Example problem data
Data for the airlift scheduling model
airlift1.dat:
A: [(1 1) 24 (1 2) 14 (2 1) 49 (2 2) 29] Aswitch: [(1,1,2) 19 (1,2,1) 29 (2,1,2) 18 (2,2,1) 26] F: [7200 7200] b: [(1,1) 50 (1,2) 75 (2,1) 60 (2,2) 40] Cost: [(1,1) 7200 (1,2) 6000 (2,1) 7200 (2,2) 4000] CostSwitch: [(1,1,2) 7000 (1,2,1) 8200 (2,1,2) 5500 (2,2,1) 8700] cplus: [500 250] cminus: [0 0] DValues: [ (1,1) 927.758357 (1,2) 982.516248 (1,3) 961.404897 (1,4) 922.915716 (1,5) 986.342969 (1,6) 999.134104 (1,7) 970.324386 (1,8) 949.613106 (1,9) 991.773703 (1,10) 979.491162 (1,11) 979.679661 (1,12) 964.052640 (1,13) 957.691777 (1,14) 930.372603 (1,15) 933.799027 (1,16) 995.204085 (1,17) 957.344884 (1,18) 923.484318 (1,19) 959.026809 (1,20) 946.706588 (1,21) 991.897924 (1,22) 956.965721 (1,23) 981.616042 (1,24) 957.688286 (1,25) 1000.035618 (2,1) 1433.626750 (2,2) 1149.727635 (2,3) 1492.817415 (2,4) 1250.557154 (2,5) 1353.935057 (2,6) 1226.355338 (2,7) 1378.148830 (2,8) 1200.624255 (2,9) 1045.317699 (2,10) 899.933450 (2,11) 1439.677972 (2,12) 1170.804834 (2,13) 1474.838349 (2,14) 1572.684651 (2,15) 1207.662826 (2,16) 1368.931017 (2,17) 1327.981462 (2,18) 943.075132 (2,19) 1226.555028 (2,20) 1543.605354 (2,21) 1243.379144 (2,22) 1302.917735 (2,23) 1122.900897 (2,24) 1355.585501 (2,25) 1255.185201] Probabilities: [0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04]Data for the forest planning problem
forest.dat:
yield: [0 0 16 107 217 275 298 306] v: [320.3417 356.1874 398.4370 448.2349 506.9294 564.9294 587.9294 595.9294] alpha: 0.9 beta: 1.1 delta: 0.905 gamma: 50 ProbDiscret: [1.0000 0.0000 0.0000 0.4616 0.5384 0.0000 0.1847 0.2769 0.5384] ValuesDiscret: [0.06258 0.00000 0.00000 0.08612 0.04240 0.00000 0.10499 0.07354 0.04240] s1: [241 125 1404 2004 9768 16385 2815 61995]Asset liability management model
Table 11.1: Optimal objective values for different values of .
Z* ZEV ZPI Z*- ZEV Z*- ZPI 1.2 -0.202383 -0.622399 -1.08452 0.420016 0.882137 1.25 -0.0470575 -0.484575 -0.965948 0.4375175 0.9188905 1.3 0.108268 -0.34675 -0.847378 0.455018 0.955646 1.35 0.263594 -0.208925 -0.728808 0.472519 0.992402 1.4 0.418919 -0.0711 -0.610238 0.490019 1.029157
Table 11.2: Investment decisions (scaled values) for different values of .
stocks\ 1.2 1.25 1.3 1.35 1.4 1 0 0 0 0 0 2 0.127183 0.132482 0.137781 0.143081 0.14838 3 0.128142 0.133481 0.13882 0.144159 0.149499 4 0.622716 0.648663 0.674609 0.700556 0.726502 5 0.007406 0.007715 0.008023 0.008332 0.008641 6 0 0 0 0 0 7 0 0 0 0 0 8 0 0 0 0 0 9 0.002992 0.003116 0.003241 0.003366 0.00349 10 0.003805 0.003964 0.004123 0.004281 0.00444 11 0.031253 0.032555 0.033857 0.03516 0.036462 12 0.000323 0.000336 0.000349 0.000363 0.000376
Table 11.3: Optimal contribution rates after deletion of scenarios m No. of scenarios after deletion Optimal solution 1 209 0.0560891 1.5 1614 0.0849195 2 3357 0.0947222 2.5 4524 0.0995853 3 4899 0.107498 3.5 4975 0.107498 4 4995 0.108268 Code for deleting the `extreme' scenarios
The scenarios falling outside the intervals [
n -m
n,
n + m
n] can be deleted from the scenario tree by adding the following code into the initial Mosel program after the line Spgentree and before the model definition.
Declarations ! Statistical characteristics of the scenarios set means, stdev: array(Stocks) of real Eset: set of integer ! Set of "extreme" scenarios m: real ! Length of the interval end-declarations initializations from 'means.dat' means ! Mean returns of each of 12 stocks end-initializations initializations from 'stdev.dat' stdev ! Standard deviations of the returns end-initializations Eset:={} ! Initialize the set of extreme scenarios as an empty set m:=2 forall(s in Scen,p in Stocks) if abs(Values(s,p)-means(p)) m*stdev(p) then Eset:=Eset+{s} ! Update the set of extreme scenarios break end-if spdelscen(Eset) ! Delete the set of extreme scenariosChanging the value of m allows one to delete different numbers of scenarios. Instead of deleting the extreme scenarios, one can aggregate them using spaggregate(Eset) instead of spdelscen(Eset). In our case, the solutions of the problem with aggregated extreme scenarios are identical to the solutions with deleted extreme scenarios presented above.
ALM.dat:
Initial_Asset: 851826105 Initial_payment: 22170020 Total_wages: 211097880Description of other data files
- data.dat: matrix with 500 rows and 12 columns, where each column represents 500 realizations of the return of a given stock
- data_L.dat: array of 500 elements representing the realizations of the amount of liabilities
- means.dat: array of 12 elements representing the mean return of each stock
- stdev.dat: array of 12 elements representing standard deviations of the returns.
If you have any comments or suggestions about these pages, please send mail to docs@dashoptimization.com.