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1. INTRODUCTION 
 
The design of computer based systems often 
requires tradeoffs: different non-functional 
requirements like safety and availability, 
performance and reliability together with the cost 
constraints may call for design decisions that 
have conflicting consequences. For example, a 
safe operational mode may not provide the full 
service which decreases overall service 
availability, or a high performance mode may 
decrease reliability as components are stressed 
above the anticipated normal load. In safety-
critical systems, it is widely accepted that safety 
is a design constraint that influences operational 
effectiveness, performance, and ease of use. 
However, common system safety techniques do 
not provide enough quantitative information for 
optimal decision making about risk management 
tradeoffs, and the design decisions that resolve 
the conflicting requirements are traditionally 
made on the basis of codes-of-practice and past 
experience. In this case the consequences of the 
decisions are evaluated late in the system 
validation phase, when tests and operational 
measurements could either justify or refute the 
decisions. In the latter case, the corrections and 
re-design phases will become costly and they 

will be performed only when clear evidences on 
the expected improvements are provided. 

The goal of this paper is to assess the 
improvements that should be obtained re-
designing a part of the ERTMS-ATC system. 
Shortly summarizing, in the first design of an 
Automatic Train Control (ATC) system a 
specific communication protocol has been 
introduced between two components: the train 
onboard vital computer (EVC), playing the role 
of the master, and the Driver Machine Interface 
(DMI), the slave. EVC uses messages to check 
the operational state of the slave. If the slave is 
not operational, then the master enters the safe 
mode (as a safety measure) and suspends the 
normal service, which can be resumed if the 
slave recovers. EVC and DMI interact through a 
communication protocol that is currently based 
on cyclic messages’ exchange. In this paper we 
aim at quantifying the improvements in adopting 
a different communication protocol, based on 
acyclic messages’ exchange, considering its 
impact on the quality of the service (QoS) 
provided by the whole system (the train). A 
sensitivity analysis will be performed 
considering some critical protocol’s parameters 
(e.g., the periodicity of messages), and we will 
also assess the advantages in adopting different 
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recovery properties of the slave (e.g., the 
application of stand-by spare). This work has 
been conducted in the context of the SAFEDMI 
European project (SAFEDMI consortium, 2007), 
whose main objective is to design and develop a 
safe DMI being able to satisfy at least SIL 2 
according to CENELEC specifications with all 
the related implications. 

The structure of our paper follows the 
phases of a systematic model building and 
analysis process as follows. Section 2 presents 
the application context and the selection of 
measures to be evaluated on the basis of the 
system requirements. Section 3 describes the 
model construction process using Stochastic 
Activity Networks formalism, while some of the 
obtained results and the interpretation of the 
measures are presented in Section 4. Conclusions 
are finally drawn in Section 5. 

 
 

2. SYSTEM CONTEXT 
 
Railway automatic train control (ATC) systems 
are based both on track-side and on-board 
systems and their evolution has followed, step by 
step, the introduction of new technologies. The 
increasing level of train traffic and the spread of 
high-speed rail lines are now demanding an 
increasing safety level in the ATC systems. To 
ensure compatibility and inter-operability 
between the ATC systems produced in the 
various European countries, the European Rail 
Traffic Management System (ERTMS) 
programme has been set up to provide unique 
functional and non-functional standard 
requirements. The ERTMS architecture for the 
on-board ATC encompasses a Driver Machine 
Interface (DMI) component. Its main functions 
are the acquisition of driver’s commands and the 
display of those information that support the 
train driving. Consequently, DMI is mainly made 
up of a display and a set of buttons for acquiring 
driver’s commands; its functions and its 
ergonomic requirements are defined so to satisfy 
all the CENELEC related requirements (Cenelec, 
2005). Railway Authorities require a DMI 
capable of visualizing data generated from 
different sources and producing safe 
visualization as drivers have to base their 
behavior on the displayed information. If DMI is 
not operational, then the vital on-board computer 
(EVC component) of the system enters the safe 
mode (as a safety measure) and suspends the 
normal service, which can be resumed if DMI 

recovers. In other words, when a DMI failure is 
detected by EVC, it triggers an emergency brake 
command and the train is stopped. 

