

COVER PAGE

ANALYSIS OF THE IMPACT OF COMMUNICATION PROTOCOLS ON
SERVICE QUALITY IN ERTMS AUTOMATIC TRAIN CONTROL

SYSTEMS

Paolo Lollini 1,
Leonardo Montecchi 1,
Melinda Magyar 2,
István Majzik 2,
Andrea Bondavalli 1.

1Università degli Studi di Firenze, Dipartimento di Sistemi e Informatica
Address: viale Morgagni 65, Firenze, Italy, I-50134
Phone: (+39) 055-4237460, Fax: (+39) 055-4237436,
E-mail:{lollini|bondavalli}@unifi.it, l.montecchi@alice.it

2Budapest University of Technology and Economics, Department of Measurement and
Information Systems
Address: Magyar Tudósok krt. 2, Budapest, Hungary, H-1117
Phone: (+36-1) 463-3598, Fax: (+36-1) 463-2667,
E-mail: {mmelinda|majzik}@mit.bme.hu

Short abstract: The ERTMS-ATC system is a distributed system where the Driver
Machine Interface (DMI) is a slave unit of the train onboard vital computer (EVC).
Adopting a modular modeling methodology, in this paper we assess the impact of
different types of EVC-DMI communication protocols (cyclic/acyclic) on significant
dependability-related indicators.

Desired type of session: Regular session

Intended scope: model based approaches (using Stochastic Activity Networks) to
analyze and evaluate RAMS parameters in the railway context.

1. INTRODUCTION

The design of computer based systems often
requires tradeoffs: different non-functional
requirements like safety and availability,
performance and reliability together with the cost
constraints may call for design decisions that
have conflicting consequences. For example, a
safe operational mode may not provide the full
service which decreases overall service
availability, or a high performance mode may
decrease reliability as components are stressed
above the anticipated normal load. In safety-
critical systems, it is widely accepted that safety
is a design constraint that influences operational
effectiveness, performance, and ease of use.
However, common system safety techniques do
not provide enough quantitative information for
optimal decision making about risk management
tradeoffs, and the design decisions that resolve
the conflicting requirements are traditionally
made on the basis of codes-of-practice and past
experience. In this case the consequences of the
decisions are evaluated late in the system
validation phase, when tests and operational
measurements could either justify or refute the
decisions. In the latter case, the corrections and
re-design phases will become costly and they

will be performed only when clear evidences on
the expected improvements are provided.

The goal of this paper is to assess the
improvements that should be obtained re-
designing a part of the ERTMS-ATC system.
Shortly summarizing, in the first design of an
Automatic Train Control (ATC) system a
specific communication protocol has been
introduced between two components: the train
onboard vital computer (EVC), playing the role
of the master, and the Driver Machine Interface
(DMI), the slave. EVC uses messages to check
the operational state of the slave. If the slave is
not operational, then the master enters the safe
mode (as a safety measure) and suspends the
normal service, which can be resumed if the
slave recovers. EVC and DMI interact through a
communication protocol that is currently based
on cyclic messages’ exchange. In this paper we
aim at quantifying the improvements in adopting
a different communication protocol, based on
acyclic messages’ exchange, considering its
impact on the quality of the service (QoS)
provided by the whole system (the train). A
sensitivity analysis will be performed
considering some critical protocol’s parameters
(e.g., the periodicity of messages), and we will
also assess the advantages in adopting different

ANALYSIS OF THE IMPACT OF COMMUNICATION PROTOCOLS ON
SERVICE QUALITY IN ERTMS AUTOMATIC TRAIN CONTROL
SYSTEMS

P. Lollini 1, L. Montecchi 1, M. Magyar 2, I. Majzik 2, A. Bondavalli 1
1Università degli Studi di Firenze, Dipartimento di Sistemi e Informatica
Address: viale Morgagni 65, Firenze, Italy, I-50134
Phone: (+39) 055-4237460, Fax: (+39) 055-4237436, E-mail:{lollini|bondavalli}@unifi.it, l.montecchi@alice.it
2Budapest University of Technology and Economics, Department of Measurement and Information Systems
Address: Magyar Tudósok krt. 2, Budapest, Hungary, H-1117
Phone: (+36-1) 463-3598, Fax: (+36-1) 463-2667, E-mail: {mmelinda|majzik}@mit.bme.hu

