seconds.

Default value 0

Affects routines XPRSglobal (GLOBAL), XPRSmaxim (MAXIM), XPRSminim (MINIM).

MIPABSCUTOFF

Description Branch and Bound: If the user knows that they are interested only in values of
the objective function which are better than some value, this can be assigned to
MIPABSCUTOFF. This allows the Optimizer to ignore solving any nodes which may
yield worse objective values, saving solution time. It is set automatically after an LP
Optimizer command, unless it was previously set by the user. The cutoff may be up-
dated automatically whenever a MIP solution is found using the MIPRELCUTOFF and
MIPADDCUTOFF controls.

Type Double

Default value 1.0E+40 (for minimization problems); -1.0E+40 (for maximization problems).

Note MIPABSCUTOFF can also be used to stop the dual algorithm.

Affects routines XPRSglobal (GLOBAL), XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also MIPRELCUTOFF, MIPADDCUTOFF.

Control Parameters 232 Xpress-Optimizer Reference Manual

MIPABSSTOP

Description Branch and Bound: The absolute tolerance determining whether the global search
will continue or not. It will terminate if
|MIPOBJVAL - BESTBOUND| ≤ MIPABSSTOP
where MIPOBJVAL is the value of the best solution’s objective function, and BESTBOUND
is the current best solution bound. For example, to stop the global search when a MIP
solution has been found and the Optimizer can guarantee it is within 100 of the op-
timal solution, set MIPABSSTOP to 100.

Type Double

Default value 0.0

Affects routines XPRSglobal (GLOBAL).

See also MIPRELSTOP, MIPADDCUTOFF.

MIPADDCUTOFF

Description Branch and Bound: The amount to add to the objective function of the best integer
solution found to give the new cutoff. Once an integer solution has been found
whose objective function is equal to or better than MIPABSCUTOFF, improvements on
this value may not be interesting unless they are better by at least a certain amount.
If MIPADDCUTOFF is nonzero, it will be added to MIPABSCUTOFF each time an integer
solution is found which is better than this new value. This cuts off sections of the
tree whose solutions would not represent substantial improvements in the objective
function, saving processor time. The control MIPABSSTOP provides a similar function
but works in a different way.

Type Double

Default value -1.0E-05

Affects routines XPRSglobal (GLOBAL).

See also MIPRELCUTOFF, MIPABSSTOP, MIPABSCUTOFF.

MIPLOG

Description Global print control.

Type Integer

Values -n Print out summary log at each nth node.

0 No printout in global.

1 Only print out summary statement at the end.

2 Print out detailed log at all solutions found.

3 Print out detailed log at each node.

Default value -100

Affects routines XPRSglobal (GLOBAL).

See also A.9.

Control Parameters 233 Xpress-Optimizer Reference Manual

MIPPRESOLVE

Description Branch and Bound: Type of integer processing to be performed. If set to 0, no pro-
cessing will be performed.

Type Integer

Values Bit Meaning

0 Reduced cost fixing will be performed at each node. This can simplify the
node before it is solved, by deducing that certain variables’ values can be
fixed based on additional bounds imposed on other variables at this node.

1 Logical preprocessing will be performed at each node. This is performed
on binary variables, often resulting in fixing their values based on the con-
straints. This greatly simplifies the problem and may even determine opti-
mality or infeasibility of the node before the simplex method commences.

2 Probing of binary variables is performed at the top node. This sets certain
binary variables and then deduces effects on other binary variables occurring
in the same constraints.

Default value Dependent on the matrix characteristics.

Note If the user has not set MIPPRESOLVE then its value is determined automatically af-
ter presolve (in the XPRSmaxim (MAXIM), XPRSminim (MINIM) call) according to the
properties of the matrix.

Affects routines XPRSglobal (GLOBAL).

See also 5.2, PRESOLVE, PRESOLVEOPS.

MIPRELCUTOFF

Description Branch and Bound: Percentage of the LP solution value to be added to the value of
the objective function when an integer solution is found, to give the new value of
MIPABSCUTOFF. The effect is to cut off the search in parts of the tree whose best pos-
sible objective function would not be substantially better than the current solution.
The control MIPRELSTOP provides a similar functionality but works in a different way.

Type Double

Default value 1.0E-04

Affects routines XPRSglobal (GLOBAL).

See also MIPABSCUTOFF, MIPADDCUTOFF, MIPRELSTOP.

MIPRELSTOP

Description Branch and Bound: This determines whether or not the global search will terminate.
Essentially it will stop if:
|MIPOBJVAL - BESTBOUND| ≤ MIPRELSTOP x BESTBOUND
where MIPOBJVAL is the value of the best solution’s objective function and BESTBOUND
is the current best solution bound. For example, to stop the global search when a MIP
solution has been found and the Optimizer can guarantee it is within 5% of the opti-
mal solution, set MIPRELSTOP to 0.05.

Control Parameters 234 Xpress-Optimizer Reference Manual

Type Double

Default value 0.0001

Affects routines XPRSglobal (GLOBAL).

See also MIPABSSTOP, MIPRELCUTOFF.

MIPTARGET

Description Branch and Bound: The target object function for the global search (only used by
certain node selection criteria). This is set automatically after an LP optimization
routine, unless it was previously set by the user.

Type Double

Default value 1.0E+40

Affects routines XPRSglobal (GLOBAL).

See also BACKTRACK.

MIPTHREADS

Description Branch and Bound: The number of threads implemented to run the parallel MIP code.
This is usually set to the number of processors when running Parallel Xpress-MP on a
single multi-processor machine.

Type Integer

Default value 0

Note The value of MIPTHREADS depends on the user’s authorization. If it is set to a value
higher than that specified by the licence, then it will be reset by the Optimizer imme-
diately prior to optimization. Obtaining its value after the optimization will give an
indication of how many processors were actually used.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSglobal (GLOBAL).

See also SHAREMATRIX.

MIPTOL

Description Branch and Bound: This is the tolerance within which a decision variable’s value is
considered to be integral.

Type Double

Default value 5.0E-06

Affects routines XPRSglobal (GLOBAL).

Control Parameters 235 Xpress-Optimizer Reference Manual

MPSBOUNDNAME

Description The bound name sought in the MPS file. As with all string controls, this is of length
64 characters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSreadprob (READPROB).

MPSECHO

Description Determines whether comments in MPS matrix files are to be printed out during matrix
input.

Type Integer

Values 0 MPS comments are not to be echoed.

1 MPS comments are to be echoed.

Default value 1

Affects routines XPRSreadprob (READPROB).

MPSERRIGNORE

Description Number of errors to ignore whilst reading an MPS file.

Type Integer

Default value 0

Affects routines XPRSreadprob (READPROB).

MPSFORMAT

Description Specifies the format of MPS files.

Type Integer

Values -1 To determine the file type automatically.

0 For fixed format.

1 If MPS files are assumed to be in free format by input.

Default value -1

Affects routines XPRSalter (ALTER), XPRSreadbasis (READBASIS), XPRSreadprob (READPROB).

Control Parameters 236 Xpress-Optimizer Reference Manual

MPSNAMELENGTH

Description Maximum length of MPS names in characters. If reset, this must be before any prob-
lem is input. Internally it is rounded up to the smallest multiple of 8. MPS names are
right padded with blanks.

Type Integer

Default value 8

Note MPSNAMELENGTH must not be set to more than 64 characters.

Affects routines XPRSaddnames, XPRSreadprob (READPROB)

MPSOBJNAME

Description The objective function name sought in the MPS file. As with all string controls, this is
of length 64 characters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSreadprob (READPROB).

MPSRANGENAME

Description The range name sought in the MPS file. As with all string controls, this is of length 64
characters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSreadprob (READPROB).

MPSRHSNAME

Description The right hand side name sought in the MPS file. As with all string controls, this is of
length 64 characters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSreadprob (READPROB).

Control Parameters 237 Xpress-Optimizer Reference Manual

MUTEXCALLBACKS

Description Branch and Bound: This determines whether the callback routines are mutexed from
within the optimizer.

Type Integer

Values 0 Callbacks are not mutexed.

1 Callbacks are mutexed.

Default value 1

Note If the users’ callbacks take a significant amount of time it may be preferable not
to mutex the callbacks. In this case the user must ensure that their callbacks are
threadsafe.

Affects routines XPRSsetcbchgbranchXPRSsetcbchgnode, XPRSsetcboptnode,
XPRSsetcbinfnode, XPRSsetcbintsol, XPRSsetcbnodecutoff,
XPRSsetcbprenode.

NODESELECTION

Description Branch and Bound: This determines which nodes will be considered for solution once
the current node has been solved.

Type Integer

Values 1 Local first: Choose between descendant and sibling nodes if available; choose
from all outstanding nodes otherwise.

2 Best first: Choose from all outstanding nodes.

3 Local depth first: Choose between descendant and sibling nodes if available;
choose from the deepest nodes otherwise.

4 Best first, then local first: Best first is used for the first BREADTHFIRST nodes,
after which local first is used.

5 Pure depth first: Choose from the deepest outstanding nodes.

Default value Dependent on the matrix characteristics.

Affects routines XPRSglobal (GLOBAL).

OMNIDATANAME

Description Data for OMNI data name field. As with all string controls, this is of length 64 charac-
ters plus a null terminator, \0.

Type String

Default value 64 blanks

Affects routines XPRSwriteomni (WRITEOMNI).

Control Parameters 238 Xpress-Optimizer Reference Manual

OMNIFORMAT

Description Whether to include matrix coefficients in XPRSwriteomni (WRITEOMNI output.

Type Integer

Values 0 Matrix coefficients not to be included in output.

1 Include coefficients in output (new style).

2 Include coefficients in output (old style - prior to 1999).

Default value 0

Affects routines XPRSwriteomni (WRITEOMNI).

OPTIMALITYTOL

Description Simplex: This is the zero tolerance for reduced costs. On each iteration, the simplex
method searches for a variable to enter the basis which has a negative reduced cost.
The candidates are only those variables which have reduced costs less than the nega-
tive value of OPTIMALITYTOL.

Type Double

Default value 1.0E-06

Affects routines XPRSgetinfeas, XPRSmaxim (MAXIM), XPRSminim (MINIM).

OUTPUTLOG

Description This controls the level of output produced by the Optimizer during optimization. The
possible options are to print all messages or to disable printing altogether. Output
is sent to the screen (stdout) by default, but may be intercepted by a user function
using the user output callback; see XPRSsetcbmessage. However, under Windows,
no output from the Optimizer DLL is sent to the screen. The user must define a
callback function and print messages to the screen them self if they wish output to
be displayed.

Type Integer

Values 0 Turn all output off.

1 Print messages.

Default value 1

Affects routines XPRSsetcbmessage, XPRSsetlogfile.

OUTPUTMASK

Description Mask to restrict the row and column names written to file. As with all string controls,
this is of length 64 characters plus a null terminator, \0.

Control Parameters 239 Xpress-Optimizer Reference Manual

Type String

Default value 64 ’?’s

Affects routines XPRSwriterange (WRITERANGE), XPRSwritesol (WRITESOL).

OUTPUTTOL

Description Zero tolerance on print values.

Type Double

Default value 1.0E-05

Affects routines XPRSwriteprtrange (WRITEPRTRANGE), XPRSwriteprtsol (WRITEPRTSOL),
XPRSwriterange (WRITERANGE), XPRSwritesol (WRITESOL).

PENALTY

Description Minimum absolute penalty variable coefficient. BIGM and PENALTY are set by the
input routine (XPRSreadprob (READPROB)) but may be reset by the user prior to
XPRSmaxim (MAXIM), XPRSminim (MINIM).

Type Double

Default value Dependent on the matrix characteristics.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

PERTURB

Description The factor by which the problem will be perturbed prior to optimization if the control
AUTOPERTURB has been set to 1. A value of 0.0 results in an automatically deter-
mined perturbation value.

Type Double

Default value 0.0 — perturbation value is determined automatically by default.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

PIVOTTOL

Description Simplex: The zero tolerance for matrix elements. On each iteration, the simplex
method seeks a nonzero matrix element to pivot on. Any element with absolute
value less than PIVOTTOL is treated as zero for this purpose.

Type Double

Default value 1.0E-09

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSpivot.

Control Parameters 240 Xpress-Optimizer Reference Manual

PPFACTOR

Description The partial pricing candidate list sizing parameter.

Type Double

Default value 1.0

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

PRESOLVE

Description This control determines whether presolving should be performed prior to starting the
main algorithm. Presolve attempts to simplify the problem by detecting and remov-
ing redundant constraints, tightening variable bounds, etc. In some cases, infeasibility
may even be determined at this stage, or the optimal solution found.

Type Integer

Values -1 Presolve applied, but a problem will not be declared infeasible if primal in-
feasibilities are detected. The problem will be solved by the LP optimization
algorithm, returning an infeasible solution, which can sometimes be helpful.

0 Presolve not applied.

1 Presolve applied.

2 Presolve applied, but redundant bounds are not removed. This can some-
times increase the efficiency of the barrier algorithm.

Default value 1

Note Memory for presolve is dynamically resized. If the Optimizer runs out of memory for
presolve, an error message (245) is produced.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also 5.2, PRESOLVEOPS.

PRESOLVEOPS

Description This specifies the operations which are performed during the presolve.

Type Integer

Control Parameters 241 Xpress-Optimizer Reference Manual

Values Bit Meaning

0 Singleton column removal.

1 Singleton row removal.

2 Forcing row removal.

3 Dual reductions.

4 Redundant row removal.

5 Duplicate column removal.

6 Duplicate row removal.

7 Strong dual reductions.

8 Variable eliminations.

9 No IP reductions.

10 No semi-continuous variable detection.

11 No advanced IP reductions.

14 Linearly dependant row removal.

15 No integer variable and SOS detection.

Default value 511 (bits 0 — 8 incl. are set)

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSpresolvecut.

See also 5.2, PRESOLVE, MIPPRESOLVE.

PRICINGALG

Description Simplex: This determines the primal simplex pricing method. It is used to select which
variable enters the basis on each iteration. In general Devex pricing requires more
time on each iteration, but may reduce the total number of iterations, whereas partial
pricing saves time on each iteration, but may result in more iterations.

Type Integer

Values -1 Partial pricing.

0 Determined automatically.

1 Devex pricing.

Default value 0

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also DUALGRADIENT.

PROBNAME

Description The current problem name

Type String

Affects routines XPRSgetprobname, XPRSsetprobname

Control Parameters 242 Xpress-Optimizer Reference Manual

PSEUDOCOST

Description Branch and Bound: The default pseudo cost used in estimation of the degradation
associated with an unexplored node in the tree search. A pseudo cost is associated
with each integer decision variable and is an estimate of the amount by which the
objective function will be worse if that variable is forced to an integral value.

Type Double

Default value 0.01

Affects routines XPRSglobal (GLOBAL), XPRSreaddirs (READDIRS).

REFACTOR

Description Indicates whether the optimization should restart using the current representation of
the factorization in memory.

Type Integer

Values 0 Do not refactor on reoptimizing.

1 Refactor on reoptimizing.

Default value 0 — for the global search. 1 — for reoptimizing.

Note In the tree search, the optimal bases at the nodes are not refactorized by default, but
the optimal basis for an LP problem will be refactorized. If you are repeatedly solving
LPs with few changes then it is more efficient to set REFACTOR to 0.

Affects routines XPRSglobal (GLOBAL), XPRSmaxim (MAXIM), XPRSminim (MINIM).

RELPIVOTTOL

Description Simplex: At each iteration a pivot element is chosen within a given column of the
matrix. The relative pivot tolerance, RELPIVOTTOL, is the size of the element chosen
relative to the largest possible pivot element in the same column.

Type Double

Default value 1.0E-06

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSpivot.

SBBEST

Description Number of infeasible global entities on which to perform strong branching.

Type Integer

Control Parameters 243 Xpress-Optimizer Reference Manual

Values -1 determined automatically.

0 disable strong branching.

n>0 perform strong branching on n entities at each node.

Default value -1

Note The two recommended settings for this control are -1 (automatic) and 0 (disabled).
Positive values normally result in an excessive amount of strong branching (and thus
time) at each node. Setting SBBEST=0 will turn strong branch off.

Affects routines XPRSglobal (GLOBAL).

See also SBITERLIMIT, SBSELECT.

SBEFFORT

Description Adjusts the overall amount of effort when using strong branching to select an infea-
sible global entitiy to branch on.

Type Double

Default value 1.0

Note SBEFFORT is used as a multiplier on other strong branching related controls, and
affects the values used for SBBEST, SBSELECT and SBITERLIMIT when those are set
to automatic.

Affects routines XPRSglobal (GLOBAL).

See also SBBEST, SBITERLIMIT, SBSELECT.

SBESTIMATE

Description Choose the estimate to be used to select candiates for strong branching.

Type Integer

Values -1 Automatically determined.

1-4 Different variants of local pseudo costs.

Default value -1

Affects routines XPRSglobal (GLOBAL).

See also SBBEST, SBITERLIMIT, SBSELECT.

SBITERLIMIT

Description Number of dual iterations to perform the strong branching for each entity.

Type Integer

Default value -1 — determined automatically.

Control Parameters 244 Xpress-Optimizer Reference Manual

Note This control can be useful to increase or decrease the amount of effort (and thus
time) spent performing strong branching at each node. Setting SBITERLIMIT=0 will
disable dual strong branch iterations. Instead, the entity at the head of the candidate
list will be selected for branching.

Affects routines XPRSglobal (GLOBAL).

See also SBBEST, SBSELECT.

SBSELECT

Description The size of the candidate list of global entities for strong branching.

Type Integer

Default value -1 — determined automatically.

Note Before strong branching is applied on a node of the branch and bound tree, a list of
candidates is selected among the infeasible global entities. These entities are then
evaluated based on the local LP solution and prioritized. Strong branching will then
be applied to the SBBEST candidates. The evaluation is potentially expensive and
for some problems it might improve performance if the size of the candidate list is
reduced.

Affects routines XPRSglobal (GLOBAL).

SBTHREADS

Description The number of parallel threads to use for strong branching.

Type Integer

Values 0 Parallel strong branching disabled.

>1 Number of parallel threads to start.

Default value 0

Affects routines XPRSglobal (GLOBAL).

See also SBBEST.

SCALING

Description This determines how the Optimizer will rescale a model internally before optimiza-
tion. If set to 0, no scaling will take place.

Type Integer

Control Parameters 245 Xpress-Optimizer Reference Manual

Values Bit Meaning

0 Row scaling.

1 Column scaling.

2 Row scaling again.

3 Maximum.

4 Curtis-Reid.

5 0: scale by geometric mean.
1: scale by maximum element.

6 Objective function scaling.

Default value 163

Affects routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob
(READPROB), XPRSscale (SCALE).

See also 3.4.

SHAREMATRIX

Description This determines whether the matrix is shared by the parallel MIP.

Type Integer

Values 0 Matrix is not shared.