In the following section we provide a high-
level description of the two types of 
communication protocols under analysis: the 
cyclic protocol and the acyclic one, recently 
proposed in the SAFEDMI context. It is 
important to note that the standard does not 
require explicitly the use of a cyclic protocol, 
and this is why we can envision the use of the 
acyclic one. 

 
 

2.1 EVC-DMI interaction 
 

The EVC-DMI interactions described in the 
following are mainly derived from UNISIG 
SUBSET-041 (2005) that contains a description 
of the functional interface specification of Man 
Machine Interface-ERTMS (i.e., DMI) expressed 
in terms of exchanged data between EVC and 
DMI. EVC and DMI communicate by 
exchanging the following types of information 
object.  
From EVC to DMI: 
• CyclicInfo. The CyclicInfo information 

object is periodically generated by EVC 
and contains information about the system. 
This information is shown to the driver. 

• AckRequest. The AckRequest information 
object is generated in an aperiodic way and 
it requires specific actions from DMI and 
the driver. 

From DMI to EVC: 
• DmiStatus. The DmiStatus information 

object is generated by DMI after a 
CyclicInfo message is received, to inform 
EVC about its status. 

• AckReply. The AckReply information object 
is generated by DMI after an AckRequest is 
received, processed and performed. 

 
A typical cyclic interaction means a process 

in which EVC periodically sends CyclicInfo 
information object to DMI. The DMI system 
displays the information, produces sounds when 
required and replies to EVC with DmiStatus 
information object. The driver acts on the speed 
of the train and on the basis of the information 
shown on the display. In case of DMI failure, the 
DmiStatus message cannot be received by EVC 
that triggers an emergency brake command. 

In a typical acyclic (or acknowledge) 
interaction the DMI receives from EVC an 



 

AckRequest and shows the text message on the 
display according to the requested safe 
acknowledgement procedure. Once the driver is 
aware of the EVC request, he will press the 
proper keys. Finally, DMI acquires the driver’s 
commands and answers EVC with an AckReply 
object. If the driver does not press the proper 
keys a DMI timeout occurs; as a consequence, 
DMI will not send the AckReply message and 
then the EVC timeout occurs as well (and the 
train stops). 

 
 

2.2 System’s behavior 
 
In order to detect DMI failures the protocols 

define timeouts. When a timeout occurs, either 
from AckRequest (timeout in Timeout_Request 
seconds) or CyclicInfo (timeout in 
Timeout_Cyclic_Upper seconds), EVC considers 
DMI as failed and immediately performs an 
emergency brake, thus stopping the train, and 
will not return to normal operation until a DMI 
will be available. Spare DMIs can be used to 
increase system availability. Initially the system 
contains one working DMI and a number of 
SpareDMI spare DMI components (maybe zero, 
usually one). After the DMI failure is detected, a 
switching operation is performed to connect 
another available spare DMI that, once booted, 
becomes available. The switching operation may 
be achieved by an automatic switch or may be 
manually executed by the driver himself. 

 
 

2.3 Measures of interest 
 

The standard does not require explicitly that each 
CyclicInfo message has to be acknowledged by a 
DmiStatus message. However, the safety 
protocol designers have adopted this cyclic 
interaction, because in this way EVC is capable 
to detect the DMI failure earlier: note that 
without the DmiStatus reply, EVC could only 
detect the DMI failure when there is no AckReply 
answer to an aperiodic AckRequest (that needs 
driver’s reaction). 