Abstract: The ERTMS-ATC system is a distributed system where the Driver Machine
Interface (DMI) is a slave unit of the train onboard vital computer (EVC). In this paper
we analyze two types of communication protocols for the EVC-DMI interactions, based,
respectively, on cyclic and acyclic messages’ exchange. Adopting a modular modeling
methodology, we assess their impact on significant dependability-related indicators. The
analysis of the obtained results allows to quantify the improvements in adopting an
acyclic protocol, possibly with one spare DMI component.
Keywords: communication protocols, design refinement, stochastic modeling, safety-
critical systems, dependability analysis.

recovery properties of the slave (e.g., the
application of stand-by spare). This work has
been conducted in the context of the SAFEDMI
European project (SAFEDMI consortium, 2007),
whose main objective is to design and develop a
safe DMI being able to satisfy at least SIL 2
according to CENELEC specifications with all
the related implications.

The structure of our paper follows the
phases of a systematic model building and
analysis process as follows. Section 2 presents
the application context and the selection of
measures to be evaluated on the basis of the
system requirements. Section 3 describes the
model construction process using Stochastic
Activity Networks formalism, while some of the
obtained results and the interpretation of the
measures are presented in Section 4. Conclusions
are finally drawn in Section 5.

2. SYSTEM CONTEXT

Railway automatic train control (ATC) systems
are based both on track-side and on-board
systems and their evolution has followed, step by
step, the introduction of new technologies. The
increasing level of train traffic and the spread of
high-speed rail lines are now demanding an
increasing safety level in the ATC systems. To
ensure compatibility and inter-operability
between the ATC systems produced in the
various European countries, the European Rail
Traffic Management System (ERTMS)
programme has been set up to provide unique
functional and non-functional standard
requirements. The ERTMS architecture for the
on-board ATC encompasses a Driver Machine
Interface (DMI) component. Its main functions
are the acquisition of driver’s commands and the
display of those information that support the
train driving. Consequently, DMI is mainly made
up of a display and a set of buttons for acquiring
driver’s commands; its functions and its
ergonomic requirements are defined so to satisfy
all the CENELEC related requirements (Cenelec,
2005). Railway Authorities require a DMI
capable of visualizing data generated from
different sources and producing safe
visualization as drivers have to base their
behavior on the displayed information. If DMI is
not operational, then the vital on-board computer
(EVC component) of the system enters the safe
mode (as a safety measure) and suspends the
normal service, which can be resumed if DMI

recovers. In other words, when a DMI failure is
detected by EVC, it triggers an emergency brake
command and the train is stopped.

In the following section we provide a high-
level description of the two types of
communication protocols under analysis: the
cyclic protocol and the acyclic one, recently
proposed in the SAFEDMI context. It is
important to note that the standard does not
require explicitly the use of a cyclic protocol,
and this is why we can envision the use of the
acyclic one.

2.1 EVC-DMI interaction

The EVC-DMI interactions described in the
following are mainly derived from UNISIG
SUBSET-041 (2005) that contains a description
of the functional interface specification of Man
Machine Interface-ERTMS (i.e., DMI) expressed
in terms of exchanged data between EVC and
DMI. EVC and DMI communicate by
exchanging the following types of information
object.
From EVC to DMI:
• CyclicInfo. The CyclicInfo information

object is periodically generated by EVC
and contains information about the system.
This information is shown to the driver.

• AckRequest. The AckRequest information
object is generated in an aperiodic way and
it requires specific actions from DMI and
the driver.

From DMI to EVC:
• DmiStatus. The DmiStatus information

object is generated by DMI after a
CyclicInfo message is received, to inform
EVC about its status.

• AckReply. The AckReply information object
is generated by DMI after an AckRequest is
received, processed and performed.

A typical cyclic interaction means a process

in which EVC periodically sends CyclicInfo
information object to DMI. The DMI system
displays the information, produces sounds when
required and replies to EVC with DmiStatus
information object. The driver acts on the speed
of the train and on the basis of the information
shown on the display. In case of DMI failure, the
DmiStatus message cannot be received by EVC
that triggers an emergency brake command.

In a typical acyclic (or acknowledge)
interaction the DMI receives from EVC an

AckRequest and shows the text message on the
display according to the requested safe
acknowledgement procedure. Once the driver is
aware of the EVC request, he will press the
proper keys. Finally, DMI acquires the driver’s
commands and answers EVC with an AckReply
object. If the driver does not press the proper
keys a DMI timeout occurs; as a consequence,
DMI will not send the AckReply message and
then the EVC timeout occurs as well (and the
train stops).