1 Matrix is shared.

Default value 0

Note If the matrix is shared then cuts will not be generated in the tree. However, sharing
the matrix will save memory.

Affects routines XPRSglobal (GLOBAL).

See also MIPTHREADS

SOLUTIONFILE

Description The SOLUTIONFILE control is deprecated and will be removed in version 18. Binary
solution files are no longer created automatically and it is now necessary to explicitly
create a binary solution file with the XPRSwritebinsol (WRITEBINSOL) command.
The XPRSwriteprtsol (WRITEPRTSOL), XPRSwritesol (WRITESOL) and PRINTSOL
commands will write or print reports for the solution in memory. To write a re-
port on a solution in binary solution file, the solution must first be loaded with the
XPRSreadbinsol (READBINSOL) command. The XPRSgetbasis, XPRSgetinfeas
and XPRSgetlpsol commands all obtain information from the solution in memory.
To obtain information on a solution in binary solution file, the solution must first be
loaded with the XPRSreadbinsol (READBINSOL) command.

The XPRSgetsol function is deprecated and will be removed in version 18. Users
should use the XPRSgetlpsol function to get the current LP solution and XPRSgetmipsol
function to get the last found MIP solution. The XPRSgetlpsol will read the current
LP solution from memory and the XPRSgetmipsol will read the current MIP solution
from memory.

Type Integer

Control Parameters 246 Xpress-Optimizer Reference Manual

Values -1 The binary file is not created. The XPRSgetsol function will return the LP
solution until the MIP search starts at which point the last found MIP solution
will be returned.

0 The binary file is not created. The XPRSgetsol function will return the cur-
rent solution in memory.

1 The binary solution file will be created and used to store the final LP solution,
or, if a MIP solution has been found, the best known MIP solution. The so-
lution is written to the file by the XPRSmaxim (MAXIM), XPRSminim (MINIM)
and XPRSglobal (GLOBAL) functions. The binary solution file will remain
after the Optimizer has finished.

Default value -1

Note The solution stored in memory is overwritten by certain operations, including infea-
sibility analysis (XPRSiis). If the solution is required from the solution file, it should
be obtained before any call to XPRSgetiis.

Affects routines XPRSfixglobal (FIXGLOBAL), XPRSgetbasis, XPRSgetiis, XPRSgetinfeas,
XPRSgetsol, XPRSglobal (GLOBAL), XPRSmaxim (MAXIM), XPRSminim (MINIM),
XPRSwriteomni (WRITEOMNI), XPRSwriteprtsol (WRITEPRTSOL), XPRSwritesol
(WRITESOL).

SOSREFTOL

Description The minimum relative gap between the ordering values of elements in a special or-
dered set. The gap divided by the absolute value of the larger of the two adjacent
values must be less than SOSREFTOL.

Type Double

Default value 1.0E-06

Note This tolerance must not be set lower than 1.0E-06.

Affects routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob (READPROB).

TRACE

Description Display the infeasibility diagnosis during presolve. If non-zero, an explanation of the
logical deductions made by presolve to deduce infeasibility or unboundedness will be
displayed on screen or sent to the message callback function.

Type Integer

Default value 0

Note Presolve is sometimes able to detect infeasibility and unboundedness in problems.
The set of deductions made by presolve can allow the user to diagnose the cause
of infeasibility or unboundedness in their problem. However, not all infeasibility or
unboundedness can be detected and diagnosed in this way.

Affects routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

Control Parameters 247 Xpress-Optimizer Reference Manual

TREECOVERCUTS

Description Branch and Bound: The number of rounds of lifted cover inequalities generated
at nodes other than the top node in the tree. Compare with the description for
COVERCUTS.

Type Integer

Default value 1

Affects routines XPRSglobal (GLOBAL).

TREEGOMCUTS

Description Branch and Bound: The number of rounds of Gomory cuts generated at nodes other
than the first node in the tree. Compare with the description for GOMCUTS.

Type Integer

Default value 1

Affects routines XPRSglobal (GLOBAL).

VARSELECTION

Description Branch and Bound: This determines the formula used to calculate the estimate of
each integer variable, and thus which integer variable is selected to be branched on
at a given node. The variable selected to be branched on is the one with the minimum
estimate. The variable estimates are also combined to calculate the overall estimate
of the node, which, depending on the BACKTRACK setting, may be used to choose
between outstanding nodes.

Type Integer

Values -1 Determined automatically.

1 The minimum of the ’up’ and ’down’ pseudo costs.

2 The ’up’ pseudo cost plus the ’down’ pseudo cost.

3 The maximum of the ’up’ and ’down’ pseudo costs, plus twice the minimum
of the ’up’ and ’down’ pseudo costs.

4 The maximum of the ’up’ and ’down’ pseudo costs.

5 The ’down’ pseudo cost.

6 The ’up’ pseudo cost.

Default value -1

Affects routines XPRSglobal (GLOBAL).

Control Parameters 248 Xpress-Optimizer Reference Manual

VERSION

Description The Optimizer version number, e.g. 1301 meaning release 13.01.

Type Integer

Default value Software version dependent

Control Parameters 249 Xpress-Optimizer Reference Manual

Chapter 8

Problem Attributes

During the optimization process, various properties of the problem being solved are stored and
made available to users of the Xpress-MP Libraries in the form of problem attributes. These
can be accessed in much the same manner as for the controls. Examples of problem attributes
include the sizes of arrays, for which library users may need to allocate space before the arrays
themselves are retrieved. A full list of the attributes available and their types may be found in
this chapter.

8.1 Retrieving Problem Attributes

Library users are provided with the following three functions for obtaining the values of at-
tributes:

XPRSgetintattrib XPRSgetdblattrib XPRSgetstrattrib

Much as for the controls previously, it should be noted that the attributes as listed in this
chapter must be prefixed with XPRS_ to be used with the Xpress-MP Libraries and failure to do
so will result in an error. An example of their usage is the following which returns and prints
the optimal value of the objective function after the linear problem has been solved:

XPRSgetdblattrib(prob, XPRS_LPOBJVAL, &lpobjval);

printf("The objective value is %2.1f\n", lpobjval);

ACTIVENODES

Description Number of outstanding nodes.

Type Integer

Set by routines XPRSdelnode, XPRSglobal, XPRSinitglobal.

BARAASIZE

Description Number of nonzeros in AAT .

Type Integer

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

250 Xpress-Optimizer Reference Manual

BARCROSSOVER

Description Indicates whether or not the basis crossover phase has been entered.

Type Integer

Values 0 the crossover phase has not been entered.

1 the crossover phase has been entered.

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARDENSECOL

Description Number of dense columns found in the matrix.

Type Integer

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARDUALINF

Description Sum of the dual infeasibilities for the Newton barrier algorithm.

Type Double

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARDUALOBJ

Description Dual objective value calculated by the Newton barrier algorithm.

Type Double

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARITER

Description Number of Newton barrier iterations.

Type Integer

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

Problem Attributes 251 Xpress-Optimizer Reference Manual

BARLSIZE

Description Number of nonzeros in L resulting from the Cholesky factorization.

Type Integer

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARPRIMALINF

Description Sum of the primal infeasibilities for the Newton barrier algorithm.

Type Double

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARPRIMALOBJ

Description Primal objective value calculated by the Newton barrier algorithm.

Type Double

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BARSTOP

Description Convergence criterion for the Newton barrier algorithm.

Type Double

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

BESTBOUND

Description Value of the best bound determined so far by the global search.

Type Double

Set by routines XPRSglobal.

BOUNDNAME

Description Active bound name.

Problem Attributes 252 Xpress-Optimizer Reference Manual

Type String

Set by routines XPRSreadprob.

BRANCHVALUE

Description The value of the branching variable at a node of the Branch and Bound tree.

Type Double

Set by routines XPRSglobal.

BRANCHVAR

Description The branching variable at a node of the Branch and Bound tree.

Type Integer

Set by routines XPRSglobal.

COLS

Description Number of columns (i.e. variables) in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of columns in
the presolved matrix. If you require the value for the original matrix then use the
ORIGINALCOLS attribute instead. The PRESOLVESTATE attribute can be used to test
if the matrix is presolved or not. See also 5.2.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSmaxim
(MAXIM), XPRSminim (MINIM), XPRSreadprob.

CUTS

Description Number of cuts being added to the matrix.

Type Integer

Set by routines XPRSaddcuts, XPRSdelcpcuts, XPRSdelcuts, XPRSloadcuts,
XPRSloadmodelcuts.

DUALINFEAS

Description Number of dual infeasibilities.

Problem Attributes 253 Xpress-Optimizer Reference Manual

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of dual infeasi-
bilities in the presolved matrix. If you require the value for the original matrix, make
sure you obtain the value when the matrix is not presolved. The PRESOLVESTATE
attribute can be used to test if the matrix is presolved or not. See also 5.2.

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also PRIMALINFEAS.

ELEMS

Description Number of matrix nonzeros (elements).

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of matrix nonze-
ros in the presolved matrix. If you require the value for the original matrix, make sure
you obtain the value when the matrix is not presolved. The PRESOLVESTATE attribute
can be used to test if the matrix is presolved or not. See also 5.2.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSmaxim
(MAXIM), XPRSminim (MINIM), XPRSreadprob.

ERRORCODE

Description The most recent Optimizer error number that occurred. This is useful to determine the
precise error or warning that has occurred, after an Optimizer function has signalled
an error by returning a non-zero value. The return value itself is not the error number.
Refer to the section 9.2 for a list of possible error numbers, the errors and warnings
that they indicate, and advice on what they mean and how to resolve them. A short
error message may be obtained using XPRSgetlasterror, and all messages may be
intercepted using the user output callback function; see XPRSsetcbmessage.

Type Integer

Set by routines Any.

NUMIIS

Description Number of IISs found.

Type Integer

Set by routines XPRSiis.

LPOBJVAL

Description Value of the objective function of the last LP solved.

Problem Attributes 254 Xpress-Optimizer Reference Manual

Type Double

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSglobal.

See also MIPOBJVAL, OBJRHS.

LPSTATUS

Description LP solution status.

Type Integer

Values 1 Optimal (XPRS_LP_OPTIMAL).

2 Infeasible (XPRS_LP_INFEAS).

3 Objective worse than cutoff (XPRS_LP_CUTOFF).

4 Unfinished (XPRS_LP_UNFINISHED).

5 Unbounded (XPRS_LP_UNBOUNDED).

6 Cutoff in dual (XPRS_LP_CUTOFF_IN_DUAL).

Note The possible return values are defined as constants in the Optimizer C header file and
VB .bas file.

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also MIPSTATUS.

MATRIXNAME

Description The matrix name.

Type String

Note This is the name read from the MATRIX field in an MPS matrix, and is not related to
the problem name used in the Optimizer. Use XPRSgetprobname to get the problem
name.

Set by routines XPRSreadprob, XPRSsetprobname.

MIPENTS

Description Number of global entities (i.e. binary, integer, semi-continuous, partial integer, and
semi-continuous integer variables) but excluding the number of special ordered sets.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of global entities
in the presolved matrix. If you require the value for the original matrix, make sure
you obtain the value when the matrix is not presolved. The PRESOLVESTATE attribute
can be used to test if the matrix is presolved or not. See also 5.2.

Set by routines XPRSaddcols, XPRSchgcoltype, XPRSdelcols, XPRSloadglobal,
XPRSloadqglobal, XPRSreadprob.

See also SETS.

Problem Attributes 255 Xpress-Optimizer Reference Manual

MIPINFEAS

Description Number of integer infeasibilities at the current node.

Type Integer

Set by routines XPRSglobal.

See also PRIMALINFEAS.

MIPOBJVAL

Description Objective function value of the best integer solution found.

Type Double

Set by routines XPRSglobal.

See also LPOBJVAL.

MIPSOLNODE

Description Node at which the last integer feasible solution was found.

Type Integer

Set by routines XPRSglobal.

MIPSOLS

Description Number of integer solutions that have been found.

Type Integer

Set by routines XPRSglobal.

MIPSTATUS

Description Global (MIP) solution status.

Type Integer

Problem Attributes 256 Xpress-Optimizer Reference Manual

Values XPRS_MIP_LP_OPTIMAL LP has been optimized. Once the MIP optimization proper
has begun, only the following four status codes will be returned.

XPRS_MIP_INFEAS Global search complete - no integer solution found.

XPRS_MIP_SOLUTION Global search incomplete - an integer solution has been
found.

XPRS_MIP_OPTIMAL Global search complete - integer solution found.

XPRS_MIP_NO_SOL_FOUND Global search incomplete - no integer solution found.

XPRS_MIP_LP_NOT_OPTIMAL LP has not been optimized.

XPRS_MIP_NOT_LOADED Problem has not been loaded.

Note If the XPRS_MIP_LP_OPTIMAL status code is returned, it implies that the optimization
halted during or directly after the LP optimization - for instance, if the LP relaxation
is infeasible or unbounded. In this case please check the value of LP solution status
using LPSTATUS.
The possible return values are defined as constants in the Optimizer C header file and
VB .bas file. Refer to one of those files for the value of the return codes listed above.

Set by routines XPRSglobal, XPRSloadglobal, XPRSloadqglobal, XPRSmaxim (MAXIM),
XPRSminim (MINIM), XPRSreadprob.

See also LPSTATUS.

MIPTHREADID

Description The ID for the MIP thread.

Type Integer

Note The first MIP thread has ID 0 and is the same as the main thread. All other threads
are new threads and are destroyed when the global search is halted.

Set by routines XPRSglobal.

See also MIPTHREADS.

NAMELENGTH

Description The length (in 8 character units) of row and column names in the matrix. To allocate
a character array to store names, you must allow 8*NAMELENGTH+1 characters per
name (the +1 allows for the string terminator character).

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

NODEDEPTH

Description Depth of the current node.

Type Integer

Set by routines XPRSglobal, XPRSinitglobal.

Problem Attributes 257 Xpress-Optimizer Reference Manual

NODES

Description Number of nodes solved so far in the global search. The node numbers start at 1 for
the first (top) node in the Branch and Bound tree. Nodes are numbered consecutively.

Type Integer

Set by routines XPRSglobal, XPRSinitglobal.

OBJNAME

Description Active objective function row name.

Type String

Set by routines XPRSreadprob.

OBJRHS

Description Fixed part of the objective function.

Type Double

Note If the matrix is in a presolved state, this attribute returns the fixed part of the objec-
tive in the presolved matrix. If you require the value for the original matrix, make
sure you obtain the value when the matrix is not presolved. The PRESOLVESTATE
attribute can be used to test if the matrix is presolved or not. See also 5.2. If an MPS
file contains an objective function coefficient in the RHS then the negative of this will
become OBJRHS.

Set by routines XPRSchgobj.

See also LPOBJVAL.

OBJSENSE

Description Sense of the optimization being performed.

Type Double

Values -1.0 For maximization problems.

1.0 For minimization problems.

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

Problem Attributes 258 Xpress-Optimizer Reference Manual

ORIGINALCOLS

Description Number of columns (i.e. variables) in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the COLS attribute.

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

ORIGINALROWS

Description Number of rows (i.e. constraints) in the original matrix before presolving.

Type Integer

Note If you require the value for the presolved matrix then use the ROWS attribute.

Set by routines XPRSaddrows, XPRSdelrows, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadlp, XPRSreadprob.

PARENTNODE

Description The parent node of the current node in the tree search.

Type Integer

Set by routines XPRSglobal, XPRSinitglobal.

PRESOLVESTATE

Description Problem status as a bit map.

Type Integer

Values Bit Meaning

0 Problem has been loaded.

1 Problem has been LP presolved.

2 Problem has been MIP presolved.

7 Solution in memory is valid.

Note Other bits are reserved.

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

Problem Attributes 259 Xpress-Optimizer Reference Manual

PRIMALINFEAS

Description Number of primal infeasibilities.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of primal infeasi-
bilities in the presolved matrix. If you require the value for the original matrix, make
sure you obtain the value when the matrix is not presolved. The PRESOLVESTATE
attribute can be used to test if the matrix is presolved or not. See also 5.2.

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also SUMPRIMALINF, DUALINFEAS, MIPINFEAS.

QELEMS

Description Number of quadratic elements in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of quadratic el-
ements in the presolved matrix. If you require the value for the original matrix, make
sure you obtain the value when the matrix is not presolved. The PRESOLVESTATE
attribute can be used to test if the matrix is presolved or not. See also 5.2.

Set by routines XPRSchgmqobj, XPRSchgqobj, XPRSloadqglobal, XPRSloadqp.

RANGENAME

Description Active range name.

Type String

Set by routines XPRSreadprob.

RHSNAME

Description Active right hand side name.

Type String

Set by routines XPRSreadprob.

ROWS

Description Number of rows (i.e. constraints) in the matrix.

Problem Attributes 260 Xpress-Optimizer Reference Manual

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of rows in
the presolved matrix. If you require the value for the original matrix then use the
ORIGINALROWS attribute instead. The PRESOLVESTATE attribute can be used to test
if the matrix is presolved or not. See also 5.2.

Set by routines XPRSaddrows, XPRSdelrows, XPRSloadglobal, XPRSloadlp, XPRSloadqglobal,
XPRSloadlp, XPRSmaxim (MAXIM), XPRSminim (MINIM), XPRSreadprob.

SIMPLEXITER

Description Number of simplex iterations performed.

Type Integer

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

SETMEMBERS

Description Number of variables within special ordered sets (set members) in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of variables
within special ordered sets in the presolved matrix. If you require the value for the
original matrix, make sure you obtain the value when the matrix is not presolved. The
PRESOLVESTATE attribute can be used to test if the matrix is presolved or not. See
also 5.2.

Set by routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob.

See also SETS.

SETS

Description Number of special ordered sets in the matrix.

Type Integer

Note If the matrix is in a presolved state, this attribute returns the number of special or-
dered sets in the presolved matrix. If you require the value for the original matrix,
make sure you obtain the value when the matrix is not presolved. The PRESOLVESTATE
attribute can be used to test if the matrix is presolved or not. See also 5.2.

Set by routines XPRSloadglobal, XPRSloadqglobal, XPRSreadprob.

See also SETMEMBERS, MIPENTS.

Problem Attributes 261 Xpress-Optimizer Reference Manual

SPARECOLS

Description Number of spare columns in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPAREELEMS

Description Number of spare matrix elements in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPAREMIPENTS

Description Number of spare global entities in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPAREROWS

Description Number of spare rows in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPARESETELEMS

Description Number of spare set elements in the matrix.

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SPARESETS

Description Number of spare sets in the matrix.

Problem Attributes 262 Xpress-Optimizer Reference Manual

Type Integer

Set by routines XPRSloadglobal, XPRSloadlp, XPRSloadqglobal, XPRSloadqp, XPRSreadprob.

SUMPRIMALINF

Description Scaled sum of primal infeasibilities.