The design decision of having DmiStatus 
messages or not is influenced by the following 
two aspects. On the one hand, the lack of 
DmiStatus messages (i.e., detection of DMI 
failure only in the case of the acyclic 
interaction), although it does not have direct 
safety-related consequences, has the above 
mentioned drawback: it does not satisfy the 

principle of detecting and handling the failure as 
early as possible. On the other hand, however, 
having only the acyclic interaction and no 
DmiStatus reply to CyclicInfo messages has 
availability related advantages: the chance of 
switch-over from a faulty DMI to a spare one 
between two aperiodic AckRequest messages 
(without disturbing the EVC) will be higher than 
in the case of the frequent cyclic interaction with 
regular DmiStatus messages (that have to be sent 
to the EVC). In this study we aim at 
quantitatively evaluating these consequences of 
the protocol design. In more detail, the system 
behavior has been analyzed through the 
evaluation of the following measures of interest. 
1. The probability that the train will not 

successfully complete a mission (ride) of a 
given length (hours). The mission fails 
when an emergency break command is 
triggered by EVC. This measure will be 
presented in Section 4 as the number of 
interrupted rides over a total of 1000 rides. 

2. The steady-state system availability, 
assuming that the train performs an infinite 
sequence of missions (rides) and 
accounting for the repair of the failed DMI 
components. This measure represents the 
steady-state probability that the train is 
correctly moving or, equivalently, that 
EVC is operational and no safe actions 
(emergency breaking) are triggered. 

3. Probability (in percent) that a DMI failure 
causes a ride interruption. This measure is 
computed using the conditional probability 
P(A|B) = P(AB)/P(B), where A is the event 
“the ride is interrupted” and B is the event 
“a DMI failure occurs”. 

 
 

3. MODEL DEVELOPMENT 
 
The modeling process is based on the model 
composition approach for which the system is 
built from sub-models in a bottom-up fashion 
and the submodels have a limited view of the 
system. Several model composition techniques 
have been developed to support the systematic 
construction and validation of models (e.g., 
Sanders and Meyer, 1991; Rojas, 1996; Obal, 
1998). All these techniques are supported by the 
composition operators offered by the 
corresponding modeling formalisms (Stochastic 
activity networks or Stochastic Well-formed 
Nets), and such operators are not available in 



 

other formalisms that are commonly used for 
dependability modeling, e.g., GSPNs. 

In this work we will use the Join 
composition operator (Sanders and Meyer, 1991) 
to compose system models based on Stochastic 
Activity Networks (Sanders and Meyer, 2001). 

We have identified three basic submodels 
(called “atomic models” in SAN formalism) 
representing, respectively, the EVC behavior 
(“EVC” model), the DMI behavior (“DMI” 
model) and the EVC-DMI communications 
(“EVC-comm-DMI” model). Another model 
(“Mission” model) will be introduced only to 
enable the computation of the steady-state 
system availability. The overall model for the 
system under analysis will be obtained joining 
these basic submodels, sharing the places having 
the same name. 

Note that the models representing the EVC 
and DMI behavior are independent from the 
selected communication scenario (cyclic or 
acyclic), while the communication model is 
based on the EVC-DMI interactions described in 
Section 2.1. EVC and DMI models incorporate 
knowledge of the failure modes and repair policy 
(availability design aspect), while the 
communication model includes the knowledge of 
the communication scenarios (safety protocol 
design aspect). This clear separation facilitates 
both the cooperation among different experts (as 
they can focus on the evaluation models that are 
related to their area of expertise) and the update 
of the models if the communication protocol or 
the repair policy are changed.  

 
 

3.1 Modeling assumptions 
 

The models have been built adopting the 
following assumptions: 
• When DMI fails it is not possible to send a 

reply to the CyclicInfo message in time, 
because the timeout (a few seconds) is 
significantly smaller than the time needed 
to switch and to boot a spare DMI (which 
needs several minutes); 

• Once a DMI becomes available, EVC 
immediately becomes operational. 

• The time needed to switch between two 
DMI is uniformly distributed in the time 
interval [SwitchTime_Lower; 
SwitchTime_Upper]. 

• The time needed to boot a new DMI is 
normally distributed with mean 

BootTime_Mean and variance 
BootTime_Variance. 

• EVC can issue a new AckRequest if the last 
AckReply message has been received or the 
corresponding timeout has occurred. The 
new AckRequest message will be issued 
after a time exponentially distributed with 
mean AperiodicInterval. 