2.2 System’s behavior

In order to detect DMI failures the protocols

define timeouts. When a timeout occurs, either
from AckRequest (timeout in Timeout_Request
seconds) or CyclicInfo (timeout in
Timeout_Cyclic_Upper seconds), EVC considers
DMI as failed and immediately performs an
emergency brake, thus stopping the train, and
will not return to normal operation until a DMI
will be available. Spare DMIs can be used to
increase system availability. Initially the system
contains one working DMI and a number of
SpareDMI spare DMI components (maybe zero,
usually one). After the DMI failure is detected, a
switching operation is performed to connect
another available spare DMI that, once booted,
becomes available. The switching operation may
be achieved by an automatic switch or may be
manually executed by the driver himself.

2.3 Measures of interest

The standard does not require explicitly that each
CyclicInfo message has to be acknowledged by a
DmiStatus message. However, the safety
protocol designers have adopted this cyclic
interaction, because in this way EVC is capable
to detect the DMI failure earlier: note that
without the DmiStatus reply, EVC could only
detect the DMI failure when there is no AckReply
answer to an aperiodic AckRequest (that needs
driver’s reaction).

The design decision of having DmiStatus
messages or not is influenced by the following
two aspects. On the one hand, the lack of
DmiStatus messages (i.e., detection of DMI
failure only in the case of the acyclic
interaction), although it does not have direct
safety-related consequences, has the above
mentioned drawback: it does not satisfy the

principle of detecting and handling the failure as
early as possible. On the other hand, however,
having only the acyclic interaction and no
DmiStatus reply to CyclicInfo messages has
availability related advantages: the chance of
switch-over from a faulty DMI to a spare one
between two aperiodic AckRequest messages
(without disturbing the EVC) will be higher than
in the case of the frequent cyclic interaction with
regular DmiStatus messages (that have to be sent
to the EVC). In this study we aim at
quantitatively evaluating these consequences of
the protocol design. In more detail, the system
behavior has been analyzed through the
evaluation of the following measures of interest.
1. The probability that the train will not

successfully complete a mission (ride) of a
given length (hours). The mission fails
when an emergency break command is
triggered by EVC. This measure will be
presented in Section 4 as the number of
interrupted rides over a total of 1000 rides.

2. The steady-state system availability,
assuming that the train performs an infinite
sequence of missions (rides) and
accounting for the repair of the failed DMI
components. This measure represents the
steady-state probability that the train is
correctly moving or, equivalently, that
EVC is operational and no safe actions
(emergency breaking) are triggered.

3. Probability (in percent) that a DMI failure
causes a ride interruption. This measure is
computed using the conditional probability
P(A|B) = P(AB)/P(B), where A is the event
“the ride is interrupted” and B is the event
“a DMI failure occurs”.

3. MODEL DEVELOPMENT

The modeling process is based on the model
composition approach for which the system is
built from sub-models in a bottom-up fashion
and the submodels have a limited view of the
system. Several model composition techniques
have been developed to support the systematic
construction and validation of models (e.g.,
Sanders and Meyer, 1991; Rojas, 1996; Obal,
1998). All these techniques are supported by the
composition operators offered by the
corresponding modeling formalisms (Stochastic
activity networks or Stochastic Well-formed
Nets), and such operators are not available in

other formalisms that are commonly used for
dependability modeling, e.g., GSPNs.

In this work we will use the Join
composition operator (Sanders and Meyer, 1991)
to compose system models based on Stochastic
Activity Networks (Sanders and Meyer, 2001).

We have identified three basic submodels
(called “atomic models” in SAN formalism)
representing, respectively, the EVC behavior
(“EVC” model), the DMI behavior (“DMI”
model) and the EVC-DMI communications
(“EVC-comm-DMI” model). Another model
(“Mission” model) will be introduced only to
enable the computation of the steady-state
system availability. The overall model for the
system under analysis will be obtained joining
these basic submodels, sharing the places having
the same name.