Type Double

Note If the matrix is in a presolved state, this attribute returns the scaled sum of pri-
mal infeasibilities in the presolved matrix. If you require the value for the origi-
nal matrix, make sure you obtain the value when the matrix is not presolved. The
PRESOLVESTATE attribute can be used to test if the matrix is presolved or not. See
also 5.2.

Set by routines XPRSmaxim (MAXIM), XPRSminim (MINIM).

See also PRIMALINFEAS.

Problem Attributes 263 Xpress-Optimizer Reference Manual

Chapter 9

Return Codes and Error Messages

9.1 Optimizer Return Codes

The following table shows the possible return codes from the subroutine library functions:

Return Code Description

0 Subroutine completed successfully.

1a Bad input encountered.

2a Bad or corrupt file - unrecoverable.

4a Memory error.

8a Corrupt use.

16a Program error.

32 Subroutine not completed successfully, possibly due to invalid argument.

128 Too many users.

a - Unrecoverable error.

When the Optimizer terminates after the STOP command, it may set an exit code that can be
tested by the operating system or by the calling program. The exit code is set as follows:

Return Code Description

0 Program terminated normally (with STOP).

63 LP optimization unfinished.

64 LP feasible and optimal.

65 LP infeasible.

66 LP unbounded.

67 IP optimal solution found.

68 IP search incomplete but an IP solution has been found.

69 IP search incomplete, no IP solution found.

70 IP infeasible.

99 LP optimization not started.

9.2 Optimizer Error and Warning Messages

Following a premature exit, the Optimizer can be interrogated as necessary to obtain more
information about the specific error or warning which occurred. Library users may return a de-
scription of errors or warnings as they are encountered using the function XPRSgetlasterror.
This function returns information related to the error code, held in the problem attribute

264 Xpress-Optimizer Reference Manual

ERRORCODE. For Console users the value of this attribute is output to the screen as errors or
warnings are encountered. For Library users it must be retrieved using:

XPRSgetintattrib(prob,XPRS_ERRORCODE,&errorcode);

The following list contains values of ERRORCODE and a possible resolution of the error or warn-
ing.

3 Extension not allowed - ignored.
The specified extension is not allowed. The Optimizer ignores the extension and
truncates the filename.

4 Column <col> has no upper bound.
Column <col> cannot be at its upper bound in the supplied basis since it does not
have one. A new basis will be created internally where column <col> will be at its
lower bound while the rest of the columns and rows maintain their basic/non-basic
status.

5 Error on .<ext> file.
An error has occurred on the . <ext> file. Please make sure that there is adequate
disk space for the file and that it has not become corrupted.

6 No match for column <col> in matrix.
Column <col> has not been defined in the COLUMNS section of the matrix and can-
not be used in subsequent sections. Please check that the spelling of <col> is correct
and that it is not written outside the field reserved for column names.

7 Empty matrix. Please increase EXTRAROWS.
There are too few rows or columns. Please increase EXTRAROWS before input, or
make sure there is at least one row in your matrix and try to read it again.

9 Error on read of basis file.
The basis file .BSS is corrupt. Please make sure that there is adequate disk space
for the file and that it has not been corrupted.

11 Not allowed - solution not optimal.
The operation you are trying to perform is not allowed unless the solution is opti-
mal. Please call XPRSmaxim (MAXIM) or XPRSminim (MINIM) to optimize the prob-
lem and make sure the process is completed. If the control LPITERLIMIT has been
set, make sure that the optimal solution can be found within the maximum number
of iterations allowed.

16 Null column <col>.
Column <col> has a zero coefficient in all the rows in the COLUMN section. Please
remove empty columns to avoid this warning message.

17 More than one RHS not permitted - subsequent ones ignored.
Only one RHS is allowed for a constraint. The first RHS value that has been read will
be kept and any subsequent ones ignored.

18 Bound conflict for column <col>.
Specified upper bound for column <col> is smaller that the specified lower bound.
Please change one or both bounds to solve the conflict and try again.

19 Eta overflow straight after invert - unrecoverable.
There is not enough memory for eta arrays. Either increase the virtual paging space
or the physical memory.

20 Insufficient memory for array <array>.
There is not enough memory for an internal data structure. Either increase the
virtual paging space or the physical memory.

Return Codes and Error Messages 265 Xpress-Optimizer Reference Manual

21 Unidentified section The command is not recognized by the Optimizer.
Please check the spelling and try again. Please refer to the Reference Manual for a
list of valid commands.

29 Input aborted.
Input has encountered too many problems in reading your matrix and it has been
aborted. This message will be preceded by other error messages whose error num-
bers will give information about the nature of each of the problems. Please correct
all errors and try again.

36 Linear Optimizer only: buy IP Optimizer from Dash Associates.
You are only authorized to use the Linear Optimizer. Please contact your local sales
office to discuss upgrading to the IP Optimizer if you wish to use this command.

38 Invalid option.
One of the options you have specified is incorrect. Please check the input option
and retype the command. A list of valid options for each command can be found
in 6.

41 Global error - contact Dash.
Internal error. Please contact your local support office.

45 Failure to open global file - aborting. (Perhaps disk is full).
Xpress-MP cannot open the .GLB file. This usually occurs when your disk is full. If
this is not the case it means that the .GLB file has been corrupted.

50 Inconsistent basis.
Internal basis held in memory has been corrupted. Please contact your local support
office.

52 Too many nonzero elements.
The number of matrix elements exceeds the maximum allowed. If you have the
Hyper version then increase your virtual page space or physical memory. If you have
purchased any other version of the software please contact your local sales office
to discuss upgrading if you wish to read matrices with this number of elements.

56 Reference row entries too close for set <set> member <col>.
The coefficient of column <col> in the constraint being used as reference row for
set <set> is too close to the coefficient of some other column in the reference row.
Please make sure the coefficients in the reference row differ enough from one
another. One way of doing this is to create a non computational constraint (N type)
that contains all the variables members of the set <set> and then assign coefficients
whose distance from each other is of at least 1 unit.

58 Duplicate element for column <col> row <row>.
The coefficient for column <col> appears more than once in row <row>. The ele-
ments are added together but please make sure column <col> only has one coeffi-
cient in <row> to avoid this warning message.

60 Out of memory - program aborted.
The Optimizer cannot allocate any more memory. Please increase your virtual page
space or physical memory.

61 Unexpected EOF on workfile.
An internal workfile has been corrupted. Please make sure that there is adequate
disk space and try again. If the problem persists please contact your local support
office.

64 Error closing file <file>.
Xpress-MP could not close file <file>. Please make sure that the file exists and that
it is not being used by another application.

Return Codes and Error Messages 266 Xpress-Optimizer Reference Manual

65 Fatal error on read from workfile <file> - program aborted.
An internal workfile has been corrupted. Please make sure that your disk has
enough space and try again. If the problem persists please contact your local sup-
port office.

66 Unable to open file <file>.
Xpress-MP has failed to open the file <file>. Please make sure that the file exists
and there is adequate disk space.

67 Error on read of file <file>.
Xpress-MP has failed to read the file <file>. Please make sure that the file exists
and that it has not been corrupted.

68 <num> errors in sizing parameter <par> - fatal.
During initialization Xpress-MP has encountered <num> errors. Please contact your
local support office.

71 Not a basic vector: <vector>.
Dual value of row or column <vector> cannot be analyzed because the vector is not
basic.

72 Not a non-basic vector: <vector>.
Activity of row or column <vector> cannot be analyzed because the vector is basic.

73 Problem has too many rows. The maximum is <num>.
Xpress-MP cannot input your problem since the number of rows exceeds <num>,
the maximum allowed. If you have purchased any other than the Hyper version of
the software please contact your local sales office to discuss upgrading it to solve
larger problems.

76 Illegal priority: entity <ent> value <num>.
Entity <ent> has been assigned an invalid priority value of <num> in the directives
files and this priority will be ignored. Please make sure that the priority value lies
between 0 and 1000 and that it is written inside the corresponding field in the .DIR
file.

77 Illegal set card <line>.
The set definition in line <line> of the .MAT or .MPS file creates a conflict. Please
make sure that the set has a correct type and has not been already defined. Please
refer to the Reference Manual for a list of valid set types.

79 File error.
The Optimizer has encountered a file error. Please make sure that there is adequate
disk space and that the volume is not corrupt.

80 File creation error.
The Optimizer cannot create a file. Please make sure that these is adequate disk
space and that the volume is not corrupt.

81 Fatal error on write to workfile <file> - program aborted.
The Optimizer cannot write to the file <file>. Please make sure that there is ade-
quate disk space and that the volume is not corrupt.

83 Fatal error on write to file - program aborted.
The Optimizer cannot write to an internal file. Please make sure that there is ade-
quate disk space and that the volume is not corrupt.

84 Input line too long. Maximum line length is <num>
A line in the .MAT or .MPS file has been found to be too long. Please reduce the
length to be less or equal than <num> and input again.

85 File not found: <file>.
The Optimizer cannot find the file <file>. Please check the spelling and that the file
exists. If this file has to be created by Xpress-MP make sure that the process which
creates the file has been performed.

Return Codes and Error Messages 267 Xpress-Optimizer Reference Manual

89 No optimization has been attempted.
The operation you are trying to perform is not allowed unless the solution is opti-
mal. Please call XPRSmaxim (MAXIM) or XPRSminim (MINIM) to optimize the prob-
lem and make sure the process is completed. If you have set the control LPITERLIMIT
make sure that the optimal solution can be found within the maximum number of
iterations allowed.

90 Not enough memory for Devex pricing: PRICINGALG has been set to -1.
The Optimizer required more memory to perform Devex pricing. Please increase
your virtual paging space, physical memory or do not use the Devex pricing algo-
rithm.

91 No problem has been input.
An operation has been attempted that requires a problem to have been input.
Please make sure that XPRSreadprob (READPROB) is called and that the problem
has been loaded successfully before trying again.

97 Split vector <vector>.
The declaration of column <vector> in the COLUMN section of the .MAT or .MPS file
must be done in contiguous line. It is not possible to interrupt the declaration of a
column with lines corresponding to a different vector.

98 At line <num> no match for row <row>.
A non existing row <row> is being used at line number <num> of the .MAT or .MPS
file. Please check spelling and make sure that <row> is defined in the ROWS section.

102 Eta file space exceeded - optimization aborted.
The Optimizer requires more memory. Please increase your virtual paging space or
physical memory and try to optimize again.

107 Too many global entities at column <col>.
Xpress-MP cannot input your problem since the number of global entities exceeds
the maximum allowed. If you have the Hyper version then increase your virtual
page space or physical memory. If you have purchased any other version of the
software please contact your local sales office to discuss upgrading it to solve larger
problems.

111 Duplicate row <row> - ignored.
Row <row> is used more than once in the same section. Only the first use is kept
and subsequent ones are ignored.

112 Postoptimal analysis not permitted on presolved problems.
Re-optimize with PRESOLVE = 0. An operation has been attempted on the pre-
solved problem. Please optimize again calling XPRSmaxim (MAXIM), XPRSminim
(MINIM) with the l flag or turning presolve off by setting PRESOLVE to 0.

114 Fatal error - pool hash table full at vector <vector>.
Internal error. Please contact your local support office.

120 Problem has too many rows and columns. The maximum is <num>
Xpress-MP cannot input your problem since the number of rows plus columns ex-
ceeds the maximum allowed. If you have purchased any other than the Hyper
version of the software please contact your local sales office to discuss upgrading it
to solver larger problems.

122 Corrupt solution file.
Solution file .SOL could not be accessed. Please make sure that there is adequate
disk space and that the file is not being used by another process.

127 Not found: <vector>.
An attempt has been made to use a row or column <vector> that cannot be found
in the problem. Please check spelling and try again.

Return Codes and Error Messages 268 Xpress-Optimizer Reference Manual

130 Bound type illegal <type>.
Illegal bound type <type> has been used in the basis file .BSS. A new basis will be
created internally where the column with the illegal bound type will be at its lower
bound and the rest of the columns and rows will maintain their basic/non-basic
status. Please check that you are using XPRSreadbasis (READBASIS) with the t
flag to read compact format basis.

131 No column: <col>.
Column <col> used in basis file .BSS does not exist in the problem. A new basis
will be created internally from where column <col> will have been removed and
the rest of columns and rows will maintain their basic/non-basic status.

132 No row: <row>.
Row <row> used in basis file .BSS does not exist in the problem. A new basis will
be created internally from where row <row> will have been removed and the rest
of columns and rows will maintain their basic/non-basic status.

140 Basis lost - recovering.
The number of rows in the problem is not equal to the number of basic rows +
columns in the problem, which means that the existing basis is no longer valid. This
will be detected when re-optimizing a problem that has been altered in some way
since it was last optimized (see below). A correct basis is generated automatically
and no action needs to be taken. The basis can be lost in two ways: (1) if a row is
deleted for which the slack is non-basic: the number of rows will decrease by one,
but the number of basic rows + columns will be unchanged. (2) if a basic column is
deleted: the number of basic rows + columns will decrease by one, but the number
of rows will be unchanged. You can avoid losing the basis by only deleting rows
for which the slack is basic, and columns which are non-basic. (The XPRSgetbasis
function can be used to determine the basis status.) To delete a non-basic row
without losing the basis, bring it into the basis first, and to delete a basic column
without losing the basis, take it out of the basis first - the functions XPRSgetpivots
and XPRSpivot may be useful here. However, remember that the message is only
a warning and the Optimizer will generate a new basis automatically if necessary.

142 Type illegal <type>.
An illegal priority type <type> has been found in the directives file .DIR and will
be ignored. Please refer to Appendix A for a description of valid priority types.

143 No entity <ent>.
Entity <ent> used in directives file .DIR cannot be found in the problem and its
corresponding priority will be ignored. Please check spelling and that the column
<ent> is actually declared as an entity in the BOUNDS section or is a set member.

151 Illegal MARKER.
The line marking the start of a set of integer columns or a set of columns belonging
to a Special Ordered Set in the .MPS file is incorrect.

152 Unexpected EOF.
The Optimizer has found an unexpected EOF marker character. Please check that
the input file is correct and input again.

153 Illegal card at line <line>.
Line <line> of the .MPS file could not be interpreted. Please refer to the Reference
Manual for information about the valid MPS format.

155 Too many files open for reading: <file>.
The Optimizer cannot read from file <file> because there are too many files already
open. Please close some files and try again.

170 Corrupt global file.
Global file .GLB cannot be accessed. Please make sure that there is adequate disk
space and that the file is not being used by another process.

Return Codes and Error Messages 269 Xpress-Optimizer Reference Manual

171 Invalid row type for row <row>.
XPRSalter (ALTER) cannot change the row type of <row> because the new type is
invalid. Please correct and try again.

172 Scaling too bad to continue.
Scaling is too bad for recursion entries. Please try scaling your matrix.

178 Not enough spare rows to remove all violations.
The Optimizer could not add more cuts to the matrix because there is not enough
space. Please increase EXTRAROWS before input to improve performance.

180 No change to this SSV allowed.
The Optimizer does not allow changes to this control. If you have the student
version, please contact your local sales office to discuss upgrading if you wish to
change the value of controls. Otherwise check that the Optimizer was initialized
properly and did not revert to student mode because of a security problem.

181 Cannot alter bound on BV, SC, UI, PI, or set member.
XPRSalter (ALTER) cannot be used to change the upper or lower bound of a vari-
able if its variable type is binary, semi-continuous, integer, partial integer, semi-
continuous integer, or if it is a set member.

186 Inconsistent number of variables in problem.
A compact format basis is being read into a problem with a different number of
variables than the one for which the basis was created.

245 Not enough memory to presolve matrix.
The Optimizer required more memory to presolve the matrix. Please increase your
virtual paging space or physical memory. If this is not possible try setting PRESOLVE
to 0 before optimizing, so that the presolve procedure is not performed.

246 Wrong release of binary files. Release <rel1> detected.
Release <rel2> required. The binary file *.BIF created with release <rel1> cannot
be read. Please try using release <rel2> or the previous one <rel2>-1 to create the
binary file and try again.

247 Directive on non-global entity not allowed: <col>.
Column <col> used in directives file .DIR is not a global entity and its corresponding
priority will be ignored. A variable is a ’global entity’ it is type is not continuous or
if it is a set member. Please refer to Appendix A for details about valid entities and
set types.

255 Not enough space to presolve matrix. Increase <par> before XPRSreadprob (READPROB).

The is not enough space to presolve the matrix. Please increase parameter <par>
before XPRSreadprob (READPROB) or turn the presolve procedure off by setting
PRESOLVE to 0.

256 Simplex Optimizer only: buy barrier Optimizer from Dash Associates.
The Optimizer can only use the simplex algorithm. Please contact your local sales
office to upgrade your authorization if you wish to use this command.

261 <ent> already declared as a global entity - old declaration ignored.
Entity <ent> has already been declared as global entity. The new declaration pre-
vails and the old declaration prevails and the old declaration will be disregarded.

262 Unable to remove shift infeasibilities of &.
Perturbations to the right hand side of the constraints which have been applied to
enable problem to be solved cannot be removed. It may be due to round off errors
in the input data or to the problem being badly scaled.

Return Codes and Error Messages 270 Xpress-Optimizer Reference Manual

263 The problem has been presolved.
The problem in memory is the presolved one. An operation has been attempted on
the presolved problem. Please optimize again calling XPRSmaxim (MAXIM), XPRSminim
(MINIM) with the l flag or tuning presolve off by setting PRESOLVE to 0. If the op-
eration does not need to be performed on an optimized problem just load the
problem again.

264 Not enough spare matrix elements to remove all violations.
The Optimizer could not add more cuts to the matrix because there is not enough
space. Please increase EXTRAELEMS before input to improve performance.

266 Cannot read basis for presolved problem. Re-input matrix.
The basis cannot be read because the problem in memory is the presolved one.
Please reload the problem with XPRSreadprob (READPROB) and try to read the
basis again.

268 Cannot perform operation on presolved matrix. Re-input matrix.
The problem in memory is the presolved one. Please reload the problem and try
the operation again.

277 This version is not authorized to run as a DLL.
The Optimizer subroutine library is not authorized to run as a DLL. Please contact
your local sales office to upgrade your authorization if you wish to tun the Opti-
mizer as a DLL.

278 No purchase authorization found.
Please check that the xpress.pwd file can be found. The Optimizer will try to
use the xpress.pwd file located in its directory and if this fails it will look for it
in the directory pointed to by the environment variable XPRESS. If you needed a
dongle to run the Optimizer please check that it has been inserted. Contact you
local support office if the problem persists.

279 Xpress-MP has not been initialized.
The Optimizer could not be initialized successfully. Please initialize it before at-
tempting any operation and try again.

285 Cut pool is full.
The Optimizer has run out of space to store cuts.

286 Cut pool is full.
The Optimizer has run our of space to store cuts.

287 Cannot read in directives after the problem has been presolved.
Directives cannot be read if the problem in memory is the presolved one. Please
reload the problem and read the directives file .DIR before optimizing. Alterna-
tively, re-optimize using the -l flag or set PRESOLVE to 0 and try again.