• Once an AckRequest message has been 
received, the AckReply message is sent 
after a delay uniformly distributed in the 
time interval [DMIAckDelay_Lower; 
DMIAckDelay_Upper]. 

• In the scenario in which the train performs 
an infinite sequence of missions (rides), all 
the failed DMI components can be 
repaired/replaced every RidesBeforeRepair 
rides (when the train is in a major railway 
station). 

 
 

3.2 EVC atomic model 
 

The EVC atomic model is depicted in Figure 1. 
The EVC component is initially in operational 
state (one token in place ‘EVCOperational’), 
which holds until DMI replies are correctly 
received in time. When DMI has not been able to 
reply, a token arrives in place ‘NoDMIReply’ 
causing the ECV to perform an emergency brake 
and stop the train (place ‘EmergencyStop’), until 
a DMI becomes again available (‘DMIAlive’). 
The place ‘BrakeCount’ counts the number of 
emergency brakes in a single mission and it is 
used to measure the probability that a ride has 
been interrupted.  
 

 
Fig. 1. EVC atomic model 

 
 

3.3 DMI atomic model 
 

The DMI atomic model is depicted in Figure 2. 
The model accounts for spare DMI components, 
if present, as well as for DMI failures and 
switching procedures among DMI. The place 
‘DMIWorking’ initially contains one token (DMI 
in use) and any other available DMI is 
represented by a number of SpareDMI tokens in 



 

place ‘Spare’. The exponential activity ‘Fail’ 
(with rate equal to the number of tokens in 
‘DMIWorking’ divided by DMI_MTTF, where 
DMI_MTTF is the mean time to failure of DMI) 
fires when a DMI failure occurs and adds a token 
in each of the following places: ‘Broken’ to 
represent the status of the DMI involved, which 
turns from working into broken; ‘Failed’ to 
signal that a DMI has failed and a switch 
operation is needed; ‘NoCyclicReply’ to alert 
EVC that DMI has not been able to reply in time; 
‘DMIFailCount’ which is used to count the 
number of DMI failures in a single mission and 
is needed to compute the probability that a DMI 
failure causes a ride interruption. After the 
failure the failed DMI is switched over to one of 
the others still available (‘Switch’ activity, 
uniformly distributed within the time interval 
[SwitchTime_Lower;SwitchTime_Upper]), the 
new DMI is booted (‘Boot’ activity, normally 
distributed with mean BootTime_Mean and 
variance BootTime_Variance) and then it 
becomes working. The place ‘DMIAlive’ is 
shared with the EVC model and it contains one 
token when a new DMI is available. A token in 
place ‘AllowRepair’ represents the state in which 
the train is in a major station and it can receive 
assistance, so all the failed DMI can be repaired. 
In this case the activity ‘Repair’ fires and a C 
code defined inside ‘OGRepair’ gate is executed 
(the code is not reported here for the sake of 
brevity, but it is available in Lollini et al., 2008). 
As a result, a DMI becomes working and all the 
spare DMI are again available.  
 

 
Fig. 2. DMI atomic model 
 

 
3.4 EVC-comm-DMI atomic model 

 
The atomic model representing the 
communications between DMI and EVC is 
presented in Figure 3. Initially, place 
‘EVCOperational’ and ‘DMIWorking’ contain 
one token, while the others are empty. If EVC is 