Note that the models representing the EVC
and DMI behavior are independent from the
selected communication scenario (cyclic or
acyclic), while the communication model is
based on the EVC-DMI interactions described in
Section 2.1. EVC and DMI models incorporate
knowledge of the failure modes and repair policy
(availability design aspect), while the
communication model includes the knowledge of
the communication scenarios (safety protocol
design aspect). This clear separation facilitates
both the cooperation among different experts (as
they can focus on the evaluation models that are
related to their area of expertise) and the update
of the models if the communication protocol or
the repair policy are changed.

3.1 Modeling assumptions

The models have been built adopting the
following assumptions:
• When DMI fails it is not possible to send a

reply to the CyclicInfo message in time,
because the timeout (a few seconds) is
significantly smaller than the time needed
to switch and to boot a spare DMI (which
needs several minutes);

• Once a DMI becomes available, EVC
immediately becomes operational.

• The time needed to switch between two
DMI is uniformly distributed in the time
interval [SwitchTime_Lower;
SwitchTime_Upper].

• The time needed to boot a new DMI is
normally distributed with mean

BootTime_Mean and variance
BootTime_Variance.

• EVC can issue a new AckRequest if the last
AckReply message has been received or the
corresponding timeout has occurred. The
new AckRequest message will be issued
after a time exponentially distributed with
mean AperiodicInterval.

• Once an AckRequest message has been
received, the AckReply message is sent
after a delay uniformly distributed in the
time interval [DMIAckDelay_Lower;
DMIAckDelay_Upper].

• In the scenario in which the train performs
an infinite sequence of missions (rides), all
the failed DMI components can be
repaired/replaced every RidesBeforeRepair
rides (when the train is in a major railway
station).

3.2 EVC atomic model

The EVC atomic model is depicted in Figure 1.
The EVC component is initially in operational
state (one token in place ‘EVCOperational’),
which holds until DMI replies are correctly
received in time. When DMI has not been able to
reply, a token arrives in place ‘NoDMIReply’
causing the ECV to perform an emergency brake
and stop the train (place ‘EmergencyStop’), until
a DMI becomes again available (‘DMIAlive’).
The place ‘BrakeCount’ counts the number of
emergency brakes in a single mission and it is
used to measure the probability that a ride has
been interrupted.

Fig. 1. EVC atomic model

3.3 DMI atomic model

The DMI atomic model is depicted in Figure 2.
The model accounts for spare DMI components,
if present, as well as for DMI failures and
switching procedures among DMI. The place
‘DMIWorking’ initially contains one token (DMI
in use) and any other available DMI is
represented by a number of SpareDMI tokens in

place ‘Spare’. The exponential activity ‘Fail’
(with rate equal to the number of tokens in
‘DMIWorking’ divided by DMI_MTTF, where
DMI_MTTF is the mean time to failure of DMI)
fires when a DMI failure occurs and adds a token
in each of the following places: ‘Broken’ to
represent the status of the DMI involved, which
turns from working into broken; ‘Failed’ to
signal that a DMI has failed and a switch
operation is needed; ‘NoCyclicReply’ to alert
EVC that DMI has not been able to reply in time;
‘DMIFailCount’ which is used to count the
number of DMI failures in a single mission and
is needed to compute the probability that a DMI
failure causes a ride interruption. After the
failure the failed DMI is switched over to one of
the others still available (‘Switch’ activity,
uniformly distributed within the time interval
[SwitchTime_Lower;SwitchTime_Upper]), the
new DMI is booted (‘Boot’ activity, normally
distributed with mean BootTime_Mean and
variance BootTime_Variance) and then it
becomes working. The place ‘DMIAlive’ is
shared with the EVC model and it contains one
token when a new DMI is available. A token in
place ‘AllowRepair’ represents the state in which
the train is in a major station and it can receive
assistance, so all the failed DMI can be repaired.
In this case the activity ‘Repair’ fires and a C
code defined inside ‘OGRepair’ gate is executed
(the code is not reported here for the sake of
brevity, but it is available in Lollini et al., 2008).
As a result, a DMI becomes working and all the
spare DMI are again available.

