
640 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

Stochastic Activity Networks Templates: Supporting
Variability in Performability Models

Leonardo Montecchi , Paolo Lollini , and Andrea Bondavalli , Member, IEEE

Abstract—Model-based evaluation is extensively used to estimate
the performance and reliability of dependable systems. Tradition-
ally, these systems were small and self-contained, and the main
challenge for model-based evaluation has been the efficiency of the
solution process. Recently, the problem of specifying and maintain-
ing complex models has increasingly gained attention, as modern
systems are characterized by many components and complex inter-
actions. Components share similarities, but at the same time, also
exhibit variations in their behavior due to different configurations
or roles in the system. From the modeling perspective, variations
lead to replicating and altering a small set of base models mul-
tiple times. Variability is taken into account only informally, by
defining a sample model and explaining its possible variations.
In this article, we address the problem of including variability
in performability models, focusing on stochastic activity networks
(SANs). We introduce the formal definition of stochastic activity
networks templates (SAN-T), a formalism based on SANs with the
addition of variability aspects. Differently from other approaches,
parameters can also affect the structure of the model, like the
number of cases of activities. We apply the SAN-T formalism to the
modeling of the backbone network of an environmental monitoring
infrastructure. In particular, we show how existing SAN models
from the literature can be generalized using the newly introduced
formalism.

Index Terms—Model-based evaluation, parametric models,
reuse, stochastic activity networks (SANs), templates.

I. INTRODUCTION

FORMAL methods have been extensively used to esti-
mate the performance and reliability metrics of com-

puter systems. They are especially useful for assessing non-
functional properties of critical systems, for which experimental

Manuscript received January 13, 2021; revised June 19, 2021 and September
5, 2021; accepted October 6, 2021. Date of publication December 7, 2021;
date of current version June 2, 2022. This work was supported in part by the
European Union’s Horizon 2020 Research and Innovation Program under the
Marie Sklodowska-Curie Grant Agreement No. 823788 “ADVANCE”, in part
by the São Paulo Research Foundation (FAPESP) under Grant 2019/02144-6,
and in part by the project POR-CREO SPACE “Smart PAssenger CEnter” funded
by the Tuscany Region. Associate Editor: H. Madeira. (Corresponding author:
Leonardo Montecchi.)

Leonardo Montecchi is with the Institute of Computing, University of Camp-
inas, Campinas, SP 13083-852, Brazil (e-mail: leonardo@ic.unicamp.br).

Paolo Lollini and Andrea Bondavalli are with the Consorzio Interuniver-
sitario Nazionale per l’Informatica (CINI), 00185 Roma, RM, Italy, and
also with the Dipartimento di Matematica e Informatica “U. Dini”, Uni-
versity of Firenze, 50134 Firenze, FI, Italy (e-mail: paolo.lollini@unifi.it;
andrea.bondavalli@unifi.it).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TR.2021.3120979.

Digital Object Identifier 10.1109/TR.2021.3120979

approaches are not always applicable. In fact, model-based eval-
uation [1] has the advantage of not exercising the real system,
which may be dangerous, costly, or not feasible.

Traditionally, critical systems were isolated and monolithic,
and the main challenge in model-based evaluation has always
been the solution process, in term of efficiency of state-space
generation and accuracy of results. More recently, the problem
of specifying and maintaining complex models has gained at-
tention. Modularization is an established approach in reducing
the complexity in the specification of analysis models. However,
one of the rising challenges consists in handling variability [2],
[3] across system components.

Cyber-physical system-of-systems (CPSoSs) [4] are charac-
terized by a large number of components and complex interac-
tions between them. Many of these elements share similarities,
but at the same time, they have a slight different behavior due
to their individual configuration or role in the system. These
variations lead to replicating and altering a small set of base
models multiple times. Furthermore, due to dynamicity and evo-
lution [4], changes to components configurations are introduced
over time, and models need to be updated to reflect such changes.
Improving variability means anticipating certain kind of changes
and make them easier to be implemented [3].

In the dependability [5] and performability [6] domain, many
works have proposed approaches to automatically generate for-
mal models from design models (e.g., UML models) enriched
with information on the failure/repair processes of components.
The idea behind these works is that software and systems
engineers can take advantage of formal models without being
proficient in them, because model transformations embed the
knowledge of experts in an automated “push-a-single-button”
tool [7], [8].