302 Option must be C/c or O/o.
The only valid options for the type of goals are C, c, O and o. Any other answer will
be ignored.

305 Row <row> (number <num>) is an N row.
Only restrictive rows, i.e. G, L, R or E type, can be used in this type of goal program-
ming. Please choose goal programming for objective functions when using N rows
as goals.

306 Option must be MAX/max or MIN/min.
The only valid options for the optimization sense are MAX, max, MIN and min. Any
other answer will be ignored.

307 Option must be P/p or D/d.
The only valid options for the type of relaxation on a goal are P, p, D and d. Any
other answer will be ignored.

Return Codes and Error Messages 271 Xpress-Optimizer Reference Manual

308 Row <row> (number <num>) is an unbounded goal.
Goal programming has found goal <row> to be unbounded and it will stop at this
point. All goals with a lower priority than <row> will be ignored.

309 Row <row> (number <num>) is not an N row.
Only N type rows can be selected as goals for this goal programming type. Please
use goal programming for constraints when using rows whose type is not N.

310 Option must be A/a or P/p.
The only valid options for the type of goal programming are A, a, P and p. Any
other answer will be ignored.

314 Invalid number.
The input is not a number. Please check spelling and try again.

316 Not enough space to add deviational variables.
Increase EXTRACOLS before input. The Optimizer cannot find spare columns to
spare deviational variables. Please try increasing EXTRACOLS before input to at
least twice the number of constraint goals and try again.

318 Maximum number of allowed goals is 100.
Goal programming does not support more than 100 goals and will be interrupted.

320 This version is not authorized to run under Windows NT.
The Optimizer is not authorized to run under Windows NT. Please contact your local
sales office to upgrade your authorization if you wish to run it on this platform.

324 Not enough extra matrix elements to complete elimination phase.
Increase EXTRAPRESOLVE before input to improve performance. The elimination
phase performed by the presolve procedure created extra matrix elements. If the
number of such elements is larger than allowed by the EXTRAPRESOLVE parameter,
the elimination phase will stop. Please increase EXTRAPRESOLVE before loading
the problem to improve performance.

326 Linear Optimizer only: buy QP Optimizer from Dash.
You are not authorized to use the Quadratic Programming Optimizer. Please con-
tact your local sales office to discuss upgrading to the QP Optimizer if you wish to
use this command.

349 Release <rel1> of binary files used with version <rel2>.
The binary file created with release <rel1> of the software is being used with re-
lease <rel2>.

352 Command not authorized in this version.
There has been an attempt to use a command for which your Optimizer is not
authorized. Please contact your local sales office to upgrade your authorization if
you wish to use this command.

361 QMATRIX or QUADOBJ section must be after COLUMN section.
Error in matrix file. Please make sure that the QMATRIX or QUADOBJ sections are
after the COLUMNS section and try again.

362 Duplicate elements not allowed in QUADOBJ section.
The coefficient of a column appears more than once in the QUADOBJ section. Please
make sure all columns have only one coefficient in this section.

363 Quadratic matrix must be symmetric in QMATRIX section.
Only symmetric matrices can be input in the QMATRIX section of the .MAT or .MPS
file. Please correct and try again.

364 Problem has too many QP matrix elements. Please increase M_Q.
Problem cannot be read because there are too many quadratic elements. Please
increase M_Q and try again.

Return Codes and Error Messages 272 Xpress-Optimizer Reference Manual

366 Problems with Quadratic terms can only be solved with the barrier.
An attempt has been made to solve a quadratic problem using an algorithm other
than the barrier. Please use XPRSmaxim (MAXIM), XPRSminim (MINIM) with the b
flag to invoke the barrier solver.

368 QSECTION second element in line ignored: <line>.
The second element in line <line> will be ignored.

381 Bug in lifting of cover inequalities.
Internal error. Please contact you local support office.

386 This version is not authorized to run Goal Programming.
The Optimizer you are using is not authorized to run Goal Programming. Please
contact you local sales office to upgrade your authorization if you wish to use this
command.

387 Parallel code not initialized - continuing in serial mode.
Parallel mode cannot be used. Please check that the number of slaves is greater
than 0 and that HPPVM is installed correctly.

388 Slave number <num> has failed.
Slave number <num> has failed and its tasks will be reallocated to the remaining
slaves.

389 Incorrect type of dongle, or security violation on slave <num>.
Xpress-MP could not be initialized on slave <num> and its tasks will be reallocated
to the remaining slaves. See the section on initialization in Chapter 1 for details.
Contact your local support office if the problem persists.

390 Slave number <num> has failed - insufficient memory.
Process on slave <num> has been aborted because there is not enough memory.
Please increase your virtual page space or physical memory and try again. The tasks
of the failing slaves will be reallocated to the remaining slaves.

391 All slaves have failed - continuing in serial mode.
All slaves have failed and the optimization will continue in serial mode.

392 This version is not authorized to be called from BCL.
This version of the Optimizer cannot be called from the subroutine library BCL.
Please contact your local sales office to upgrade your authorization if you wish to
run the Optimizer from BCL.

394 Fatal communications error.
There has been a communication error between the master and the slave processes.
Please check the network and try again.

395 This version is not authorized to be called from the Optimizer library.
This version of the Optimizer cannot be called from the Optimizer library. Please
contact your local sales office to upgrade your authorization if you wish to run the
Optimizer using the libraries.

396 Insufficient memory on slave <num>.
Process on slave <num> cannot be started because there is insufficient memory on
this slave. Please increase your virtual page space or physical memory and try again.
The tasks of the failing slave will be reallocated to the remaining slaves.

401 Invalid row type passed to <function>.
Elements <num> of your array has invalid row type <type>. There has been an
error in one of the arguments of function <function>. The row type corresponding
to element <num> of the array is invalid. Please refer to the section corresponding
to function <function> in 6 for further information about the row types that can
be used.

Return Codes and Error Messages 273 Xpress-Optimizer Reference Manual

402 Invalid row number passed to <function>.
Row number <num> is invalid. There has been an error in one of the arguments
of function <function>. The row number corresponding to element <num> of the
array is invalid. Please make sure that the row numbers are not smaller than 0 and
not larger than the total number of rows in the problem.

403 Invalid global entity passed to <function>.
Element <num> of your array has invalid entity type <type>. There has been an
error in one of the arguments of function <function>. The column type <type>
corresponding to element <num> of the array is invalid for a global entity.

404 Invalid set type passed to <function>.
Element <num> of your array has invalid set type <type>. There has been an error
in one of the arguments of function <function>. The set type <type> corresponding
to element <num> of the array is invalid for a set entity.

405 Invalid column number passed to <function>.
Column number <num> is invalid. There has been an error in one of the arguments
of function <function>. The column number corresponding to element <num> of
the array is invalid. Please make sure that the column numbers are not smaller than
0 and not larger than the total number of columns in the problem, COLS, minus 1.
If the function being called is XPRSgetobj or XPRSchgobj a column number of -1
is valid and refers to the constant in the objective function.

406 Invalid row range passed to <function>.
Limit <lim> is out of range. There has been an error in one of the arguments of
function <function>. The row numbers lie between 0 and the total number of rows
of the problem. Limit <lim> is outside this range and therefore is not valid.

407 Invalid column range passed to <function>.
Limit <lim> is out of range. There has been an error in one of the arguments of
function <function>. The column numbers lie between 0 and the total number
of columns of the problem. Limit <lim> is outside this range and therefore is not
valid.

408 Too long a row or column name passed to <function>.
Name number <num> is too long. There has been a error in one the arguments of
function <function>. The row or column name corresponding to element <num>
of the array is too long.

409 Invalid directive passed to <function>.
Element <num> of your array has invalid directive <type>. There has been an error
in one of the arguments of function <function>. The directive type <type> corre-
sponding to element <num> of the array is invalid. Please refer to the Reference
Manual for a list of valid directive types.

410 Invalid row basis type passed to <function>.
Element <num> of your array has invalid row basis type <type>. There has been
an error in one of the arguments of function <function>. The row basis type corre-
sponding to element <num> of the array is invalid.

411 Invalid column basis type passed to <function>.
Element <num> of your array has invalid column basis type <type>. There has been
an error in one of the arguments of function <function>. The column basis type
corresponding to element <num> of the array is invalid.

412 Invalid parameter number passed to <function>.
Parameter number <num> is out of range. LP or MIP parameters and controls can
be used in functions by passing the parameter or control name as the first argu-
ment or by passing an associated number. In this case number <num> is an invalid
argument for function <function> because it does not correspond to an existing
parameter or control. If you are passing a number as the first argument, please

Return Codes and Error Messages 274 Xpress-Optimizer Reference Manual

substitute it with the name of the parameter or control whose value you wish to
set or get. If you are already passing the parameter or control name, please check
6 to make sure that is valid for function <function>.

413 Not enough spare rows in <function>.
Increase EXTRAROWS before input. There are not enough spare rows to complete
function <function> successfully. Please increase EXTRAROWS before XPRSreadprob
(READPROB) and try again.

414 Not enough spare columns in <function>.
Increase EXTRACOLS before input. There are not enough spare columns to com-
plete function <function> successfully. Please increase EXTRACOLS before
XPRSreadprob (READPROB) and try again.

415 Not enough spare matrix elements in <function>.
Increase EXTRAELEMS before input. There are not enough spare matrix elements
to complete function <function> successfully. Please increase EXTRAELEMS before
XPRSreadprob (READPROB) and try again.

416 Invalid bound type passed to <function>.
Element <elem> of your array has invalid bound type <type>. There has been an
error in one of the arguments of function <function>. The bound type <type> of
element number <num> of the array is invalid.

418 Invalid cut number passed to <function>.
Element <num1> of your array has invalid cut number <num2>. Element number
<num1> of your array contains a cut which is not stored in the cut pool. Please
check that <num2> is a valid cut number.

419 Not enough space to store cuts in <function>.
There is not enough space to complete function <function> successfully.

422 Solution is not available.
There is no solution available. This could be because the problem in memory has
been changed or optimization has not been performed. Please optimize and try
again.

423 Duplicate rows/columns passed to <function>.
Element <elem> of your array has duplicate row/col number <num>. There has
been an error in one of the arguments of function <function>. The element number
<elem> of the argument array is a row or column whose sequence number <num>
is repeated.

424 Not enough space to store cuts in <function>.
There is not enough space to complete function <function> successfully.

425 Column already basic.
The column cannot be pivoted into the basis since it is already basic. Please make
sure the variable is non-basic before pivoting it into the basis.

426 Column not eligible to leave basis.
The column cannot be chosen to leave the basis since it is already non-basic. Please
make sure the variable is basic before forcing it to leave the basis.

427 Invalid column type passed to <function>.
Element <num> of your array has invalid column type <type>. There has been an
error in one of the arguments of function <function>. The column type <type>
corresponding to element <num> of the array is invalid.

428 Increase EXTRAMIPENTS before input.
There are not enough spare global entities to complete function <function> suc-
cessfully. Please increase EXTRAMIPENTS before input and try again.

Return Codes and Error Messages 275 Xpress-Optimizer Reference Manual

430 Column types cannot be changed during the global search.
The Optimizer does not allow changes to the column type while the global search
is in progress. Please call this function before starting the global search or after the
global search has been completed. You can call XPRSmaxim (MAXIM) or XPRSminim
(MINIM) with the l flag if you do not want to start the global search automatically
after finding the LP solution of a problem with global entities.

434 Invalid name passed to XPRSgetindex.
A name has been passed to XPRSgetindex which is not the name of a row or
column in the matrix.

436 Cannot trace infeasibilities when integer presolve is turned on.
Try XPRSmaxim (XPRSmaxim) / XPRSminim (MINIM) with the l flag. Integer presolve
can set upper or lower bounds imposed by the column type as well as those created
by the interaction of the problem constraints. The infeasibility tracing facility can
only explain infeasibilities due to problem constraints.

473 Row classification not available.

501 Error at <line> Empty file.
Read aborted. The Optimizer cannot read the problem because the file is empty.

502 Warning: ’min’ or ’max’ not found at <line.col>. No objective assumed.
An objective function specifier has not been found at column <col>, line <line> of
the LP file. If you wish to specify an objective function please make sure that ’max’,
’maximize’, ’maximum’, ’min’, ’minimize’ or ’minimum’ appear.

503 Objective not correctly formed at <line.col>. Aborting.
The Optimizer has aborted the reading of the problem because the objective spec-
ified at line <line> of the LP file is incorrect.

504 No keyword or empty problem at <line.col>.
There is an error in column <col> at line <line> of the LP file. Neither ’Subject to’,
’subject to:’, ’subject to’, ’such that’ ’s.t.’, or ’st’ can be found. Please correct and try
again.

505 A keyword was expected at <line.col>.
A keyword was expected in column <col> at line <line> pf the LP file. Please correct
and try again.

506 The constraint at <line.col> has no term.
A variable name is expected at line <line> column <col>: either an invalid character
(like ’+’ or a digit) was encountered or the identifier provided is unknown (new
variable names are declared in constraint section only).

507 RHS at <line.col> is not a constant number.
Line <line> of the LP file will be ignored since the right hand side is not a constant.

509 The type of the constraint at <line.col> has not been specified.
The constraint defined in column <col> at line <line> of the LP file is not a constant
and will be ignored.

510 Upper bound at <line.col> is not a numeric constant.
The upper bound declared in column <col> at line <line> of the LP file is not a
constant and will be ignored.

511 Bound at <line.col> is not a numeric constant.
The bound declared in column <col> at line <line> of the LP file is not a constant
and will be ignored.

512 Unknown word starting with an ’f’ at <line.col>. Treated as ’free’.
A word staring with an ’f’ and not know to Xpress-MP has been found in column
<col> at line <line> of the LP file. The word will be read into Xpress-MP as ’free’.

Return Codes and Error Messages 276 Xpress-Optimizer Reference Manual

513 Wrong bound statement at <line.col>.
The bound statement in column <col> at line <line> is invalid and will be ignored.

514 Lower bound at <line.col> is not a numeric constant. Treated as -inf.
The lower bound declared in column <col> at line <line> of the LP file is not a
constant. It will be translated into Xpress-MP as the lowest possible bound.

515 Sign ’<’ expected at <line.col>.
A character other than the expected sign ’<’ has been found in column <col> at line
<line> of the LP file. This line will be ignored.

516 Problem has not been loaded.
The problem could not be loaded into Xpress-MP. Please check the other error mes-
sages appearing with this message for more information.

517 Row names have not been loaded.
The name of the rows could not be loaded into Xpress-MP. Please check the other
error messages appearing with this message for more information.

518 Column names have not been loaded.
The name of the columns could not be loaded into Xpress-MP. Please check the
other error messages appearing with this message for more information.

519 Not enough memory at <line.col>.
The information in column <col> at line <line> of the LP file cannot be read because
all the allocated memory has already been used. Please increase your virtual page
space or physical memory and try again.

520 Unexpected EOF at <line.col>.
An unexpected EOF marker character has been found at line <line> of the LP file
and the loading of the problem into the Optimizer has been aborted. Please correct
and try again.

521 Number expected for exponent at <line.col>.
The entry in column <col> at line <line> of the LP file is not a properly expressed
real number and will be ignored.

522 Line <line> too long (length>255).
Line <line> of the LP file is too long and the loading of the problem into the Op-
timizer has been aborted. Please check that the length of the lines is less than 255
and try again.

523 Xpress-MP cannot reach line <line.col>.
The reading of the LP file has failed due to an internal problem. Please contact
your local support office immediately.

524 Constraints could not be read into Xpress-MP. Error found at <line.col>.
The reading of the LP constraints has failed due to an internal problem. Please
contact your local support office immediately.

525 Bounds could not be set into Xpress-MP. Error found at <line.col>.
The setting of the LP bounds has failed due to an internal problem. Please contact
your local support office immediately.

526 LP problem could not be loaded into Xpress-MP. Error found at <line.col>.
The reading of the LP file has failed due to an internal problem. Please contact
your local support office immediately.

527 Copying of rows unsuccessful.
The copying of the LP rows has failed due to an internal problem. Please contact
your local support office immediately.

528 Copying of columns unsuccessful.
The copying of the LP columns has failed due to an internal problem. Please contact
your local support office immediately.

Return Codes and Error Messages 277 Xpress-Optimizer Reference Manual

529 Redefinition of constraint at <line.col>.
A constraint is redefined in column <col> at line <line> of the LP file. This repeated
definition is ignored.

530 Name too long. Truncating it.
The LP file contains an identifier longer than 64 characters: it will be truncated to
respect the maximum size.

Return Codes and Error Messages 278 Xpress-Optimizer Reference Manual

Appendix

Appendix A

Log and File Formats

A.1 File Types

The Optimizer generates or inputs a number of files of various types as part of the solution
process. By default these all take file names governed by the problem name (problem_name),
but distinguished by their three letter extension. The file types associated with the Optimizer
are as follows:

Extension Description File
Type

.alt Matrix alteration file, input by XPRSalter (ALTER). ASCII

.asc CSV format solution file, output by XPRSwritesol (WRITESOL). ASCII

.bss Basis file, output by XPRSwritebasis (WRITEBASIS), input by
XPRSreadbasis (READBASIS).

ASCII

.dir Directives file (MIP only), input by XPRSreaddirs (READDIRS). ASCII

.glb Global file (MIP only), used by XPRSglobal (GLOBAL). Binary

.gol Goal programming input file, input byXPRSgoal (GOAL). ASCII

.grp Goal programming output file, output byXPRSgoal (GOAL). ASCII

.hdr Solution header file, output by XPRSwritesol (WRITESOL) and
XPRSwriterange (WRITERANGE).

ASCII

.iis IIS output file, output by XPRSiis (IIS). ASCII

.lp LP format matrix file, input by XPRSreadprob (READPROB). ASCII

.mat MPS / XMPS format matrix file, input by XPRSreadprob (READPROB). ASCII

.prt Fixed format solution file, output by XPRSwriteprtsol
(WRITEPRTSOL).

ASCII

.rng Range file, output by XPRSrange (RANGE). Binary

.rrt Fixed format range file, output by XPRSwriteprtrange
(WRITEPRTRANGE).

ASCII

.rsc CSV format range file, output by XPRSwriterange (WRITERANGE). ASCII

.sol Solution file created by XPRSwritebinsol (WRITEBINSOL). Binary

.svf Optimizer state file, output by XPRSsave (SAVE), input by
XPRSrestore (RESTORE).

Binary

In the following sections we describe the formats for a number of these.

Note that CSV stands for comma-separated-values text file format.

280 Xpress-Optimizer Reference Manual

A.2 XMPS Matrix Files

The Xpress-MP Optimizer accepts matrix files in LP or MPS format, and an extension of this,
XMPS format. In that the latter represents a slight modification of the industry-standard, we
provide details of it here.