operational (one token in place 
‘EVCOperational’, shared with the EVC model) 
and no EVC requests are pending (place 
‘AckRequest’ is empty), then the exponential 
activity ‘EVCSendRequest’ fires with rate 
1.0/AperiodicInterval, thus representing the 
emission of the AckRequest message from EVC 
to DMI. If DMI is working (one token in place 
‘DMIWorking’, shared with the DMI model), 
after a delay it sends an AckReply message to 
EVC (the activity ‘DMISendAck’ fires in a time 
uniformly distributed between 
DMIAckDelay_Lower and DMIAckDelay_Upper 
seconds). On the contrary, if DMI is not working 
the deterministic activity ‘AckRequestTimeout’ 
fires after Timeout_Request seconds and the DMI 
failure is signalled to the EVC model adding one 
token in place ‘NoDMIReply’, shared with the 
EVC model. The input gate ‘IGCyclicTimeout’ 
is used to enable or disable the cyclic interaction 
checking the value of a boolean variable 
(parameter CyclicEnabled); therefore we can use 
the same model to represent both the acyclic 
interaction and the cyclic one (this compact 
model has advantages in the model solution 
phase). When the cyclic interaction is enabled 
(CyclicEnabled==True) and one token is in place 
‘NoCyclicReply’ (shared with the DMI model), 
then the activity ‘EVCCyclicTimeout’ fires in a 
time uniformly distributed between 
Timeout_Cyclic_Lower and 
Timeout_Cyclic_Upper seconds, thus revealing 
that DMI has not replied within the cyclic 
timeout. In this case the remaining time to 
timeout is uniformly distributed, since when 
DMI fails the time already elapsed from the 
receipt of the CyclicInfo message is uniformly 
distributed.  
 

 
Fig. 3. EVC-comm-DMI atomic model 
 

 
3.5 Mission atomic model 
 
This additional model, depicted in Figure 4, has 
been introduced in order to compute the steady-
state availability measure. Instead of considering 
a single mission only, that is a single train ride, 



 

we suppose that once a mission is finished, a new 
one begins. Therefore we analyze a scenario in 
which the train performs an infinite sequence of 
missions, and the initial state of a new mission 
corresponds to the final state of the last one. 
While adding more details in the future, different 
mission types could be included. 
Initially one token is in place ‘Init’, while the 
others are empty. The output function defined in 
the gate ‘OGInitialize’ is executed at the 
beginning of a new mission, and it puts a token 
in place ‘AllowRepair’ (shared with the DMI 
atomic model) every RidesBeforeRepair 
missions, to allow the repair/replacement of all 
the failed DMI. The mission ends when the 
deterministic activity ‘MissionEnd’ completes 
(in RideLength seconds). When a mission (ride) 
ends, the output gate ‘OGMissionEnd’ checks if 
the mission has succeeded (no tokens in place 
‘BrakeCount’, shared with the EVC atomic 
model) or not, adds a token in place 
‘MissionCount’ that counts the number of rides 
the train has completed, and then the mission is 
started over again putting a token in place 
‘GoodEnd’ (if the mission has succeeded) or 
‘BadEnd’. The deterministic activities 
‘GoodMission’ and ‘BadMission’ fires in 0.01 
seconds and have been only introduced to allow 
the computation of the measure of interest (they 
have no influence on the system’s behavior). 
 

 
Fig. 4. Mission atomic model 

 
 

4. MODEL EVALUATION 
 

The system has been evaluated in order to 
investigate the influence of the cyclic and acyclic 
interaction between EVC and DMI on the 
dependability indicators identified in Section 2.3. 
Table 1 shows the values we assigned to the 
main model parameters, following our 
experience and the constraints came from 
specification UNISIG SUBSET-041 (2005) 
defined by the European Railway Agency.  
 

Symbol Description Default 
Value 

AperiodicInterval 

Mean time to issue a new AckRequest 
after the last AckReply has been 
received, or the corresponding 
timeout has occurred. 

variable 
(sec.) 

BootTime_Mean Mean time to boot a new DMI 180 sec. 
BootTime_Variance Variance to boot a new DMI 1 

CyclicEnabled Boolean variable enabling (T) or 
disabling (F) the cyclic interaction 

variable 
(T/F) 

DMIAckDelay_Lower Lower time bound to process the 
AckRequest and to send the AckReply 2 sec. 

DMIAckDelay_Upper Upper time bound to process the 
AckRequest and to send the AckReply 3 sec. 

DMI_MTTF Mean time to failure of DMI 1000 
hours 

RideLength Duration of a single ride 8 hours 

RidesBeforeRepair Number of rides before all the failed 
DMI can be repaired/replaced 3 

SpareDMI Number of spare DMI components 1 

SwitchTime_Lower Lower time bound to switch between 
two DMI 30 sec. 