While these approaches succeed in providing an application-
specific abstraction to users of a certain domain, they are not
flexible enough to relieve dependability experts from the effort
of modeling complex systems. In fact, they have the following
two main limitations:

1) they are tailored to the needs of system designers and not
to those of formal methods experts;

2) different transformation algorithms need to be defined for
different problems or classes of systems.

In this article, we address the problem of variability in per-
formability models from the point of view of modeling experts,
as opposed than targeting software and systems engineers. The
focus is on specifying models considering variability, that is,

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0002-7603-9695
https://orcid.org/0000-0002-2364-2538
https://orcid.org/0000-0001-7366-6530
mailto:leonardo@ic.unicamp.br
mailto:paolo.lollini@unifi.it
mailto:penalty -@M andrea.bondavalli@unifi.it
mailto:penalty -@M andrea.bondavalli@unifi.it
https://doi.org/10.1109/TR.2021.3120979


MONTECCHI et al.: STOCHASTIC ACTIVITY NETWORKS TEMPLATES: SUPPORTING VARIABILITY IN PERFORMABILITY MODELS 641

anticipating and facilitating changes. We propose a new formal-
ism based on stochastic activity networks (SANs) [9] that we
call stochastic activity network templates (SAN-Ts). The idea
is to leave some parts of an SAN model unspecified, and to
make them depend on parameter values. Differently from what
is done, for example, in the Möbius tool [10], in SAN-T models,
the parameters can also affect the structure of the model, like
the number of cases of an activity. The intended users of our
formalism are thus experts in performability modeling, in their
task of defining libraries of reusable submodels.

This article complements our recent work in [11], in which we
defined a framework to improve reuse of performability models.
The approach is based on the concept of libraries of model
templates that interact using well-defined interfaces and com-
position rules, specified using the template models description
language (TMDL). The framework proposed in [11] is not tied
to a specific modeling formalism and can be applied in general
to models that are composed by superposition of state variables
(i.e., “state sharing”). To achieve such generality, we assumed
as prerequisite the existence of the following:

1) a template-level formalism;
2) an instance-level formalism;
3) a concretize function, which generates instance-level mod-

els from a template-level model.
The work in this article enables the application of the TMDL

framework with SANs, since we introduce here a template-
level formalism based on SANs and the associated concretize
function.

The rest of this article is organized as follows. In Section II,
we introduce the background and we discuss the related work.
In Section III, we present the overall idea of SAN-Ts with a
running example, and then, in Section IV, we give their formal
definition. In Section V, we define how concrete SAN models
can be derived from an SAN-T (i.e., the concretize function).
Then, in Section VI, we apply the formalism to the modeling
of the backbone network of an environment monitoring system.
In Section VII, we summarize how this article complements
the TMDL framework introduced in [11]. Finally, Section VIII
concludes this article.

II. BACKGROUND AND RELATED WORK

A. Model-Based Evaluation

Model-based evaluation [1] consists in estimating system-
level metrics through formal models, which typically include
stochastic behavior. Model-based evaluation plays a key role
in the assessment of critical systems and large-scale infrastruc-
tures, where exercising the real system is not feasible.

Various kinds of models can be used for this task. Approaches
are typically categorized in combinatorial models and state-
space models [1]. Combinatorial models describe which combi-
nations of component failures lead to system failure, e.g., fault
trees (FTs) [12]. These models are very popular in the industry,
as they are simple to understand and they can be evaluated
with well-known formulas. However, they assume independent
events, and therefore, they cannot represent complex interactions
between components or dynamic behavior.

On the other hand, state-space models explicitly represent
the different states of a system and the possible transitions
between them. While being more powerful, these models can
quickly become very complex, leading to well-studied problems
like state-space explosion and stiffness [1]. One of the most
popular formalisms are stochastic Petri nets (SPNs) and their
numerous extensions [13]. In particular, the work in this article
is based on SANs, which can be considered a variant of SPNs [9],
although adopting a different terminology (e.g., activity instead
of transition).

We base our work on SANs because of their wide adoption
across different domains, thanks to their flexibility and the
support provided by the Möbius tool [14]. For example, recent
work has employed models based on SANs to evaluate control
strategies of smart grids [15], the availability of a backbone
network [16], the performance of scheduling algorithms [17],
performability in the railway domain [18], and the quality of
experience of a distributed interactive application [19].