Fig. 2. DMI atomic model

3.4 EVC-comm-DMI atomic model

The atomic model representing the
communications between DMI and EVC is
presented in Figure 3. Initially, place
‘EVCOperational’ and ‘DMIWorking’ contain
one token, while the others are empty. If EVC is

operational (one token in place
‘EVCOperational’, shared with the EVC model)
and no EVC requests are pending (place
‘AckRequest’ is empty), then the exponential
activity ‘EVCSendRequest’ fires with rate
1.0/AperiodicInterval, thus representing the
emission of the AckRequest message from EVC
to DMI. If DMI is working (one token in place
‘DMIWorking’, shared with the DMI model),
after a delay it sends an AckReply message to
EVC (the activity ‘DMISendAck’ fires in a time
uniformly distributed between
DMIAckDelay_Lower and DMIAckDelay_Upper
seconds). On the contrary, if DMI is not working
the deterministic activity ‘AckRequestTimeout’
fires after Timeout_Request seconds and the DMI
failure is signalled to the EVC model adding one
token in place ‘NoDMIReply’, shared with the
EVC model. The input gate ‘IGCyclicTimeout’
is used to enable or disable the cyclic interaction
checking the value of a boolean variable
(parameter CyclicEnabled); therefore we can use
the same model to represent both the acyclic
interaction and the cyclic one (this compact
model has advantages in the model solution
phase). When the cyclic interaction is enabled
(CyclicEnabled==True) and one token is in place
‘NoCyclicReply’ (shared with the DMI model),
then the activity ‘EVCCyclicTimeout’ fires in a
time uniformly distributed between
Timeout_Cyclic_Lower and
Timeout_Cyclic_Upper seconds, thus revealing
that DMI has not replied within the cyclic
timeout. In this case the remaining time to
timeout is uniformly distributed, since when
DMI fails the time already elapsed from the
receipt of the CyclicInfo message is uniformly
distributed.

Fig. 3. EVC-comm-DMI atomic model

3.5 Mission atomic model

This additional model, depicted in Figure 4, has
been introduced in order to compute the steady-
state availability measure. Instead of considering
a single mission only, that is a single train ride,

we suppose that once a mission is finished, a new
one begins. Therefore we analyze a scenario in
which the train performs an infinite sequence of
missions, and the initial state of a new mission
corresponds to the final state of the last one.
While adding more details in the future, different
mission types could be included.
Initially one token is in place ‘Init’, while the
others are empty. The output function defined in
the gate ‘OGInitialize’ is executed at the
beginning of a new mission, and it puts a token
in place ‘AllowRepair’ (shared with the DMI
atomic model) every RidesBeforeRepair
missions, to allow the repair/replacement of all
the failed DMI. The mission ends when the
deterministic activity ‘MissionEnd’ completes
(in RideLength seconds). When a mission (ride)
ends, the output gate ‘OGMissionEnd’ checks if
the mission has succeeded (no tokens in place
‘BrakeCount’, shared with the EVC atomic
model) or not, adds a token in place
‘MissionCount’ that counts the number of rides
the train has completed, and then the mission is
started over again putting a token in place
‘GoodEnd’ (if the mission has succeeded) or
‘BadEnd’. The deterministic activities
‘GoodMission’ and ‘BadMission’ fires in 0.01
seconds and have been only introduced to allow
the computation of the measure of interest (they
have no influence on the system’s behavior).

Fig. 4. Mission atomic model

4. MODEL EVALUATION

The system has been evaluated in order to
investigate the influence of the cyclic and acyclic
interaction between EVC and DMI on the
dependability indicators identified in Section 2.3.
Table 1 shows the values we assigned to the
main model parameters, following our
experience and the constraints came from
specification UNISIG SUBSET-041 (2005)
defined by the European Railway Agency.

Symbol Description Default
Value

AperiodicInterval

Mean time to issue a new AckRequest
after the last AckReply has been
received, or the corresponding
timeout has occurred.

variable
(sec.)

BootTime_Mean Mean time to boot a new DMI 180 sec.
BootTime_Variance Variance to boot a new DMI 1

CyclicEnabled Boolean variable enabling (T) or
disabling (F) the cyclic interaction

variable
(T/F)

DMIAckDelay_Lower Lower time bound to process the
AckRequest and to send the AckReply 2 sec.

DMIAckDelay_Upper Upper time bound to process the
AckRequest and to send the AckReply 3 sec.

DMI_MTTF Mean time to failure of DMI 1000
hours

RideLength Duration of a single ride 8 hours

RidesBeforeRepair Number of rides before all the failed
DMI can be repaired/replaced 3

SpareDMI Number of spare DMI components 1

SwitchTime_Lower Lower time bound to switch between
two DMI 30 sec.

SwitchTime_Upper Upper time bound to switch between
two DMI 60 sec.

Timeout_Cyclic_Lower Lower time bound to have a cyclic
timeout 0 sec.