SwitchTime_Upper Upper time bound to switch between 
two DMI 60 sec. 

Timeout_Cyclic_Lower Lower time bound to have a cyclic 
timeout 0 sec. 

Timeout_Cyclic_Upper Upper time bound to have a cyclic 
timeout 3 sec. 

Timeout_Request AckRequest message timeout 5 sec. 

Tab. 1. Relevant parameters and their values 
 

Three evaluation scenarios have been set up 
in order to study the effects of the following 
three parameters: AperiodicInterval (mean time 
to issue a new AckRequest after the last AckReply 
has been received or the corresponding timeout 
has occurred), RideLength (duration of a single 
ride) and DMI_MTTF (mean time to failure of 
DMI). The scenarios have been analyzed 
considering the case in which both the cyclic and 
acyclic interactions are enabled (“cyclic and 
acyclic” case), and the case in which the 
interaction is only acyclic (“acyclic only” case, 
obtained by setting the CyclicEnabled parameter 
to False). 

For the sake of brevity, in this paper we only 
present a subset of the experiments. The full set 
of analyzed scenarios can be found in Lollini et 
al., 2008 (technical report).  

The SAN models have been built and solved 
by simulation using Möbius (Daly et al., 2000), a 
powerful multi-formalism/multi-solution tool. 
For each study we executed a minimum of 
100000 simulation runs (batches), thus each 
result is the mean computed from a set of at least 
100000 samples. Moreover, we set the relative 
confidence interval to 0.05 and the confidence 
level to 0.95. This means that the stopping 
criteria will not be satisfied until the confidence 
interval is within 5% of the mean estimate 95% 
of the time. 

 
 



 

4.1 Analysis of the impact of AperiodicInterval  
 

Figure 5 shows the number of interrupted rides 
for every 1000, considering different values for 
the AperiodicInterval parameter. This parameter 
represents the mean time between the receipt of 
the last AckReply message (or the corresponding 
AckRequest timeout) and the issue of a new 
AckRequest message. Considering the “acyclic 
only” case (without the cyclic interaction), the 
number of interrupted rides greatly decreases 
when larger request intervals are considered. For 
example, 2 rides are saved (they are not 
interrupted) passing from 1 minute to 3 minutes 
of AperiodicInterval duration. In case of a DMI 
failure, in fact, larger intervals allow the new 
DMI to be more likely switched over and booted 
before the AckRequest timeout expires. With the 
cyclic interaction enabled (“cyclic and acyclic” 
case), the number of interrupted rides is constant 
and the value is near the maximum obtained in 
the “acyclic only” case. Therefore, the cyclic 
message exchange causes the same number of 
interruption that would be caused by the acyclic 
interaction with a very small interval between 
AckRequest messages.  
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Fig 5. Number of interrupted rides for every 
1000 

 
Figure 6 shows the probability that a DMI 

failure causes a ride interruption with varying 
AperiodicInterval parameter and considering 
different values for the boot time parameter. 
Note that with the cyclic protocol enabled 
(“cyclic and acyclic” case), results are constant 
with value 100%, which means that every DMI 
failure causes an emergency brake (the cyclic 
period lasts only a few seconds and consequently 
no spare DMI can be switched and booted in the 
meanwhile). In the “acyclic only” case, larger 
intervals between requests lower this value in 
accordance with the results depicted in Figure 5. 

For example, 30% of the DMI failures do not 
cause anymore an emergency break passing from 
1 minute to 3 minutes of AperiodicInterval 
duration. Another observation is that the faster is 
the boot process (characterized by 
BootTime_Mean, the mean time needed to boot a 
spare DMI), the lower is the probability that the 
DMI failure causes a ride interruption. For 
example, 20% of the DMI failures do not cause 
anymore an emergency break considering an 
AperiodicInterval duration of 3 minutes and 
halving the boot time duration (from 4 minutes to 
2 minutes). This result justifies the design of a 
DMI with fast boot procedure.  
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Fig 6. Probability that a DMI failure causes a 
ride interruption 