XMPS format defines the following fields:

Field 1 2 3 4 5 6

Columns 2-3 5-12 15-22 25-36 40-47 50-61

The following sections are defined:

NAME the matrix name;

ROWS introduces the rows;

COLUMNS introduces the columns;

QUADOBJ introduces a quadratic objective function;

SETS introduces SOS definitions;

RHS introduces the right hand side(s);

RANGES introduces the row ranges;

BOUNDS introduces the bounds;

ENDATA signals the end of the matrix.

All section definitions start in column 1.

A.2.1 NAME section

Format: Cols 1-4 Field 3

NAME model_name

A.2.2 ROWS section

Format: Cols 1-4

ROWS

followed by row definitions in the format:

Field 1 Field 2

type row_name

The row types (Field 1) are:

N unconstrained (for objective functions);

L less than or equal to;

G greater than or equal to;

E equality.

A.2.3 COLUMNS section

Format: Cols 1-7

COLUMNS

Log and File Formats 281 Xpress-Optimizer Reference Manual

followed by columns in the matrix in column order, i.e. all entries for one column must finish
before those for another column start, where:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

blank col row1 value1 row2 value2

specifies an entry of value1 in column col and row row1 (and value2 in col and row row2). The
Field 5/Field 6 pair is optional.

A.2.4 QUADOBJ / QMATRIX section (Quadratic Programming only)

A quadratic objective function can be specified in an MPS file by including a QUADOBJ or
QMATRIX section. For fixed format XMPS files, the section format is as follows:

Format: Cols 1-7

QUADOBJ

or

Format: Cols 1-7

QMATRIX

followed by a description of the quadratic terms. For each quadratic term, we have:

Field 1 Field 2 Field 3 Field 4

blank col1 col2 value

where col1 is the first variable in the quadratic term, col2 is the second variable and value is
the associated coefficient from the Q matrix. In the QMATRIX section all nonzero Q elements
must be specified. In the QUADOBJ section only the nonzero elements in the upper (or lower)
triangular part of Q should be specified. In the QMATRIX section the user must ensure that the
Q matrix is symmetric, whereas in the QUADOBJ section the symmetry of Q is assumed and the
missing part is generated automatically.

Note that the Q matrix has an implicit factors of 0.5 when included in the objective function.
This means, for instance that an objective function of the form

5x2 + 7xy + 9y2

is represented in a QUADOBJ section as:

QUADOBJ
x x 10
x y 7
y y 18

(The additional term ’y x 7’ is assumed which is why the coefficient is not doubled); and in a
QMATRIX section as:

QMATRIX
x x 10
x y 7
y x 7
y y 18

The QUADOBJ and QMATRIX sections must appear somewhere after the COLUMNS section and
must only contain columns previously defined in the columns section. Columns with no ele-
ments in the problem matrix must be defined in the COLUMNS section by specifying a (possibly
zero) cost coefficient.

Log and File Formats 282 Xpress-Optimizer Reference Manual

A.2.5 SETS section (Integer Programming only)

Format: Cols 1-4

SETS

This record introduces the section which specifies any Special Ordered Sets. If present it must
appear after the COLUMNS section and before the RHS section. It is followed by a record which
specifies the type and name of each set, as defined below.

Field 1 Field 2

type set

Where type is S1 for a Special Ordered Set of type 1 or S2 for a Special Ordered Set of type 2
and set is the name of the set.

Subsequent records give the set members for the set and are of the form:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

blank set col1 value1 col2 value2

which specifies a set member col1 with reference value value1 (and col2 with reference value
value2). The Field 5/Field 6 pair is optional.

A.2.6 RHS section

Format: Col 1-3

RHS

followed by the right hand side as defined below:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

blank rhs row1 value1 row2 value2

specifies that the right hand side column is called rhs and has a value of value1 in row row1
(and a value of value2 in row row2). The Field 5/Field 6 pair is optional.

A.2.7 RANGES section

Format: Cols 1-6

RANGES

followed by the right hand side ranges defined as follows:

Field 1 Field 2 Field 3 Field 4 Field 5 Field 6

blank rng row1 value1 row2 value2

specifies that the right hand side range column is called rng and has a value of value1 in row
row1 (and a value of value2 in row row2). The Field 5/Field 6 pair is optional.

For any row, if b is the value given in the RHS section and r the value given in the RANGES
section, then the activity limits below are applied:

Log and File Formats 283 Xpress-Optimizer Reference Manual

Row Type Sign of r Upper Limit Lower Limit

G + b+r b

L + b b-r

E + b+r b

E - b b+r

A.2.8 BOUNDS section

Format: Cols 1-6

BOUNDS

followed by the bounds acting on the variables:

Field 1 Field 2 Field 3 Field 4

type blank col value

The Linear Programming bound types are:

UP for an upper bound;

LO for a lower bound;

FX for a fixed value of the variable;

FR for a free variable;

MI for a non-positive (’minus’) variable;

PL for a non-negative (’plus’) variable (the default).

There are six additional bound types specific to Integer Programming:

UI for an upper bounded general integer variable;

LI for a lower bounded general integer variable;

BV for a binary variable;

SC for a semi-continuous variable;

SI for a semi-continuous integer variable;

PI for a partial integer variable.

The value specified is an upper bound on the largest value the variable can take for types UP,
FR, UI, SC and SI; a lower bound for types LO and LI; a fixed value for type FX; and ignored
for types BV, MI and PL. For type PI it is the switching value: below which the variable must
be integer, and above which the variable is continuous. If a non-integer value is given with a
UI or LI type, only the integer part of the value is used.

Integer variables may only take integer values between 0 and the upper bound. Integer
variables with an upper bound of unity are treated as binary variables.

Binary variables may only take the values 0 and 1. Sometimes called 0/1 variables.

Partial integer variables must be integral when they lie below the stated value, above
that value they are treated as continuous variables.

Semi-continuous variables may take the value zero or any value between a lower bound
and some finite upper bound. By default, this lower bound is 1.0. Other positive values
can be specified as an explicit lower bound. For example

Log and File Formats 284 Xpress-Optimizer Reference Manual

BOUNDS
LO x 0.8
SC x 12.3

means that x can take the value zero or any value between 0.8 and 12.3.

Semi-continuous integer variables may take the value zero or any integer value between
a lower bound and some finite upper bound.

A.2.9 ENDATA section

Format: Cols 1-6

ENDATA

is the last record of the file.

A.3 LP File Format

Matrices can be represented in text files using either the MPS file format (.mat or .mps files)
or the LP file format (.lp files). The LP file format represents matrices more intuitively than
the MPS format in that it expresses the constraints in a row-oriented, algebraic way. For this
reason, matrices are often written to LP files to be examined and edited manually in a text
editor. Note that because the variables are ’declared’ as they appear in the constraints during
file parsing the variables may not be stored in the Xpress-Optimizer memory in the way you
would expect from your enumeration of the variable names. For example, the following file:

Minimize
obj: - 2 x3

Subject To
c1: x2 - x1 <= 10
c2: x1 + x2 + x3 <= 20

Bounds
x1 <= 30

End

after being read and rewritten to file would be:

\Problem name:
Minimize
- 2 x3

Subject To
c1: x2 - x1 <= 10
c2: x3 + x2 + x1 <= 20

Bounds
x1 <= 30

End

Note that the last constraint in the output .lp file has the variables in reverse order to those
in the input .lp file. The ordering of variables in the last constraint of the rewritten file is the
order that the variables were encountered during file reading. Also note that although the op-
timal solution is unique for this particular problem in other problems with many equal optimal
solutions the path taken by the solver may depend on the variable ordering and therefore by
changing the ordering of your constraints in the .lp file may lead to different solution values
for the variables.

Log and File Formats 285 Xpress-Optimizer Reference Manual

A.3.1 Rules for the LP file format

The following rules can be used when you are writing your own .lp files to be read by the
Xpress-Optimizer.

A.3.2 Comments and blank lines

Text following a backslash (\) and up to the subsequent carriage return is treated as a com-
ment. Blank lines are ignored. Blank lines and comments may be inserted anywhere in an .lp
file. For example, a common comment to put in LP files is the name of the problem:

\Problem name: prob01

A.3.3 File lines, white space and identifiers

White space and carriage returns delimit variable names and keywords from other identifiers.
Keywords are case insensitive. Variable names are case sensitive. Although it is not strictly
necessary, for clarity of your LP files it is perhaps best to put your section keywords on their
own lines starting at the first character position on the line. The maximum length for any name
is 64. The maximum length of any line of input is 512. Lines can be continued if required. No
line continuation character is needed when expressions are required to span multiple lines.
Lines may be broken for continuation wherever you may use white space.

A.3.4 Sections

The LP file is broken up into sections separated by section keywords. The following are a list
of section keywords you can use in your LP files. A section started by a keyword is terminated
with another section keyword indicating the start of the subsequent section.

Log and File Formats 286 Xpress-Optimizer Reference Manual

Section keywords Synonyms Section contents

maximize or minimize maximum max minimum
min

One linear expression describing the
objective function.

subject to subject to:
such that st s.t.
st. subjectto
suchthat subject
such

A list of constraint expressions.

bounds bound A list of bounds expressions for vari-
ables.

integers integer ints int A list of variable names of integer
variables. Unless otherwise specified
in the bounds section, the default re-
laxation interval of the variables is [0,
1].

generals general gens gen A list of variable names of integer
variables. Unless otherwise specified
in the bounds section, the default re-
laxation interval of the variables is [0,
XPRS_MAXINT].

binaries binary bins bin A list of variable names of binary vari-
ables.

semi-continuous semi continuous
semis semi s.c.

A list of variable names of semi-
continuous variables.

semi integer s.i. A list of variable names of semi-
integer variables.

partial integer p.i. A list of variable names of partial in-
teger variables.

Variables that do not appear in any of the variable type registration sections (i.e., integers,
generals, binaries, semi-continuous, semi integer, partial integer) are defined
to be continuous variables by default. That is, there is no section defining variables to be
continuous variables.

With the exception of the objective function section (maximize or minimize) and the con-
straints section (subject to), which must appear as the first and second sections respectively,
the sections may appear in any order in the file. The only mandatory section is the objective
function section. Note that you can define the objective function to be a constant in which
case the problem is a so-called constraint satisfaction problem. The following two examples of
LP file contents express empty problems with constant objective functions and no variables or
constraints.

Empty problem 1:

Minimize

End

Empty problem 2:

Minimize

0

End

The end of a matrix description in an LP file can be indicated with the keyword end entered
on a line by itself. This can be useful for allowing the remainder of the file for storage of

Log and File Formats 287 Xpress-Optimizer Reference Manual

comments, unused matrix definition information or other data that may be of interest to be
kept together with the LP file.

A.3.5 Variable names

Variable names can use any of the alphanumeric characters (a-z, A-Z, 0-9) and any of the fol-
lowing symbols:

!"#$%&/,.;?@_‘’{}()|~’

A variable name can not begin with a number or a period. Care should be taken using the
characters E or e since these may be interpreted as exponential notation for numbers.

A.3.6 Linear expressions

Linear expressions are used to define the objective function and constraints. Terms in a linear
expression must be separated by either a + or a - indicating addition or subtraction of the
following term in the expression. A term in a linear expression is either a variable name or a
numerical coefficient followed by a variable name. It is not necessary to separate the coeffi-
cient and its variable with white space or a carriage return although it is advisable to do so
since this can lead to confusion. For example, the string " 2e3x" in an LP file is interpreted us-
ing exponential notation as 2000 multiplied by variable x rather than 2 multiplied by variable
e3x. Coefficients must precede their associated variable names. If a coefficient is omitted it is
assumed to be 1.

A.3.7 Objective function

The objective function section can be written in a similar way to the following examples us-
ing either of the keywords maximize or minimize. Note that the keywords maximize and
minimize are not used for anything other than to indicate the following linear expression to
be the objective function. Note the following two examples of an LP file objective definition:

Maximize
- 1 x1 + 2 x2 + 3x + 4y

or

Minimize
- 1 x1 + 2 x2 + 3x + 4y

Generally objective functions are defined using many terms and since the maximum length of
any line of file input is 512 characters the objective function definitions are typically always
broken with line continuations. No line continuation character is required and lines may be
broken for continuation wherever you may use white space.

Note that the sense of objective is defined only after the problem is loaded and when it is
optimized by the Xpress-Optimizer when the user calls either the minim or maxim operations.
The objective function can be named in the same way as for constraints (see later) although
this name is ignored internally by the Xpress-Optimizer. Internally the objective function is
always named __OBJ___.

A.3.8 Constraints

The section of the LP file defining the constraints is preceded by the keyword subject to.
Each constraint definition must begin on a new line. A constraint may be named with an
identifier followed by a colon before the constraint expression. Constraint names must follow
the same rules as variable names. If no constraint name is specified for a constraint then a
default name is assigned of the form C0000001, C0000002, C0000003, etc. Constraint names
are trimmed of white space before being stored.

Log and File Formats 288 Xpress-Optimizer Reference Manual

The constraints are defined as a linear expression in the variables followed by an indicator
of the constraint’s sense and a numerical right-hand side coefficient. The constraint sense is
indicated intuitively using one of the tokens: >=, <=, or =. For example, here is a named
constraint:

depot01: - x1 + 1.6 x2 - 1.7 x3 <;= 40

Note that tokens > and < can be used, respectively, in place of the tokens >= and <=.

Generally, constraints are defined using many terms and since the maximum length of any
line of file input is 512 characters the constraint definitions are typically always broken with
line continuations. No line continuation character is required and lines may be broken for
continuation wherever you may use white space.

A.3.9 Bounds

The list of bounds in the bounds section are preceded by the keyword bounds. Each bound
definition must begin on a new line. Single or double bounds can be defined for variables.
Double bounds can be defined on the same line as 10 <= x <= 15 or on separate lines in the
following ways:

10 <= x
15 >= x

or

x >= 10
x <= 15

If no bounds are defined for a variable the Xpress-Optimizer uses default lower and upper
bounds. An important point to note is that the default bounds are different for different
types of variables. For continuous variables the interval defined by the default bounds is [0,
XPRS_PLUSINFINITY] while for variables declared in the integers and generals section
(see later) the relaxation interval defined by the default bounds is [0, 1] and [0, XPRS_MAXINT],
respectively. Note that the constants XPRS_PLUSINFINITY and XPRS_MAXINT are defined in
the Xpress-Optimizer header files in your Xpress-Optimizer libraries package.

If a single bound is defined for a variable the Xpress-Optimizer uses the appropriate default
bound as the second bound. Note that negative upper bounds on variables must be declared
together with an explicit definition of the lower bound for the variable. Also note that vari-
ables can not be declared in the bounds section. That is, a variable appearing in a bounds
section that does not appear in a constraint in the constraint section is ignored.

Bounds that fix a variable can be entered as simple equalities. For example, x6 = 7.8 is equiva-
lent to 7.8 <= x6 <= 7.8. The bounds +∞ (positive infinity) and −∞ (negative infinity) must be
entered as strings (case insensitive):

+infinity, -infinity, +inf, -inf.

Note that the keywords infinity and inf may not be used as a right-hand side coefficient of
a constraint.

A variable with a negative infinity lower bound and positive infinity upper bound may be en-
tered as free (case insensitive). For example, x9 free in an LP file bounds section is equivalent
to:

- infinity <= x9 <= + infinity

or

- infinity <= x9

Log and File Formats 289 Xpress-Optimizer Reference Manual

In the last example here, which uses a single bound is used for x9 (which is positive infinity for
continuous example variable x9).

A.3.10 Generals, Integers and binaries

The generals, integers and binaries sections of an LP file is used to indicate the variables
that must have integer values in a feasible solution. The difference between the variables
registered in each of these sections is in the definition of the default bounds that the variables
will have. For variables registered in the generals section the default bounds are 0 and
XPRS_MAXINT. For variables registered in the integers section the default bounds are 0 and
1. The bounds for variables registered in the binaries section are 0 and 1.

The lines in the generals, integers and binaries sections are a list of white space or car-
riage return delimited variable names. Note that variables can not be declared in these sec-
tions. That is, a variable appearing in one of these sections that does not appear in a constraint
in the constraint section is ignored.

It is important to note that you will only be able to use these sections if your Xpress-Optimizer
is licensed for Mix Integer Programming.

A.3.11 Semi-continuous and semi-integer

The semi-continuous and semi integer sections of an LP file relate to two similar classes
of variables and so their details are documented here simultaneously.

The semi-continuous (or semi integer) section of an LP file are used to specify variables as
semi-continuous (or semi-integer) variables, that is, as variables that may take either (a) value 0
or (b) real (or integer) values from specified thresholds and up to the variables’ upper bounds.

The lines in a semi-continuous (or semi integer) section are a list of white space or car-
riage return delimited entries that are either (i) a variable name or (ii) a variable name-number
pair. The following example shows the format of entries in the semi-continuous section.

Semi-continuous
x7 >= 2.3
x8
x9 >= 4.5

The following example shows the format of entries in the semi integer section.

Semi integer
x7 >= 3
x8
x9 >= 5

Note that you can not use the <= token in place of the >= token.

The threshold of the interval within which a variable may have real (or integer) values is de-
fined in two ways depending on whether the entry for the variable is (i) a variable name or (ii)
a variable name-number pair. If the entry is just a variable name, then the variable’s threshold
is the variable’s lower bound, defined in the bounds section (see earlier). If the entry for a
variable is a variable name-number pair, then the variable’s threshold is the number value in
the pair.

It is important to note that if (a) the threshold of a variable is defined by a variable name-
number pair and (b) a lower bound on the variable is defined in the bounds section, then:

Case 1) If the lower bound is less then zero, then the lower bound is zero.

Case 2) If the lower bound is greater than zero but less than the threshold, then the value of
zero is essentially cut off the domain of the semi-continuous (or semi-integer) variable and the
variable becomes a simple bounded continuous (or integer) variable.

Case 3) If the lower bound is greater than the threshold, then the variable becomes a simple

Log and File Formats 290 Xpress-Optimizer Reference Manual

lower bounded continuous (or integer) variable.

If no upper bound is defined in the bounds section for a semi-continuous (or semi-integer)
variable, then the default upper bound that is used is the same as for continuous variables, for
semi-continuous variables, and generals section variables, for semi-integer variables.

It is important to note that you will only be able to use this section if your Xpress-Optimizer is
licensed for Mix Integer Programming.

A.3.12 Partial integers

The partial integers section of an LP file is used to specify variables as partial integer
variables, that is, as variables that can only take integer values from their lower bounds up to
specified thresholds and then take continuous values from the specified thresholds up to the
variables’ upper bounds.

The lines in a partial integers section are a list of white space or carriage return delimited
variable name-integer pairs. The integer value in the pair is the threshold below which the
variable must have integer values and above which the variable can have real values. Note
that lower bounds and upper bounds can be defined in the bounds section (see earlier). If
only one bound is defined in the bounds section for a variable or no bounds are defined then
the default bounds that are used are the same as for continuous variables.

The following example shows the format of the variable name-integer pairs in the partial
integers section.

Partial integers
x11 >= 8
x12 >= 9

Note that you can not use the <= token in place of the >= token.