Timeout_Cyclic_Upper Upper time bound to have a cyclic
timeout 3 sec.

Timeout_Request AckRequest message timeout 5 sec.

Tab. 1. Relevant parameters and their values

Three evaluation scenarios have been set up
in order to study the effects of the following
three parameters: AperiodicInterval (mean time
to issue a new AckRequest after the last AckReply
has been received or the corresponding timeout
has occurred), RideLength (duration of a single
ride) and DMI_MTTF (mean time to failure of
DMI). The scenarios have been analyzed
considering the case in which both the cyclic and
acyclic interactions are enabled (“cyclic and
acyclic” case), and the case in which the
interaction is only acyclic (“acyclic only” case,
obtained by setting the CyclicEnabled parameter
to False).

For the sake of brevity, in this paper we only
present a subset of the experiments. The full set
of analyzed scenarios can be found in Lollini et
al., 2008 (technical report).

The SAN models have been built and solved
by simulation using Möbius (Daly et al., 2000), a
powerful multi-formalism/multi-solution tool.
For each study we executed a minimum of
100000 simulation runs (batches), thus each
result is the mean computed from a set of at least
100000 samples. Moreover, we set the relative
confidence interval to 0.05 and the confidence
level to 0.95. This means that the stopping
criteria will not be satisfied until the confidence
interval is within 5% of the mean estimate 95%
of the time.

4.1 Analysis of the impact of AperiodicInterval

Figure 5 shows the number of interrupted rides
for every 1000, considering different values for
the AperiodicInterval parameter. This parameter
represents the mean time between the receipt of
the last AckReply message (or the corresponding
AckRequest timeout) and the issue of a new
AckRequest message. Considering the “acyclic
only” case (without the cyclic interaction), the
number of interrupted rides greatly decreases
when larger request intervals are considered. For
example, 2 rides are saved (they are not
interrupted) passing from 1 minute to 3 minutes
of AperiodicInterval duration. In case of a DMI
failure, in fact, larger intervals allow the new
DMI to be more likely switched over and booted
before the AckRequest timeout expires. With the
cyclic interaction enabled (“cyclic and acyclic”
case), the number of interrupted rides is constant
and the value is near the maximum obtained in
the “acyclic only” case. Therefore, the cyclic
message exchange causes the same number of
interruption that would be caused by the acyclic
interaction with a very small interval between
AckRequest messages.

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30

In
te

rr
up

te
d

R
id

es
 (f

or
 e

ve
ry

 1
,0

00
)

Aperiodic Interval (minutes)

Ride Length: 8 hours - DMI MTTF: 1,000 hours

Cyclic and Acyclic
Acyclic only

Fig 5. Number of interrupted rides for every
1000

Figure 6 shows the probability that a DMI

failure causes a ride interruption with varying
AperiodicInterval parameter and considering
different values for the boot time parameter.
Note that with the cyclic protocol enabled
(“cyclic and acyclic” case), results are constant
with value 100%, which means that every DMI
failure causes an emergency brake (the cyclic
period lasts only a few seconds and consequently
no spare DMI can be switched and booted in the
meanwhile). In the “acyclic only” case, larger
intervals between requests lower this value in
accordance with the results depicted in Figure 5.

For example, 30% of the DMI failures do not
cause anymore an emergency break passing from
1 minute to 3 minutes of AperiodicInterval
duration. Another observation is that the faster is
the boot process (characterized by
BootTime_Mean, the mean time needed to boot a
spare DMI), the lower is the probability that the
DMI failure causes a ride interruption. For
example, 20% of the DMI failures do not cause
anymore an emergency break considering an
AperiodicInterval duration of 3 minutes and
halving the boot time duration (from 4 minutes to
2 minutes). This result justifies the design of a
DMI with fast boot procedure.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30

D
M

I f
ai

lu
re

s
ca

us
in

g
rid

e
in

te
rr

up
tio

n
(%

)

Aperiodic Interval (minutes)

Ride Length: 8 hours - DMI MTTF: 1,000 hours

Cyclic and Acyclic
Acyclic only - Boot Time 2 min.
Acyclic only - Boot Time 3 min.
Acyclic only - Boot Time 4 min.