B. Stochastic Activity Networks (SAN)

In their semantics, SANs are similar to generalized stochastic
Petri nets (GSPNs) [20] and stochastic reward nets (SRNs) [21],
in which immediate transitions have priority over timed ones.
Similarly to SRNs, SANs may have marking-dependent ele-
ments; however, in SANs, various firing time distributions are
supported. The input gate and output gate primitives can be
used to specify arbitrary complex predicates for the enabling
of transitions (called activities) and for the effects of transition
firings. Activities may have multiple probabilistic outcomes,
called cases.

A formal definition of SANs was given by Sanders and Meyer
in [9]. We recall the basic definitions, on which we will base later
for the definition of SAN-Ts.

An activity network (AN) is an eight-tuple [9]

AN = (P,A, I,O, γ, τ, ι, o) (1)

where P is a finite set of places; A is a finite set of activities;
I is a finite set of input gates; and O is a finite set of output
gates. The function γ : A → N+ specifies the number of cases
for each activity, that is, the number of possible choices upon
execution of that activity. τ : A → {timed, instantaneous} spec-
ifies the type of each activity; ι : I → A maps input gates to
activities; and o : O → {(a, c) | a ∈ A ∧ c ∈ {1, 2, . . . , γ(a)}}
maps output gates to cases of activities.

Similarly to Petri nets (PNs), places can hold tokens. The
number of tokens in each places determines the state of the
network, also called its marking. More formally, if S is a set
of places (S ⊆ P ), a marking of S is a mapping μ : S → N.
The value μ(p) is the marking of place p, i.e., the number of
tokens it holds. The set of possible markings of S is the set of
functions MS = {μ | μ : S → N}.

An input gate is defined as a triple (G, e, f), where G ⊆ P is
the set of input places associated with the gate, e : MG → {0, 1}
is the enabling predicate of the gate, and f : MG → MG is the
input function of the gate. An output gate is a pair (G, f), where



642 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

G ⊆ P is the set of output places associated with the gate, and
f : MG → MG is the output function.

An input gate g = (G, e, f) holds in a marking μ if e(μG) =
1. We say that an activity a is enabled in a marking μ if all the
input gates associated with it hold. Intuitively, the behavior of
the network is regulated by the following rules:

1) when an activity is enabled it can fire;
2) instantaneous activities have priority over timed activities;
3) when an activity fires, one of its cases is selected.
When an activity a fires in marking μ, the new marking

is given by μ′ = fOn
(. . . fO1

(fIm(. . . fI1(μ)))), where gi =
(GIi , eIi , fIi) is the ith input gate of the activity, and oj =
(GOj

, fOj
) is the jth output gate of the selected case. That is, all

the functions of all the input gates are computed first, and then,
all the functions of the output gates are computed. The complete
characterization of the SANs behavior can be found in [9].

A marking in which no instantaneous activities are enabled is a
stable marking. An activity network is stabilizing if, essentially,
there is no marking from which it is possible to fire an infinite
sequence of instantaneous activities.

Given an AN that is stabilizing in some initial marking
μ0 ∈ MP , an SAN is formed by defining functions Ca, Fa, and
Ga for each activity a, where: Ca ∈ C is a function specifying
the probability distribution of its cases; Fa ∈ F is a function
specifying the probability distribution of its firing delay; and
Ga ∈ G is a function that describes its reactivation markings [9].
All these functions are allowed to be marking dependent.

SAN = ((P,A, I,O, γ, τ, ι, o), μ0, C, F,G) . (2)

SANs have an intuitive graphical notation (see [9]). Places are
represented as circles, instantaneous activities as thin bars, and
timed activities as thick bars. Input gates are represented as left-
pointing triangles, while output gates as right-pointing triangles.
Cases are represented as small circles next to the activity; if an
activity has only one case, the case is omitted from the diagram.
Input arcs are considered a special case of the input gate, in
which the predicate e holds when there is at least one token
in the connected place, and the function f removes one token
from that place. Similarly, an output arc is a special case of the
output gate in which the function f simply adds one token to the
connected place.

Evaluation metrics are defined using reward structures, and
under certain conditions, the stochastic process underlying an
SAN has an exact solution. Otherwise, they can be evaluated by
discrete-event simulation, for example, using Möbius [10].