It is important to note that you will only be able to use this section if your Xpress-Optimizer is
licensed for Mix Integer Programming.

A.3.13 Special ordered sets

Special ordered sets are defined as part of the constraints section of the LP file. The defini-
tion of each special ordered set looks the same as a constraint except that the sense is always
= and the right hand side is either S1 or S2 (case sensitive) depending on whether the set is to
be of type 1 or 2, respectively. Special ordered sets of type 1 require that, of the non-negative
variables in the set, one at most may be non-zero. Special ordered sets of type 2 require that
at most two variables in the set may be non-zero, and if there are two non-zeros, they must be
adjacent. Adjacency is defined by the weights, which must be unique within a set given to the
variables. The weights are defined as the coefficients on the variables in the set constraint. The
sorted weights define the order of the special ordered set. It is perhaps best practice to keep
the special order sets definitions together in the LP file to indicate (for your benefit) the start
of the special ordered sets definition with the comment line \Special Ordered Sets as is
done when a problem is written to an LP file by the Xpress-Optimizer. The following example
shows the definition of a type 1 and type 2 special ordered set.

Sos101: 1.2 x1 + 1.3 x2 + 1.4 x4 = S1
Sos201: 1.2 x5 + 1.3 x6 + 1.4 x7 = S2

It is important to note that you will only be able to use special ordered sets if your Xpress-
Optimizer is licensed for Mix Integer Programming.

A.3.14 Quadratic programming problems

Quadratic programming problems (QPs) with quadratic objective functions are defined using a
special format within the objective function description. Note that quadratic terms may appear

Log and File Formats 291 Xpress-Optimizer Reference Manual

only in the objective function and not in any constraints. The algebraic coefficients of the func-
tion x’Qx appearing in the objective for QP problems are specified inside square brackets [].
Division by two of the QP objective component in the square bracket is implicit. All quadratic
coefficients must appear inside square brackets. Multiple square bracket sections may be used
and quadratic terms in the same variable(s) may appear more than once in quadratic expres-
sions.

Within a square bracket pair, a quadratic term in two different variables is indicated by the
two variable names separated by an asterisk (*). A squared quadratic term is indicated with
the variable name followed by a carat (̂) and then a 2.

For example, the LP file objective function section:

Minimize
obj: x1 + x2 + [x12 + 4 x1 * x2 + 3 x22]

Note that if in a solution the variables x1 and x2 both have value 1 then value of the objective
function is 1 + 1 + (1*1 + 4*1*1 + 3*1*1) / 2 = 2 + (8) / 2 = 6.

It is important to note that you will only be able to use quadratic objective function compo-
nents if your Xpress-Optimizer is licensed for Quadratic Programming.

A.4 ASCII Solution Files

Solution information is available from the Optimizer in a number of different file formats de-
pending on the intended use. The XPRSwritesol (WRITESOL) command produces two files,
problem_name.hdr and problem_name.asc, whose output has comma separated fields and
is primarily intended for input into another program. By contrast, the command XPRSwriteprtsol
(WRITEPRTSOL) produces fixed format output intended to be sent directly to a printer, the file
problem_name.prt. All three of these files are described below.

A.4.1 Solution Header .hdr Files

This file only contains one line of characters comprising header information which may be used
for controlling the reading of the .asc file (which contains data on each row and column in
the problem). The single line is divided into fourteen fields, separated by commas, as follows:

Field Type Width Description

1 string 10 matrix name;

2 integer 4 number of rows in problem;

3 integer 6 number of structural columns in problem;

4 integer 4 sequence number of the objective row;

5 string 3 problem status (see notes below);

6 integer 4 direction of optimization (0=none, 1=min, 2=max);

7 integer 6 number of iterations taken;

8 integer 4 final number of infeasibilities;

9 real 12 final object function value;

10 real 12 final sum of infeasibilities;

11 string 10 objective row name;

12 string 10 right hand side row name;

13 integer 1 flag: integer solution found (1), otherwise 0;

14 integer 4 matrix version number.

• Character fields contain character strings enclosed in double quotes.

Log and File Formats 292 Xpress-Optimizer Reference Manual

• Integer fields contain right justified decimal digits.

• Fields of type real contain a decimal character representation of a real number, right
justified, with six digits to the right of the decimal point.

• The status of the problem (field 5) is a single character as follows:

O optimal;

N infeasible;

U unbounded;

Z unfinished.

A.4.2 CSV Format Solution .asc Files

The bulk of the solution information is contained in this file. One line of characters is used
for each row and column in the problem, starting with the rows, ordered according to input
sequence number. Each line contains ten fields, separated by commas, as follows:

Field Type Width Description

1 integer 6 input sequence number of variable;

2 string 10 variable (row or column vector) name;

3 string 3 variable type (C=column; N, L, G, E for rows);

4 string 4 variable status (LL, BS, UL, EQ or **);

5 real 12 value of activity;

6 real 12 slack activity (rows) or input cost (columns;)

7 real 12 lower bound (-1000000000 if none);

8 real 12 upper bound (1000000000 if none);

9 real 12 dual activity (rows) or reduced cost (columns);

10 real 12 right hand side value (rows) or blank (columns).

• The field Type is as for the .hdr file.

• The variable type (field 3) is defined by:
C structural column;
N N type row;
L L type row;
G G type row;
E E type row;

• The variable status (field 4) is defined by:
LL non-basic at lower bound;
** basic and infeasible;
BS basic and feasible;
UL non-basic at upper bound;
EQ equality row;
SB variable is super-basic;
?? unknown.

A.4.3 Fixed Format Solution (.prt) Files

This file is the output of the XPRSwriteprtsol (WRITEPRTSOL) command and has the same
format as is displayed to the console by PRINTSOL. The format of the display is described below
by way of an example, for which the simple example of the Xpress-MP Getting Started manual
will be used.

Log and File Formats 293 Xpress-Optimizer Reference Manual

The first section contains summary statistics about the solution process and the optimal solu-
tion that has been found. It gives the matrix (problem) name (simple) and the names of the
objective function and right hand sides that have been used. Then follows the number of rows
and columns, the fact that it was a maximization problem, that it took two iterations (simplex
pivots) to solve and that the best solution has a value of 171.428571.

Problem Statistics
Matrix simple
Objective *OBJ*
RHS *RHS*
Problem has 3 rows and 2 structural columns

Solution Statistics
Maximization performed
Optimal solution found after 3 iterations
Objective function value is 171.428571

Next, the Rows Section presents the solution for the rows, or constraints, of the problem.

Rows Section
Number Row At Value Slack Value Dual Value RHS
N 1 *OBJ* BS 171.428571 -171.428571 .000000 .000000
L 2 second UL 200.000000 .000000 .571429 200.000000
L 3 first UL 400.000000 .000000 .142857 400.000000

The first column shows the constraint type: L means a ’less than or equal to’ constrain; E
indicates an ’equality’ constraint; G refers to a ’greater than or equal to’ constraint; N means a
’nonbinding’ constraint – this is the objective function.

The sequence numbers are in the next column, followed by the name of the constraint. The At
column displays the status of the constraint. A UL indicator shows that the row is at its upper
limit. In this case a ≤ row is hard up against the right hand side that is constraining it. BS means
that the constraint is not active and could be removed from the problem without changing the
optimal value. If there were ≥ constraints then we might see LL indicators, meaning that the
constraint was at its lower limit. Other possible values include:

** basic and infeasible;

EQ equality row;

?? unknown.

The RHS column is the right hand side of the original constraint and the Slack Value is the
amount by which the constraint is away from its right hand side. If we are tight up against a
constraint (the status is UL or LL) then the slack will be 0.

The Dual Value is a measure of how tightly a constraint is acting. If a row is hard up against
a ≤ constraint then it might be expected that a greater profit would result if the constraint
were relaxed a little. The dual value gives a precise numerical measure to this intuitive feeling.
In general terms, if the right hand side of a ≤ row is increased by 1 then the profit will increase
by the dual value of the row. More specifically, if the right hand side increases by a sufficiently
small δ then the profit will increase by δ x dual value, since the dual value is a marginal concept.
Dual values are sometimes known as shadow prices.

Finally, the Columns Section gives the solution for the columns, or variables.

Columns Section
Number Column At Value Input Cost Reduced Cost
C 4 a BS 114.285714 1.000000 .000000
C 5 b BS 28.571429 2.000000 .000000

The first column contains a C meaning column (compare with the rows section above). The
number is a sequence number. The name of the decision variable is given under the Column
heading. Under At is the status of the column: BS means it is away from its lower or upper

Log and File Formats 294 Xpress-Optimizer Reference Manual

bound, LL means that it is at its lower bound and UL means that the column is limited by its
upper bound. Other possible values include:

** basic and infeasible;

EQ equality row;

SB variable is super-basic;

?? unknown.

The Value column gives the optimal value of the variable. For instance, the best value for the
variable a is 114.285714 and for variable b it is 28.571429. The Input Cost column tells
you the coefficient of the variable in the objective function.

The final column in the solution print gives the Reduced Cost of the variable, which is always
zero for variables that are away from their bounds – in this case, away from zero. For variables
which are zero, it may be assumed that the per unit contribution is not high enough to make
production viable. The reduced cost shows how much the per unit profitability of a variable
would have to increase before it would become worthwhile to produce this product. Alter-
natively, and this is where the name reduced cost comes from, the cost of production would
have to fall by this amount before any production could include this without reducing the best
profit.

A.5 ASCII Range Files

Users can display range (sensitivity analysis) information produced by XPRSrange (RANGE) ei-
ther directly, or by printing it to a file for use. Two functions exist for this purpose, namely
XPRSwriteprtrange (WRITEPRTRANGE) and XPRSwriterange (WRITERANGE). The first of these,
XPRSwriterange (WRITERANGE) produces two files, problem_name.hdr and problem_name.rsc,
both of which have fixed fields and are intended for use as input to another program. By way
of contrast, command XPRSwriteprtrange (WRITEPRTRANGE) outputs information in a for-
mat intended for sending directly to a printer (problem_name.rrt). The information provided
by both functions is essentially the same and the difference lies purely in the intended purpose
for the output. The formats of these files are described below.

A.5.1 Solution Header (.hdr) Files

This file contains only one line of characters comprising header information which may be
used for controlling the reading of the .rsc file. Its format is identical to that produced by
XPRSwritesol (WRITESOL) and is described in Solution Header (.hdr) Files above.

A.5.2 CSV Format Range (.rsc) Files

The bulk of the range information is contained in this file. One line of characters is used
for each row and column in the problem, starting with the rows, ordered according to input
sequence number. Each line contains 16 fields, separated by commas, as follows:

Log and File Formats 295 Xpress-Optimizer Reference Manual

Field Type Width Description

1 integer 6 input sequence number of variable;

2 string * variable (row or column vector) name;

3 string 3 variable type (C=column; N, L, G, E for rows);

4 string 4 variable status (LL, BS, UL, EQ or **);

5 real 12 value of activity;

6 real 12 slack activity (rows) or input cost (columns);

7 real 12 lower activity;

8 real 12 unit cost down;

9 real 12 lower profit;

10 string * limiting process;

11 string 4 status of limiting process at limit (LL, UL);

12 real 12 upper activity;

13 real 12 unit cost up;

14 real 12 upper profit;

15 string * limiting process;

16 string 4 status of limiting process at limit (LL, UL).

* these fields are variable length depending on the maximum name length

• The field Type is as for the .hdr file.

• The variable type (field 3) is defined by:
C structural column;
N N type row;
L L type row;
G G type row;
E E type row;

• The variable status (field 4) is defined by:
LL non-basic at lower bound;
** basic and infeasible;
BS basic and feasible;
UL non-basic at upper bound;
EQ equality row;
?? unknown.

• The status of limiting process at limit (fields 11 and 16) is defined by:
LL non-basic at lower bound;
UL non-basic at upper bound;

• A full description of all fields can be found below.

A.5.3 Fixed Format Range (.rrt) Files

This file is the output of the XPRSwriteprtrange (WRITEPRTRANGE) command and has the
same format as is displayed to the console by PRINTRANGE. This format is described below by
way of an example.

Output is displayed in three sections, variously showing summary data, row data and col-
umn data. The first of these is the same information as displayed by the XPRSwriteprtsol
(WRITEPRTSOL) command (see above), resembling the following:

Problem Statistics
Matrix PLAN
Objective C0______
RHS R0______

Log and File Formats 296 Xpress-Optimizer Reference Manual

Problem has 7 rows and 5 structural columns

Solution Statistics
Minimization performed
Optimal solution found after 6 iterations
Objective function value is 15.000000

The next section presents data for the rows, or constraints, of the problem. For each constraint,
data are displayed in two lines. In this example the data for just one row is shown:

Rows Section
Vector Activity Lower actvty Unit cost DN Upper cost Limiting AT
Number Slack Upper actvty Unit cost UP Process
G C1 10.000000 9.000000 -1.000000 x4 LL
LL 2 .000000 12.000000 1.000000 C6 UL

In the first of the two lines, the row type (N, G, L or E) appears before the row name. The
value of the activity follows. Then comes Lower actvty, the level to which the activity may
be decreased at a cost per unit of decrease given by the Unit cost DN column. At this level
the unit cost changes. The Limiting Process is the name of the row or column that would
change its status if the activity of this row were decreased beyond its lower activity. The AT
column displays the status of the limiting process when the limit is reached. It is either LL,
meaning that it leaves or enters the basis at its lower limit, or UL, meaning that it leaves or
enters the basis at its upper limit. In calculating Lower actvty, the lower bound on the row
as specified in the RHS section of the matrix is ignored.

The second line starts with the current status of the row and the sequence number. The value
of the slack on the row is then shown. The next four pieces of data are exactly analogous to
the data above them. Again, in calculating Upper actvty, the upper bound on that activity
is ignored.

The columns, or variables, are similarly displayed in two lines. Here we show just two columns:

Columns Section
Vector Activity Lower actvty Unit costDN Upper cost Limiting AT
Number Input cost Upper actvty Unit costUP Lower cost Process
C x4 1.000000 -2.000000 5.000000 6.000000 C5 LL
BS 8 1.000000 3.000000 1.000000 .000000 C1 LL

C x5 2.000000 -1.000000 2.000000 6.000000 X3 LL
UL 9 4.000000 3.000000 -2.000000 -very large X2 LL

The vector type is always C, denoting a column. The Activity is the optimal value. The
Lower/Upper actvty is the activity level that would result from a cost coefficient increase/decrease
from the Input cost to the Upper/Lower cost (assuming a minimization problem). The
lower/upper bound on the column is ignored in this calculation. The Unit cost DN/UP is the
change in the objective function per unit of change in the activity down/up to the Lower/Upper
activity. The interpretation of the Limiting Processes and AT statuses is as for rows. The
second line contains the column’s status and sequence number.

Note that for non-basic columns, the Unit costs are always the (absolute) values of the
reduced costs.

A.6 The Directives (.dir) File

This consists of an unordered sequence of records which specify branching priorities, forced
branching directions and pseudo costs, read into the Optimizer using the XPRSreaddirs
(READDIRS) command. By default its name is of the form problem_name.dir.

Directive file records have the format:

Col 2-3 Col 5-12 Col 25-36

type entity value

Log and File Formats 297 Xpress-Optimizer Reference Manual

type is one of:

PR implying a priority entry (the value gives the priority, which must be an integer be-
tween 0 and 1000. Values greater than 1000 are rejected, and real values are rounded
down to the next integer. A low value means that the entity is more likely to be se-
lected for branching.)

UP the entity is to be forced up (value is not used)

DN the entity is to be forced down (value is not used)

PU an up pseudo cost entry (the value gives the cost)

PD a down pseudo cost entry (the value gives the cost)

MC a model cut entry (value is not used)

entity is the name of a global entity (vector or special ordered set), or a mask. A mask may
comprise ordinary characters which match the given character: a ? which matches any single
character, or a *, which matches any string or characters. A * can only appear at the end of a
mask.

value is the value to accompany the type.

For example:

PR x1* 2

gives global entities (integer variables etc.) whose names start with x1 a priority of 2. Note
that the use of a mask: a * matches all possible strings after the initial x1.

A.7 The Matrix Alteration (.alt) File

The Alter File is an ASCII file containing matrix revision statements, read in by use of the
XPRSalter (ALTER) command, and should be named problem_name.alt by default. Each
statement occupies a separate line of the file and the final line is always empty. The state-
ments consist of identifiers specifying the object to be altered and actions to be applied to
the specified object. Typically the identifier may specify just a row, for example R2, specifying
the second row if that name has been assigned to row 2. If a coefficient is to be altered, the
associated variable must also be specified. For example:

RRRRRRRR
CCRider
2.087

changes the coefficient of CCRider in row RRRRRRRR to 2.087. The action may be one of the
following possibilities.

A.7.1 Changing Upper or Lower Bounds

An upper or lower bound of a column may be altered by specifying the special ’rows’ **LO and
**UP for lower and upper bounds respectively.

A.7.2 Changing Right Hand Side Coefficients

Right hand side coefficients of a row may be altered by changing values in the ’column’ with
the name of the right hand side.

A.7.3 Changing Constraint Types

The direction of a constraint may be altered. The row name is given first, followed by an action
of **NTx, where x is one of:

Log and File Formats 298 Xpress-Optimizer Reference Manual

N for the new row type to be constrained;

L for the new row type to be ’less than or equal to’;

G for the new row type to be ’greater than or equal to’;

E for the new row type to be an equality.

Note that N type rows will not be present in the matrix in memory if the control KEEPNROWS
has been set to zero before XPRSreadprob (READPROB).

A.8 The Simplex Log

During the simplex optimization, a summary log is displayed every n iterations, where n is the
value of LPLOG. This summary log has the form:

Its The number of iterations or steps taken so far.

Obj
Value

The objective function value.

S The current solution method (p primal; d dual).

Ninf The number of infeasibilities.

Nneg The number of variables which may improve the current solution if assigned a
value away from their current bounds.

Sum inf The scaled sum of infeasibilities. For the dual algorithm this is the scaled sum of
dual infeasibilities when the number of negative dj’s is non-zero.

Time The number of seconds spent iterating.

A more detailed log can be displayed every n iterations by setting LPLOG to -n. The detailed
log has the form:

Its The number of iterations or steps taken so far.

S The current solution method (p primal; d dual).

Ninf The number of infeasibilities.

Obj
Value

If the solution is infeasible, the scaled sum of infeasibilities, otherwise: the objec-
tive value.

In The sequence number of the variable entering the basis (negative if from upper
bound).

Out The sequence number of the variable leaving the basis (negative if to upper
bound).

Nneg The number of variables which may prove the current solution if assigned a value
away from their current bounds.

Dj The scaled rate at which the most promising variable would improve the solution
if assigned a value away from its current bound (reduced cost).

Neta A measure of the size of the inverse.

Nelem Another measure of the size of the inverse.

Time The number of seconds spent iterating.

