Example problem data



Data for the airlift scheduling model

airlift1.dat:

 A:          [(1 1) 24 (1 2) 14 (2 1) 49 (2 2) 29]
 Aswitch:    [(1,1,2) 19 (1,2,1) 29 (2,1,2) 18 (2,2,1) 26]
 F:          [7200 7200]
 b:          [(1,1) 50 (1,2) 75 (2,1) 60 (2,2) 40]
 Cost:       [(1,1) 7200 (1,2) 6000 (2,1) 7200 (2,2) 4000]
 CostSwitch: [(1,1,2) 7000 (1,2,1) 8200 (2,1,2) 5500 (2,2,1) 8700]
 cplus:      [500 250]
 cminus:     [0 0] 
 DValues: [  
  (1,1)   927.758357  
  (1,2)   982.516248  
  (1,3)   961.404897  
  (1,4)   922.915716  
  (1,5)   986.342969  
  (1,6)   999.134104  
  (1,7)   970.324386  
  (1,8)   949.613106  
  (1,9)   991.773703  
  (1,10)  979.491162  
  (1,11)  979.679661  
  (1,12)  964.052640  
  (1,13)  957.691777  
  (1,14)  930.372603  
  (1,15)  933.799027  
  (1,16)  995.204085  
  (1,17)  957.344884  
  (1,18)  923.484318  
  (1,19)  959.026809  
  (1,20)  946.706588  
  (1,21)  991.897924  
  (1,22)  956.965721  
  (1,23)  981.616042  
  (1,24)  957.688286  
  (1,25) 1000.035618 
  (2,1)  1433.626750  
  (2,2)  1149.727635  
  (2,3)  1492.817415  
  (2,4)  1250.557154  
  (2,5)  1353.935057  
  (2,6)  1226.355338  
  (2,7)  1378.148830  
  (2,8)  1200.624255  
  (2,9)  1045.317699  
  (2,10)  899.933450  
  (2,11) 1439.677972  
  (2,12) 1170.804834  
  (2,13) 1474.838349  
  (2,14) 1572.684651  
  (2,15) 1207.662826  
  (2,16) 1368.931017  
  (2,17) 1327.981462  
  (2,18)  943.075132  
  (2,19) 1226.555028  
  (2,20) 1543.605354  
  (2,21) 1243.379144  
  (2,22) 1302.917735  
  (2,23) 1122.900897  
  (2,24) 1355.585501  
  (2,25) 1255.185201]

 Probabilities: [0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
                 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04
                 0.04 0.04 0.04 0.04 0.04]

Data for the forest planning problem

forest.dat:

yield: 
    [0 0 16 107 217 275 298 306]  
v:  [320.3417 356.1874 398.4370 448.2349 506.9294 564.9294 587.9294 595.9294]
alpha:  0.9
beta:   1.1
delta:  0.905
gamma:  50
ProbDiscret:
    [1.0000 0.0000 0.0000 0.4616 0.5384 0.0000 0.1847 0.2769 0.5384]
ValuesDiscret:
    [0.06258 0.00000 0.00000 0.08612 0.04240 0.00000 0.10499 0.07354 0.04240]
s1: [241 125 1404 2004 9768 16385 2815 61995] 

Asset liability management model

Table 11.1: Optimal objective values for different values of Maths/psi.png.
Maths/psi.png Z* ZEV ZPI Z*- ZEV Z*- ZPI
1.2 -0.202383 -0.622399 -1.08452 0.420016 0.882137
1.25 -0.0470575 -0.484575 -0.965948 0.4375175 0.9188905
1.3 0.108268 -0.34675 -0.847378 0.455018 0.955646
1.35 0.263594 -0.208925 -0.728808 0.472519 0.992402
1.4 0.418919 -0.0711 -0.610238 0.490019 1.029157

Table 11.2: Investment decisions (scaled values) for different values of Maths/psi.png.
stocks\ Maths/psi.png 1.2 1.25 1.3 1.35 1.4
1 0 0 0 0 0
2 0.127183 0.132482 0.137781 0.143081 0.14838
3 0.128142 0.133481 0.13882 0.144159 0.149499
4 0.622716 0.648663 0.674609 0.700556 0.726502
5 0.007406 0.007715 0.008023 0.008332 0.008641
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0.002992 0.003116 0.003241 0.003366 0.00349
10 0.003805 0.003964 0.004123 0.004281 0.00444
11 0.031253 0.032555 0.033857 0.03516 0.036462
12 0.000323 0.000336 0.000349 0.000363 0.000376

Table 11.3: Optimal contribution rates after deletion of scenarios
m No. of scenarios after deletion Optimal solution
1 209 0.0560891
1.5 1614 0.0849195
2 3357 0.0947222
2.5 4524 0.0995853
3 4899 0.107498
3.5 4975 0.107498
4 4995 0.108268

Code for deleting the `extreme' scenarios

The scenarios falling outside the intervals [Maths/mu.pngn -mMaths/sigma.pngn, Maths/mu.pngn + mMaths/sigma.pngn] can be deleted from the scenario tree by adding the following code into the initial Mosel program after the line Spgentree and before the model definition.

 Declarations          ! Statistical characteristics of the scenarios set
  means, stdev: array(Stocks) of real
  Eset: set of integer ! Set of "extreme" scenarios
  m: real              ! Length of the interval
 end-declarations 
 
 initializations from 'means.dat'
  means                ! Mean returns of each of 12 stocks
 end-initializations
 
 initializations from 'stdev.dat'
  stdev                ! Standard deviations of the returns
 end-initializations
 
 Eset:={}         ! Initialize the set of extreme scenarios as an empty set
 m:=2
 
 forall(s in Scen,p in Stocks)
  if abs(Values(s,p)-means(p))  m*stdev(p) then
   Eset:=Eset+{s}      ! Update the set of extreme scenarios
   break
  end-if

 spdelscen(Eset)       ! Delete the set of extreme scenarios

Changing the value of m allows one to delete different numbers of scenarios. Instead of deleting the extreme scenarios, one can aggregate them using spaggregate(Eset) instead of spdelscen(Eset). In our case, the solutions of the problem with aggregated extreme scenarios are identical to the solutions with deleted extreme scenarios presented above.

ALM.dat:

 Initial_Asset: 851826105
 Initial_payment: 22170020
 Total_wages: 211097880

Description of other data files



If you have any comments or suggestions about these pages, please send mail to docs@dashoptimization.com.