 
Figure 7 shows the steady-state system 

availability with varying AperiodicInterval 
parameter, with and without the use of one spare 
DMI (in the “acyclic only” case). The system is 
considered unavailable if the train is stopped 
because EVC has not received the AckReply 
message from DMI within the fixed timeout, and 
available otherwise. Considering the spare DMI 
the system availability significantly improves 
(about 1% more).  
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Fig 7. Steady-state system availability in the 
acyclic scenario 



 

Finally, Figure 8 shows the steady-state 
system availability varying the DMI MTTF 
parameter (mean time to failure of the DMI). 
Using more reliable DMI components, the 
system availability increases independently of 
the used protocols. The difference between the 
two plots comes from the early detection of the 
DMI failure event in case of using the cyclic 
protocol (“cyclic and acyclic” case), since in this 
case every DMI failure causes an emergency 
brake. 
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Fig 8. Steady-state system availability 

 
 

5. CONCLUDING REMARKS 
 
This work has focused on the interactions 
between two components constituting the 
Automatic Train Control system: the onboard 
vital computer (EVC) and the Driver Machine 
Interface (DMI). According to their functional 
interface specification, the two components 
mainly communicate by exchanging of different 
types of information objects that can be 
generated by EVC in a cyclic or acyclic way. 

In this paper we have adopted a modular 
modeling methodology to assess the impact of 
cyclic/acyclic EVC-DMI interactions on a set of 
significant dependability-related indicators. The 
hierarchical and modular modeling methodology 
to capture the overall system behavior has been 
first described. Then, a sensitivity analysis based 
on simulation of the defined models in a transient 
period of time and in a steady-state condition has 
been performed to tune a part of the main critical 
system’s parameters. The analysis of the 
obtained results allows to better understand the 
dynamics and the involved phenomena, and it 
points out the advantages in adopting the acyclic 
interaction, possibly with one spare DMI 
component. As such, it significantly contributes 
to the early design refinement of the architecture 

for the DMI system that is going to be specified 
in the SAFEDMI project. 
 
 

ACKNOWLEDGEMENT 
 
This work has been partially supported by the EC 
IST Project SAFEDMI (Contract n. 031413). 
 

REFERENCES 
 
CENELEC (2005). ERTMS - Driver Machine 

Interface.  
D. Daly, D. D. Deavours, J. M. Doyle, P. G. 

Webster and W. H. Sanders (2000). Möbius: 
an extensible tool for performance and 
dependability modeling. In B. R. Haverkort, H. 
C. Bohnenkamp, and C. U. Smith, editors, 
11th International Conference, TOOLS 2000, 
volume 1786 of LNCS, Springer Verlag, pages 
332-336. 

P. Lollini, L. Montecchi, M. Magyar, I. Majzik 
and A. Bondavalli (2008). Assessing the 
impact of cyclic/acyclic EVC-DMI 
interactions in Automatic Train Control 
systems. Technical Report rcl080401, 
University of Florence, Dip. Sistemi e 
Informatica, RCL group, 
http://dcl.isti.cnr.it/Documentation/ 
Papers/Techreports.html. 

W. D. Obal (1998). Measure-Adaptive State-
Space Construction Methods. PhD thesis, 
Univ. of Arizona. 

I. Rojas (1996). Compositional construction of 
SWN models. The Computer Journal, 
38(7):612-621. 

SAFEDMI consortium (2007). IST-FP6-STREP-
031413 Safe Driver Machine Interface (DMI) 
for ERTMS Automatic Train Control. 
http://www.safedmi.org/. 

W. H. Sanders and J. F. Meyer (1991). Reduced 
base model construction methods for 
Stochastic Activity Networks. IEEE Journal 
on Selected Areas in Communications, 
9(1):25-36, January 1991. 

W. H. Sanders and J. F. Meyer (2001). 
Stochastic Activity Networks: Formal 
definitions and concepts. Lectures on Formal 
Methods and Performance Analysis, volume 
2090 of LNCS, Springer Verlag, pages 315-
343. 

UNISIG SUBSET-041 (2005). Performance 
requirements for interoperability - 2.1.0. 