If LPLOG is set to 0, no log is displayed until the optimization finishes.

A.9 The Global Log

During the Branch and Bound tree search (see XPRSglobal (GLOBAL)), a summary log of nine
columns of information is printed every n nodes, where -n is the value of MIPLOG. These
columns consist of:

Log and File Formats 299 Xpress-Optimizer Reference Manual

Node A sequential node number.

BestSoln The value of the best integer feasible solution found.

BestBound A bound on the value of the best integer feasible solution that can be found.

Sols The number of integer feasible solutions that have been found.

Active The number of active nodes in the Branch and Bound tree search.

Depth The depth of the current node in the Branch and Bound tree.

Gap The percentage gap between the best solution and the best bound.

GInf The number of global infeasabilities at the current node.

Time The time taken.

This log is also printed when an integer feasible solution is found. Stars (*) printed on both
sides of the log indicate a solution has been found. Pluses (+) printed on both sides of the log
indicate a heuristic solution has been found.

If MIPLOG is set to 3, a more detailed log of eight columns of information is printed for each
node in the tree search:

Branch A sequential node number.

Parent The node number of the parent of this node.

Solution The optimum value of the LP relaxation at the node.

Entity If it is necessary to continue the search from this node, then this global entity will
be separated upon.

Value /
Bound

The current value of the entity chosen above for separation. A U or an L follows:
If the letter is U (resp. L) then a new upper (lower) bound will first be applied to
the entity. Thus the entity will be forced down (up) on the first branch from this
node.

Active The number of active nodes in the tree search.

GInf The number of global infeasibilities.

Time The time taken.

Not all the information described above is present for all nodes. If the LP relaxation is cut
off, only the Branch and Parent (and possibly Solution) are displayed. If the LP relaxation
is infeasible, only the Branch and Parent appear. If an integer solution is discovered, this is
highlighted before the log line is printed.

If MIPLOG is set to 2, the detailed log is printed at integer feasible solutions only. When MIPLOG
is set to 0 or 1, no log is displayed and status messages only are displayed at the end of the
search. The LP iteration log is suppressed, but messages from the LP Optimizer may be seen if
major numerical difficulties are encountered.

Log and File Formats 300 Xpress-Optimizer Reference Manual

Index

Numbers
3, 265
4, 265
5, 265
6, 265
7, 265
9, 265
11, 265
16, 265
17, 265
18, 265
19, 265
20, 265
21, 266
29, 266
36, 266
38, 266
41, 266
45, 266
50, 266
52, 266
56, 266
58, 266
60, 266
61, 266
64, 266
65, 267
66, 267
67, 267
68, 267
71, 267
72, 267
73, 267
76, 267
77, 267
79, 267
80, 267
81, 267
83, 267
84, 267
85, 267
89, 268
90, 268
91, 268
97, 268
98, 268
102, 268
107, 268
111, 268
112, 268
114, 268
120, 268
122, 268
127, 268

130, 269
131, 269
132, 269
140, 269
142, 269
143, 269
151, 269
152, 269
153, 269
155, 269
170, 269
171, 270
172, 270
178, 270
180, 270
181, 270
186, 270
245, 270
246, 270
247, 270
255, 270
256, 270
261, 270
262, 270
263, 271
264, 271
266, 271
268, 271
277, 271
278, 271
279, 271
285, 271
286, 271
287, 271
302, 271
305, 271
306, 271
307, 271
308, 272
309, 272
310, 272
314, 272
316, 272
318, 272
320, 272
324, 272
326, 272
349, 272
352, 272
361, 272
362, 272
363, 272
364, 272
366, 273

301 Xpress-Optimizer Reference Manual

368, 273
381, 273
386, 273
387, 273
388, 273
389, 273
390, 273
391, 273
392, 273
394, 273
395, 273
396, 273
401, 273
402, 274
403, 274
404, 274
405, 274
406, 274
407, 274
408, 274
409, 274
410, 274
411, 274
412, 274
413, 275
414, 275
415, 275
416, 275
418, 275
419, 275
422, 275
423, 275
424, 275
425, 275
426, 275
427, 275
428, 275
430, 276
434, 276
436, 276
473, 276
501, 276
502, 276
503, 276
504, 276
505, 276
506, 276
507, 276
509, 276
510, 276
511, 276
512, 276
513, 277
514, 277
515, 277
516, 277
517, 277
518, 277
519, 277
520, 277
521, 277
522, 277
523, 277
524, 277

525, 277
526, 277
527, 277
528, 277
529, 278
530, 278

A
ACTIVENODES, 250
Advanced Mode, 1, 29
algorithms, 2

default, 14
ALTER, 40, 270, 298
Archimedian model, see goal programming
array numbering, 219
AUTOPERTURB, 211, 240

B
BACKTRACK, 18, 212
BARAASIZE, 250
BARCRASH, 212
BARCROSSOVER, 251
BARDENSECOL, 251
BARDUALINF, 251
BARDUALOBJ, 251
BARDUALSTOP, 16, 212
BARGAPSTOP, 16, 213, 215
BARINDEFLIMIT, 213
BARITER, 251
BARITERLIMIT, 10, 213
BARLSIZE, 252
BARORDER, 16, 214
BAROUTPUT, 16, 24, 214
BARPRIMALINF, 252
BARPRIMALOBJ, 252
BARPRIMALSTOP, 16, 214
BARSTEPSTOP, 16, 215
BARSTOP, 252
BARTHREADS, 215
basis, 200, 227

inversion, 227
loading, 125, 135
reading from file, 154

BASISCONDITION, 41
batch mode, 196
BCL, 2
BESTBOUND, 252
BIGM, 215, 240
BIGMMETHOD, 215
bitmaps, 87, 191
BOUNDNAME, 252
bounds, 43, 89, 186, 298
Branch and Bound, 2

number of threads, 235
BRANCHCHOICE, 216
branching, 173

directions, 80, 157, 297
variable, 167

BRANCHVALUE, 253
BRANCHVAR, 253
BREADTHFIRST, 18, 216

C
CACHESIZE, 16, 216

Index 302 Xpress-Optimizer Reference Manual

callbacks
barrier log, 166
branching variable, 167
copying between problems, 53
estimate function, 173
global log, 175
initialization of cut manager, 177
node cutoff, 183
node selection, 169
optimal node, 176, 184
preprocess node, 185
separate, 186
simplex log, 179

Cholesky factorization, 16, 214, 217, 220, 252
CHOLESKYALG, 217
CHOLESKYTOL, 217
COLS, 253
columns

density, 220, 251
nonzeros, 72
returning bounds, 89, 113
returning indices, 84
returning names, 95
types, 73

comments, 236
Console Mode, 1, 29
Console Xpress, 1

terminating optimization, 10
termination, 196

controls, 31
changing values, 211
copying between problems, 54
retrieve values, 112
retrieving values, 79, 87
setting values, 188, 191, 195

COVERCUTS, 217, 248
CPUTIME, 217
CRASH, 218
CROSSOVER, 16, 218
crossover, 218, 251
CSTYLE, 219
CSV, 280
cut manager

initialization, 177
routines, 171

cut pool, 24, 34, 58, 75, 171, 186, 271
cuts, 126, 198
lifted cover inequalities, 217
list of indices, 74

cut strategy, 219
CUTDEPTH, 219
CUTFREQ, 219
cutoff, 17, 183, 232–234
CUTS, 253
cuts, 24, 34, 186, 270, 271

deleting, 59
generation, 219
Gomory cuts, 248
list of active cuts, 76
model cuts, 134

CUTSTRATEGY, 219
cutting planes, see cuts

D
default algorithm, 220
DEFAULTALG, 14, 144, 220
degradation, 18, 24, 173, 220, 243
DEGRADEFACTOR, 220
DENSECOLLIMIT, 16, 220
directives, 80, 136, 270, 271

loading, 127
read from file, 156

dongles, 3
dual values, 8
DUALGRADIENT, 221
DUALINFEAS, 253
DUALIZE, 221

E
ELEMS, 254
ELIMTOL, 221
ERRORCODE, 254, 265
errors, 181, 192, 236, 254

checking, 122
ETATOL, 221
EXIT, 64
EXTRACOLS, 22, 222, 272, 275
EXTRAELEMS, 22, 40, 222, 271, 275
EXTRAMIPENTS, 22, 222, 275
EXTRAPRESOLVE, 223, 272
EXTRAROWS, 22, 223, 270, 275
EXTRASETELEMS, 223
EXTRASETS, 224

F
fathoming, 16
FEASIBILITYPUMP, 224
feasible region, 14
FEASTOL, 224
files

. bss, 269

.alt, 40, 280

.asc, 280

.bif, 270

.bss, 280

.dir, 18, 280

.glb, 117, 160, 266, 280

.gol, 280

.grp, 280

.hdr, 280

.iis, 280

.ini, 4

.lic, 3

.log, 7

.lp, 1, 158, 280

.mat, 158, 280

.prt, 206, 280

.rng, 71, 106, 153, 280

.rrt, 153, 205, 280

.rsc, 280

.sol, 160, 268, 280

.svf, 160, 162, 280
CSV, 280
OMNI format, 202

FIXGLOBAL, 65, 153

G
GETMESSAGESTATUS, 92

Index 303 Xpress-Optimizer Reference Manual

GLOBAL, 7, 116
global entities, 255, 262

branching, 164, 165
extra entities, 222
fixing, 65
loading, 128

global log, 175
global search, 24, 60, 258, 276

directives, 7, 156
MIP solution status, 256
termination, 233, 234

GOAL, 26, 118
goal programming, 118, 272
GOMCUTS, 224, 248

H
Haverly Systems, 203
HELP, 120
Hessian matrix, 49, 103
HEURDEPTH, 225
HEURDIVESPEEDUP, 225
HEURDIVESTRATEGY, 225
HEURFREQ, 226
HEURMAXSOL, 226
HEURNODES, 226
HEURSEARCHFREQ, 226
HEURSTRATEGY, 227

I
IIS, 121
IIS isolation, 11
infeasibility, 14, 114, 121, 241, 276

diagnosis, 247
integer, 256
node, 176

infinity, 33
initialization, 122, 271
integer preprocessing, 234
integer presolve, 276
integer solutions, see global search, 231, 256

begin search, 116
branching variable, 167
callback, 178
cutoff, 183
node selection, 169
reinitialize search, 123
retrieving information, 81
terminating search, 174

interior point, see Newton barrier
INVERTFREQ, 15, 227
INVERTMIN, 15, 227
irreducible infeasible sets, 231, 254

begin search, 121
retrieving, 83

K
KEEPBASIS, 227
KEEPMIPSOL, 210, 228
KEEPNROWS, 228, 299

L
L1CACHE, 229
license, 6
lifted cover inequalities, 248

line length, 277
LINELENGTH, 229
LNPBEST, 229
LNPITERLIMIT, 229
log file, 192
LP relaxation, 300
LPITERLIMIT, 10, 22, 230, 265
LPLOG, 15, 24, 179, 230
LPOBJVAL, 8, 254
LPSTATUS, 255

M
Markowitz tolerance, 221, 230
MARKOWITZTOL, 230
matrix

adding names, 7
changing coefficients, 40, 44, 46, 50
column bounds, 43
columns, 21, 32, 57, 253, 259
constraint senses, 40
cuts, 253
deleting cuts, 59
elements, 240
extra elements, 222, 223
input, 131
nonzeros, 72
quadratic elements, 260
range, 51
rows, 21
scaling, 163
size, 22
spare columns, 262
spare elements, 262, 275
spare global entities, 262

MATRIXNAME, 255
MATRIXTOL, 230
MAXCUTTIME, 231
MAXIIS, 11, 121, 231
MAXIM, 7, 143
MAXMIPSOL, 231
MAXNODE, 231
MAXPAGELINES, 232
MAXTIME, 10, 22, 232
memory, 63, 66, 241, 265, 266, 268, 270
MINIM, 7, 143
MIPABSCUTOFF, 232
MIPABSSTOP, 233
MIPADDCUTOFF, 19, 233
MIPENTS, 255
MIPINFEAS, 256
MIPLOG, 24, 233, 299
MIPOBJVAL, 8, 256
MIPPRESOLVE, 19, 234
MIPRELCUTOFF, 19, 234
MIPRELSTOP, 234
MIPSOLNODE, 256
MIPSOLS, 256
MIPSTATUS, 256
MIPTARGET, 18, 235
MIPTHREADID, 257
MIPTHREADS, 235
MIPTOL, 235
model cuts, 157
Mosel, 2

Index 304 Xpress-Optimizer Reference Manual

MPS file format, see files
MPSBOUNDNAME, 236
MPSECHO, 236
MPSERRIGNORE, 236
MPSFORMAT, 236
MPSNAMELENGTH, 237
MPSOBJNAME, 237
MPSRANGENAME, 237
MPSRHSNAME, 237
MUTEXCALLBACKS, 238

N
NAMELENGTH, 257
Newton barrier

convergence criterion, 252
log callback, 166
number of iterations, 10, 15, 213
number of threads, 215
output, 24

NODEDEPTH, 257
NODES, 258
nodes, 17

active cuts, 76, 126
cut routines, 171
deleting, 60
deleting cuts, 59
infeasibility, 176
maximum number, 231
number solved, 258
optimal, 184
outstanding, 250
parent node, 59, 259
prior to optimization, 185
selection, 169, 238
separation, 186

NODESELECTION, 18, 216, 238
numerical difficulties, 300
NUMIIS, 11, 254

O
objective function, 14, 21, 235, 237, 258

changing coefficients, 48
dual value, 251
optimum value, 254, 256
primal value, 252
quadratic, 21, 47, 49, 137, 140
retrieving coefficients, 96

OBJNAME, 258
OBJRHS, 258
OBJSENSE, 258
OMNI format, 202
OMNIDATANAME, 238
OMNIFORMAT, 239
optimal basis, 7, 16, 25
OPTIMALITYTOL, 239
optimization

standard template, 6
optimization sense, 258
Optimizer output, 180
ORIGINALCOLS, 259
ORIGINALROWS, 259
OUTPUTLOG, 192, 239
OUTPUTMASK, 208, 210, 239
OUTPUTTOL, 240

P
PARENTNODE, 259
PENALTY, 240
performance, 22, 270, 271
PERTURB, 211, 240
pivot, 243, 275

list of variables, 98
order of basic variables, 97

PIVOTTOL, 240
postoptimal analysis, 153
POSTSOLVE, 147
postsolve, 22
PPFACTOR, 241
pre-emptive model, see goal programming
PRESOLVE, 22, 40, 241, 268, 270
presolve, 21, 22, 142, 221, 223, 241, 247, 270, 272
presolved problem, 109

basis, 99, 135
directives, 80, 136

PRESOLVEOPS, 241
PRESOLVESTATE, 21, 259
pricing, 242

Devex, 242, 268
partial, 241, 242

PRICINGALG, 15, 242, 268
primal infeasibilities, 252, 263
PRIMALINFEAS, 260
PRINTRANGE, 150, 205
PRINTSOL, 151, 206
priorities, 80, 157, 267, 297
problem

file access, 158, 204
input, 7, 131
name, 3, 102, 194, 242
pointers, 6

problem attributes, 8
prefix, 250
retrieving values, 78, 86, 111

problem pointers, 56
copying, 55
deletion, 63

PROBNAME, 242
pseudo cost, 18, 80, 157, 243, 297
PSEUDOCOST, 243

Q
QELEMS, 260
quadratic programming, 272, 273

coefficients, 47, 49, 103, 260
loading global problem, 137
loading problem, 140

QUIT, 152, 196

R
RANGE, 7, 65, 150, 153, 205
RANGENAME, 260
ranging, 7, 51, 52, 71, 260

information, 8, 153
name, 237
retrieve values, 106

READBASIS, 7, 154
READBINSOL, 155
READDIRS, 7, 156, 297
READPROB, 12, 158

Index 305 Xpress-Optimizer Reference Manual

reduced costs, 8, 65, 239
REFACTOR, 243
relaxation, see LP relaxation
RELPIVOTTOL, 243
RESTORE, 160
return codes, 31, 64, 152, 196
RHSNAME, 260
right hand side, 50, 104

name, 237
ranges, 153
retrieve range values, 105

ROWS, 260
rows

addition, 36
deletion, 61
extra rows, 223, 262
indices, 84
model cuts, 134
names, 35, 95
nonzeros, 107
number, 259, 260
types, 52, 108

running time, 232

S
SAVE, 160, 162
SBBEST, 243
SBEFFORT, 244
SBESTIMATE, 244
SBITERLIMIT, 244
SBSELECT, 245
SBTHREADS, 245
SCALE, 12, 163
SCALING, 12, 163, 245
scaling, 163, 270
security system, 6, 273
sensitivity analysis, 65
separation, 16
set

returning names, 95
SETMEMBERS, 261
SETMESSAGESTATUS, 193
SETPROBNAME, 194
SETS, 261
sets, 255, 261

addition, 38
deletion, 62
names, 39

shadow prices, 153
SHAREMATRIX, 246
simplex, 16

log callback, 179
number of iterations, 10, 261
output, 24
perturbation, 211
type of crash, 218

simplex log, 230
simplex pivot, see pivot
SIMPLEXITER, 261
solution, 7, 8, 93

beginning search, 143
output, 110, 151, 206, 209

SOLUTIONFILE, 246
SOSREFTOL, 247

SPARECOLS, 262
SPAREELEMS, 262
SPAREMIPENTS, 262
SPAREROWS, 262
SPARESETELEMS, 262
SPARESETS, 262
special ordered sets, 2, 128, 137
STOP, 64, 152, 196
strong branching, 243
student mode, 270
SUMPRIMALINF, 263

T
tightening

bound, 23
coefficient, 23

tolerance, 224, 230, 233, 235, 239, 240, 243
Tomlin Criterion, 19
TRACE, 11, 247
tracing, 276
tree, see global search
TREECOVERCUTS, 248
TREEGOMCUTS, 248

U
unboundedness, 17, 114

V
variables

binary, 2, 128, 137, 284
continuous, 2, 128, 137, 284
continuous integer, 2, 45, 128, 137
infeasible, 109
integer, 2, 128, 137, 284
partial integer, 2, 128, 137, 284
primal, 85
slack, 8, 59

VARSELECTION, 18, 248
VERSION, 249
version number, 249

W
warning messages, 24
WRITEBASIS, 7, 200
WRITEBINSOL, 201
WRITEOMNI, 202
WRITEPROB, 204
WRITEPRTRANGE, 8, 205
WRITEPRTSOL, 7, 206
WRITERANGE, 8, 207
WRITESOL, 209, 292

X
XPRS_MINUSINFINITY, 33, 74
XPRS_PLUSINFINITY, 33
XPRSaddcols, 22, 32
XPRSaddcuts, 25, 34
XPRSaddnames, 7, 32, 35
XPRSaddrows, 22, 36
XPRSaddsetnames, 39
XPRSaddsets, 38
XPRSalter, 40, 270, 298
XPRSbasiscondition, 41
XPRSbtran, 42
XPRSchgbounds, 22, 43