Fig 6. Probability that a DMI failure causes a
ride interruption

Figure 7 shows the steady-state system

availability with varying AperiodicInterval
parameter, with and without the use of one spare
DMI (in the “acyclic only” case). The system is
considered unavailable if the train is stopped
because EVC has not received the AckReply
message from DMI within the fixed timeout, and
available otherwise. Considering the spare DMI
the system availability significantly improves
(about 1% more).

 0.98

 0.985

 0.99

 0.995

 1

 0 5 10 15 20 25 30

A
va

ila
bi

lit
y

Aperiodic Interval (minutes)

Ride Length: 8 hours - DMI MTTF: 1,000 hours - Acyclic only

Single DMI
With Spare DMI

Fig 7. Steady-state system availability in the
acyclic scenario

Finally, Figure 8 shows the steady-state
system availability varying the DMI MTTF
parameter (mean time to failure of the DMI).
Using more reliable DMI components, the
system availability increases independently of
the used protocols. The difference between the
two plots comes from the early detection of the
DMI failure event in case of using the cyclic
protocol (“cyclic and acyclic” case), since in this
case every DMI failure causes an emergency
brake.

 0.994

 0.995

 0.996

 0.997

 0.998

 0.999

 1

 2000 1750 1500 1250 1000 750 500 375 250 125

A
va

ila
bi

lit
y

MTTF of DMI (hours)

Aperiodic Interval: 15 minutes - Ride Length: 8 hours

Acyclic only
Cyclic and Acyclic

Fig 8. Steady-state system availability

5. CONCLUDING REMARKS

This work has focused on the interactions
between two components constituting the
Automatic Train Control system: the onboard
vital computer (EVC) and the Driver Machine
Interface (DMI). According to their functional
interface specification, the two components
mainly communicate by exchanging of different
types of information objects that can be
generated by EVC in a cyclic or acyclic way.

In this paper we have adopted a modular
modeling methodology to assess the impact of
cyclic/acyclic EVC-DMI interactions on a set of
significant dependability-related indicators. The
hierarchical and modular modeling methodology
to capture the overall system behavior has been
first described. Then, a sensitivity analysis based
on simulation of the defined models in a transient
period of time and in a steady-state condition has
been performed to tune a part of the main critical
system’s parameters. The analysis of the
obtained results allows to better understand the
dynamics and the involved phenomena, and it
points out the advantages in adopting the acyclic
interaction, possibly with one spare DMI
component. As such, it significantly contributes
to the early design refinement of the architecture

for the DMI system that is going to be specified
in the SAFEDMI project.

ACKNOWLEDGEMENT

This work has been partially supported by the EC
IST Project SAFEDMI (Contract n. 031413).

REFERENCES

CENELEC (2005). ERTMS - Driver Machine

Interface.
D. Daly, D. D. Deavours, J. M. Doyle, P. G.

Webster and W. H. Sanders (2000). Möbius:
an extensible tool for performance and
dependability modeling. In B. R. Haverkort, H.
C. Bohnenkamp, and C. U. Smith, editors,
11th International Conference, TOOLS 2000,
volume 1786 of LNCS, Springer Verlag, pages
332-336.

P. Lollini, L. Montecchi, M. Magyar, I. Majzik
and A. Bondavalli (2008). Assessing the
impact of cyclic/acyclic EVC-DMI
interactions in Automatic Train Control
systems. Technical Report rcl080401,
University of Florence, Dip. Sistemi e
Informatica, RCL group,
http://dcl.isti.cnr.it/Documentation/
Papers/Techreports.html.

W. D. Obal (1998). Measure-Adaptive State-
Space Construction Methods. PhD thesis,
Univ. of Arizona.

I. Rojas (1996). Compositional construction of
SWN models. The Computer Journal,
38(7):612-621.

SAFEDMI consortium (2007). IST-FP6-STREP-
031413 Safe Driver Machine Interface (DMI)
for ERTMS Automatic Train Control.
http://www.safedmi.org/.

W. H. Sanders and J. F. Meyer (1991). Reduced
base model construction methods for
Stochastic Activity Networks. IEEE Journal
on Selected Areas in Communications,
9(1):25-36, January 1991.

W. H. Sanders and J. F. Meyer (2001).
Stochastic Activity Networks: Formal
definitions and concepts. Lectures on Formal
Methods and Performance Analysis, volume
2090 of LNCS, Springer Verlag, pages 315-
343.

UNISIG SUBSET-041 (2005). Performance
requirements for interoperability - 2.1.0.