Index 306 Xpress-Optimizer Reference Manual

XPRSchgcoef, 22, 44
XPRSchgcoltype, 22, 45
XPRSchgmcoef, 22, 44, 46
XPRSchgmqobj, 22, 47
XPRSchgobj, 22, 48, 274
XPRSchgqobj, 22, 49
XPRSchgrhs, 22, 50
XPRSchgrhsrange, 22, 51
XPRSchgrowtype, 22, 52
XPRScopycallbacks, 53, 55
XPRScopycontrols, 54, 55
XPRScopyprob, 55
XPRScreateprob, 7, 56
XPRSdelcols, 22, 57
XPRSdelcpcuts, 25, 58
XPRSdelcuts, 25, 58, 59
XPRSdelnode, 60
XPRSdelrows, 22, 61
XPRSdelsets, 62
XPRSdestroyprob, 7, 56, 63
XPRSetcbmessageVB, 181
XPRSfixglobal, 65, 153
XPRSfree, 6, 66
XPRSftran, 67
XPRSgetbanner, 68
XPRSgetbasis, 69
XPRSgetcoef, 70
XPRSgetcolrange, 21, 71
XPRSgetcols, 21, 72
XPRSgetcoltype, 21, 73
XPRSgetcpcutlist, 25, 74
XPRSgetcpcuts, 25, 75
XPRSgetcutlist, 25, 76
XPRSgetdaysleft, 77
XPRSgetdblattrib, 8, 78, 250
XPRSgetdblcontrol, 79
XPRSgetdirs, 80
XPRSgetglobal, 81
XPRSgetiis, 11, 83
XPRSgetindex, 84, 276
XPRSgetinfeas, 85
XPRSgetintattrib, 8, 86, 250
XPRSgetintcontrol, 87, 211
XPRSgetlasterror, 88
XPRSgetlb, 21, 89
XPRSgetlicerrmsg, 90
XPRSgetlpsol, 8, 91
XPRSgetmessagestatus, 92
XPRSgetmipsol, 93
XPRSgetmqobj, 94
XPRSgetnames, 21, 95
XPRSgetobj, 21, 96, 274
XPRSgetpivotorder, 97
XPRSgetpivots, 98
XPRSgetpresolvebasis, 23, 99
XPRSgetpresolvemap, 100
XPRSgetpresolvesol, 101
XPRSgetprobname, 102
XPRSgetqobj, 21, 103
XPRSgetrhs, 21, 104
XPRSgetrhsrange, 21, 105
XPRSgetrowrange, 21, 106
XPRSgetrows, 21, 107
XPRSgetrowtype, 21, 108

XPRSgetscaledinfeas, 23, 109
XPRSgetsol, 110
XPRSgetstrattrib, 8, 111, 250
XPRSgetstrcontrol, 112
XPRSgetub, 21, 113
XPRSgetunbvec, 114
XPRSgetversion, 115
XPRSglobal, 7, 116, 123
XPRSgoal, 26, 118
XPRSiis, 11, 83, 121
XPRSinit, 6, 56, 66, 68, 122
XPRSinitglobal, 117, 123
XPRSinterrupt, 124
XPRSloadbasis, 7, 125
XPRSloadcuts, 25, 126
XPRSloaddirs, 127
XPRSloadglobal, 7, 128
XPRSloadlp, 7, 131
XPRSloadmipsol, 133
XPRSloadmodelcuts, 134
XPRSloadpresolvebasis, 23, 135
XPRSloadpresolvedirs, 23, 136
XPRSloadqglobal, 7, 137
XPRSloadqp, 7, 140
XPRSloadsecurevecs, 142
XPRSmaxim, 7, 143
XPRSminim, 7, 143
XPRSobjsa, 145
XPRSpivot, 146
XPRSpostsolve, 117, 147
XPRSpresolvecut, 148
XPRSrange, 7, 65, 71, 106, 150, 153, 205
XPRSreadbasis, 7, 154
XPRSreadbinsol, 155
XPRSreaddirs, 7, 156, 297
XPRSreadprob, 7, 12, 158
XPRSrestore, 160
XPRSrhssa, 161
XPRSsave, 160, 162
XPRSscale, 12, 163
XPRSsetbranchbounds, 164
XPRSsetbranchcuts, 165
XPRSsetcbbarlog, 16, 24, 166
XPRSsetcbchgbranch, 24, 167
XPRSsetcbchgnode, 24, 169
XPRSsetcbcutlog, 170
XPRSsetcbcutmgr, 25, 171
XPRSsetcbdestroymt, 172
XPRSsetcbestimate, 24, 173
XPRSsetcbfreecutmgr, 25, 174
XPRSsetcbgloballog, 24, 175
XPRSsetcbinfnode, 24, 176
XPRSsetcbinitcutmgr, 25, 177
XPRSsetcbintsol, 24, 178
XPRSsetcblplog, 15, 24, 179
XPRSsetcbmessage, 7, 24, 180, 192
XPRSsetcbmipthread, 182
XPRSsetcbnodecutoff, 24, 183
XPRSsetcboptnode, 24, 184
XPRSsetcbprenode, 24, 185
XPRSsetcbsepnode, 24, 164, 165, 186
XPRSsetdblcontrol, 188
XPRSsetdefaultcontrol, 189
XPRSsetdefaults, 190

Index 307 Xpress-Optimizer Reference Manual

XPRSsetintcontrol, 191, 211
XPRSsetlogfile, 7, 15, 16, 192
XPRSsetmessagestatus, 193
XPRSsetprobname, 194
XPRSsetstrcontrol, 195
XPRSstorebounds, 197
XPRSstorecuts, 25, 198
XPRSwritebasis, 7, 200
XPRSwritebinsol, 201
XPRSwriteomni, 202
XPRSwriteprob, 204
XPRSwriteprtrange, 8, 205
XPRSwriteprtsol, 7, 206
XPRSwriterange, 8, 207
XPRSwritesol, 7, 209, 292

Index 308 Xpress-Optimizer Reference Manual

	Introduction
	Overview
	The Xpress-Optimizer
	Integer Programming Considerations
	Running the Xpress-Optimizer
	Initialization
	Console Xpress Options
	Interrupting an Optimization Run in Console Xpress
	Termination

	Structure of this Manual
	Conventions Used

	Problem-Solving with Xpress-MP
	Overview
	Initialization and Termination
	The Optimizer
	The Problem Environment
	Optimizer Output

	Reading in a Problem
	Solving the Problem
	Viewing the Solution
	Optimization by Example
	 Quick Reference
	Initialization and Termination
	Reading In a Problem
	Solving the Problem
	Viewing the Solution

	Optimality, Infeasibility and Unboundedness
	The Solution Process
	Infeasibility
	Diagnosing Infeasibility During Presolve
	Irreducible Infeasible Sets
	Integer Infeasibility

	Unboundedness
	Scaling
	Accuracy

	Performance Issues
	Choice of Algorithm
	Simplex Performance
	The Simplex Method
	Inversion
	Partial Pricing vs. Devex Pricing
	Output

	Barrier Performance
	The Newton Barrier Method
	Controlling Barrier Performance
	Crossover
	Convergence
	Output

	Integer Programming - The Global Search
	The Branch and Bound Process
	Node and Variable Selection
	Variable Selection for Branching
	Node Selection
	Adjusting the Cutoff Value
	Integer Preprocessing

	Implementing Algorithms
	Viewing and Modifying the Matrix
	Viewing the Matrix
	Modifying the Matrix

	Working with Presolve
	Linear Programming Problems
	(Mixed) Integer Programming Problems
	Common Causes of Confusion

	Using the Callbacks
	Optimizer Output
	LP Search Callbacks
	Global Search Callbacks

	Working with the Cut Manager
	Cuts and the Cut Pool
	Cut Management Routines
	User Cut Manager Routines

	Goal Programming
	Overview
	Pre-emptive Goal Programming Using Constraints
	Archimedian Goal Programming Using Constraints
	Pre-emptive Goal Programming Using Objective Functions
	Archimedian Goal Programming Using Objective Functions

	Console and Library Functions
	Console Mode Functions
	Layout For Function Descriptions
	Function Name
	Purpose
	Synopsis
	Arguments
	Error Values
	Associated Controls
	Examples
	Further Information
	Related Topics

	XPRSaddcols
	XPRSaddcuts
	XPRSaddnames
	XPRSaddrows
	XPRSaddsets
	XPRSaddsetnames
	XPRSalter (ALTER)
	XPRSbasiscondition (BASISCONDITION)
	XPRSbtran
	XPRSchgbounds
	XPRSchgcoef
	XPRSchgcoltype
	XPRSchgmcoef
	XPRSchgmqobj
	XPRSchgobj
	XPRSchgqobj
	XPRSchgrhs
	XPRSchgrhsrange
	XPRSchgrowtype
	XPRScopycallbacks
	XPRScopycontrols
	XPRScopyprob
	XPRScreateprob
	XPRSdelcols
	XPRSdelcpcuts
	XPRSdelcuts
	XPRSdelnode
	XPRSdelrows
	XPRSdelsets
	XPRSdestroyprob
	EXIT
	XPRSfixglobal (FIXGLOBAL)
	XPRSfree
	XPRSftran
	XPRSgetbanner
	XPRSgetbasis
	XPRSgetcoef
	XPRSgetcolrange
	XPRSgetcols
	XPRSgetcoltype
	XPRSgetcpcutlist
	XPRSgetcpcuts
	XPRSgetcutlist
	XPRSgetdaysleft
	XPRSgetdblattrib
	XPRSgetdblcontrol
	XPRSgetdirs
	XPRSgetglobal
	XPRSgetiis
	XPRSgetindex
	XPRSgetinfeas
	XPRSgetintattrib
	XPRSgetintcontrol
	XPRSgetlasterror
	XPRSgetlb
	XPRSgetlicerrmsg
	XPRSgetlpsol
	XPRSgetmessagestatus (GETMESSAGESTATUS)
	XPRSgetmipsol
	XPRSgetmqobj
	XPRSgetnames
	XPRSgetobj
	XPRSgetpivotorder
	XPRSgetpivots
	XPRSgetpresolvebasis
	XPRSgetpresolvemap
	XPRSgetpresolvesol
	XPRSgetprobname
	XPRSgetqobj
	XPRSgetrhs
	XPRSgetrhsrange
	XPRSgetrowrange
	XPRSgetrows
	XPRSgetrowtype
	XPRSgetscaledinfeas
	XPRSgetsol
	XPRSgetstrattrib
	XPRSgetstrcontrol
	XPRSgetub
	XPRSgetunbvec
	XPRSgetversion
	XPRSglobal (GLOBAL)
	XPRSgoal (GOAL)
	HELP
	XPRSiis (IIS)
	XPRSinit
	XPRSinitglobal
	XPRSinterrupt
	XPRSloadbasis
	XPRSloadcuts
	XPRSloaddirs
	XPRSloadglobal
	XPRSloadlp
	XPRSloadmipsol
	XPRSloadmodelcuts
	XPRSloadpresolvebasis
	XPRSloadpresolvedirs
	XPRSloadqglobal
	XPRSloadqp
	XPRSloadsecurevecs
	XPRSmaxim, XPRSminim (MAXIM, MINIM)
	XPRSobjsa
	XPRSpivot
	XPRSpostsolve (POSTSOLVE)
	XPRSpresolvecut
	PRINTRANGE
	PRINTSOL
	QUIT
	XPRSrange (RANGE)
	XPRSreadbasis (READBASIS)
	XPRSreadbinsol (READBINSOL)
	XPRSreaddirs (READDIRS)
	XPRSreadprob (READPROB)
	XPRSrestore (RESTORE)
	XPRSrhssa
	XPRSsave (SAVE)
	XPRSscale (SCALE)
	XPRSsetbranchbounds
	XPRSsetbranchcuts
	XPRSsetcbbarlog
	XPRSsetcbchgbranch
	XPRSsetcbchgnode
	XPRSsetcbcutlog
	XPRSsetcbcutmgr
	XPRSsetcbdestroymt
	XPRSsetcbestimate
	XPRSsetcbfreecutmgr
	XPRSsetcbgloballog
	XPRSsetcbinfnode
	XPRSsetcbinitcutmgr
	XPRSsetcbintsol
	XPRSsetcblplog
	XPRSsetcbmessage
	XPRSsetcbmipthread
	XPRSsetcbnodecutoff
	XPRSsetcboptnode
	XPRSsetcbprenode
	XPRSsetcbsepnode
	XPRSsetdblcontrol
	XPRSsetdefaultcontrol
	XPRSsetdefaults
	XPRSsetintcontrol
	XPRSsetlogfile
	XPRSsetmessagestatus (SETMESSAGESTATUS)
	XPRSsetprobname (SETPROBNAME)
	XPRSsetstrcontrol
	STOP
	XPRSstorebounds
	XPRSstorecuts
	XPRSwritebasis (WRITEBASIS)
	XPRSwritebinsol (WRITEBINSOL)
	XPRSwriteomni (WRITEOMNI)
	XPRSwriteprob (WRITEPROB)
	XPRSwriteprtrange (WRITEPRTRANGE)
	XPRSwriteprtsol (WRITEPRTSOL)
	XPRSwriterange (WRITERANGE)
	XPRSwritesol (WRITESOL)

	Control Parameters
	Retrieving and Changing Control Values
	AUTOPERTURB
	BACKTRACK
	BARCRASH
	BARDUALSTOP
	BARGAPSTOP
	BARINDEFLIMIT
	BARITERLIMIT
	BARORDER
	BAROUTPUT
	BARPRIMALSTOP
	BARSTEPSTOP
	BARTHREADS
	BIGM
	BIGMMETHOD
	BRANCHCHOICE
	BREADTHFIRST
	CACHESIZE
	CHOLESKYALG
	CHOLESKYTOL
	COVERCUTS
	CPUTIME
	CRASH
	CROSSOVER
	CSTYLE
	CUTDEPTH
	CUTFREQ
	CUTSTRATEGY
	DEFAULTALG
	DEGRADEFACTOR
	DENSECOLLIMIT
	DUALGRADIENT
	DUALIZE
	ELIMTOL
	ETATOL
	EXTRACOLS
	EXTRAELEMS
	EXTRAMIPENTS
	EXTRAPRESOLVE
	EXTRAROWS
	EXTRASETELEMS
	EXTRASETS
	FEASIBILITYPUMP
	FEASTOL
	GOMCUTS
	HEURDEPTH
	HEURDIVESPEEDUP
	HEURDIVESTRATEGY
	HEURFREQ
	HEURMAXSOL
	HEURNODES
	HEURSEARCHFREQ
	HEURSTRATEGY
	INVERTFREQ
	INVERTMIN
	KEEPBASIS
	KEEPMIPSOL
	KEEPNROWS
	L1CACHE
	LINELENGTH
	LNPBEST
	LNPITERLIMIT
	LPITERLIMIT
	LPLOG
	MARKOWITZTOL
	MATRIXTOL
	MAXCUTTIME
	MAXIIS
	MAXMIPSOL
	MAXNODE
	MAXPAGELINES
	MAXTIME
	MIPABSCUTOFF
	MIPABSSTOP
	MIPADDCUTOFF
	MIPLOG
	MIPPRESOLVE
	MIPRELCUTOFF
	MIPRELSTOP
	MIPTARGET
	MIPTHREADS
	MIPTOL
	MPSBOUNDNAME
	MPSECHO
	MPSERRIGNORE
	MPSFORMAT
	MPSNAMELENGTH
	MPSOBJNAME
	MPSRANGENAME
	MPSRHSNAME
	MUTEXCALLBACKS
	NODESELECTION
	OMNIDATANAME
	OMNIFORMAT
	OPTIMALITYTOL
	OUTPUTLOG
	OUTPUTMASK
	OUTPUTTOL
	PENALTY
	PERTURB
	PIVOTTOL
	PPFACTOR
	PRESOLVE
	PRESOLVEOPS
	PRICINGALG
	PROBNAME
	PSEUDOCOST
	REFACTOR
	RELPIVOTTOL
	SBBEST
	SBEFFORT
	SBESTIMATE
	SBITERLIMIT
	SBSELECT
	SBTHREADS
	SCALING
	SHAREMATRIX
	SOLUTIONFILE
	SOSREFTOL
	TRACE
	TREECOVERCUTS
	TREEGOMCUTS
	VARSELECTION
	VERSION

	Problem Attributes
	Retrieving Problem Attributes
	ACTIVENODES
	BARAASIZE
	BARCROSSOVER
	BARDENSECOL
	BARDUALINF
	BARDUALOBJ
	BARITER
	BARLSIZE
	BARPRIMALINF
	BARPRIMALOBJ
	BARSTOP
	BESTBOUND
	BOUNDNAME
	BRANCHVALUE
	BRANCHVAR
	COLS
	CUTS
	DUALINFEAS
	ELEMS
	ERRORCODE
	NUMIIS
	LPOBJVAL
	LPSTATUS
	MATRIXNAME
	MIPENTS
	MIPINFEAS
	MIPOBJVAL
	MIPSOLNODE
	MIPSOLS
	MIPSTATUS
	MIPTHREADID
	NAMELENGTH
	NODEDEPTH
	NODES
	OBJNAME
	OBJRHS
	OBJSENSE
	ORIGINALCOLS
	ORIGINALROWS
	PARENTNODE
	PRESOLVESTATE
	PRIMALINFEAS
	QELEMS
	RANGENAME
	RHSNAME
	ROWS
	SIMPLEXITER
	SETMEMBERS
	SETS
	SPARECOLS
	SPAREELEMS
	SPAREMIPENTS
	SPAREROWS
	SPARESETELEMS
	SPARESETS
	SUMPRIMALINF

	Return Codes and Error Messages
	Optimizer Return Codes
	Optimizer Error and Warning Messages

	Appendix
	Log and File Formats
	File Types
	XMPS Matrix Files
	NAME section
	ROWS section
	COLUMNS section
	QUADOBJ / QMATRIX section (Quadratic Programming only)
	SETS section (Integer Programming only)
	RHS section
	RANGES section
	BOUNDS section
	ENDATA section

	LP File Format
	Rules for the LP file format
	Comments and blank lines
	File lines, white space and identifiers
	Sections
	Variable names
	Linear expressions
	Objective function
	Constraints
	Bounds
	Generals, Integers and binaries
	Semi-continuous and semi-integer
	Partial integers
	Special ordered sets
	Quadratic programming problems

	ASCII Solution Files
	Solution Header .hdr Files
	CSV Format Solution .asc Files
	Fixed Format Solution (.prt) Files

	ASCII Range Files
	Solution Header (.hdr) Files
	CSV Format Range (.rsc) Files
	Fixed Format Range (.rrt) Files

	The Directives (.dir) File
	The Matrix Alteration (.alt) File
	Changing Upper or Lower Bounds
	Changing Right Hand Side Coefficients
	Changing Constraint Types

	The Simplex Log
	The Global Log

	Index