C. Related Work

The problem of simplifying the construction of performability
models has been approached in different ways in the literature.
Different variants of the original PNs formalism [22] have been
defined, some of them enabling more compact and reusable spec-
ifications. For example, SRNs [21] contain primitives that allow
for a compact specification of SPNs, like marking dependence,
variable-cardinality arcs, priorities, etc.

In coloured Petri nets (CPNs) [23], tokens can be distin-
guished, by attaching information to them. More precisely,

tokens can be of different data types, called color sets. Places
contain a multiset of tokens of a certain color set, and transitions
take into account the color (i.e., value) of tokens in their enabling
and firing rules. Hierarchical CPNs support modularization by
means of substitution transitions, i.e., a transition is replaced by
a whole subnet in a more detailed model. The general formal-
ization encompassing CPNs, basic PNs, and hierarchical PNs is
known as high-level Petri nets (HLPNs) [24], [25].

These PNs extensions fold a complex Petri net model into a
compact specification. They can address variability aspects to
some extent, for example, combining different initial markings
and marking-dependent properties. However, variable aspects
are limited to the behavior and not to the structure of the model.
Besides that, these formalisms can be used to specify concrete
models that are directly executed. Using the terminology in [11],
CPNs and SRNs can be seen as instance-level formalisms. This
article focuses on specifying template-level models, from which
different instances can be derived.

When their color sets are finite, CPNs and HLPNs can be
unfolded into a regular PN [23], [26]. Unfolding expands a
colored place to multiple normal places, one for each of the
possible token colors it can hold. Similarly, a colored transition
is expanded to multiple normal transitions, one for each com-
bination of tokens that can enable it. In this perspective, there
are some similarities with our concretize algorithm described in
Section V. However, the general problem of unfolding a CPN
is not trivial, because all the combinations of tokens that satisfy
transitions guards must be enumerated [27], [28]. Our formalism
adds variability to specific aspects of an SAN model, with the
intent of defining reusable submodels to be composed according
to the methodology in [11]. Being a template-level formalism,
SAN-T models cannot be directly analyzed.

The work in [29] defined parametric stochastic well-formed
nets (PSWNs), a parametric version of SWN. Similarly to our
work, PSWNs models are only partially specified, to improve
reuse and variability. Parametric behavior is given by export and
import functions, which allow color sets and values to be shared
between submodels. Composition is achieved by superposition
of groups of transitions or places with matching labels. The
work has been applied in [30] to the modeling of a fault-tolerant
component adopting replica and voting, and it is implemented in
the GreatSPN tool [31]. Differently from our proposal, PSWNs
models can be instantiated only through composition with other
submodels. They however support composition by action syn-
chronization, while we focus on state sharing.

As mentioned earlier, SANs can also be considered a variant of
SPNs [9]. In their Möbius implementation [10], they support to-
kens having different datatypes, including structured datatypes.
SANs models can be composed using the Rep/Join state sharing
formalism [32]; however, which state variables are composed,
and how, must be specified manually. The Möbius implementa-
tion of SANs permits using variables, which however can only
impact the behavior of the model and not its structure. In this
article, we define parametric (“template”) SAN models, whose
structure and behavior can depend on parameters.

A well-established research line focuses on applying model-
driven engineering (MDE) [33] techniques to automatically



MONTECCHI et al.: STOCHASTIC ACTIVITY NETWORKS TEMPLATES: SUPPORTING VARIABILITY IN PERFORMABILITY MODELS 643

derive dependability models from UML models or similar repre-
sentations, e.g., see [7], [8], and [34]. However, such approaches
typically provide an application-specific abstraction to users of
a certain domain, and then, they automatically derive formal
models defined by an expert. Instead, our approach is targeted at
dependability modeling experts, and it focuses on constructing
reusable models including variability.

The recent work in [35] proposed dependence-aware repli-
cation (DARep), an efficient method to replicate SAN models
while still maintaining their identity, as opposed to the traditional
replica operator in which instances are indistinguishable. The
method uses a matrix to specify dependencies across state-
variables of instances, and an efficient algorithm [36] to reflect
them in the discrete-event simulator generated by Möbius.

The work on DARep is probably the most similar to our
proposal. However, there are two main differences between the
two approaches. First, DARep focuses on replicating identical
SAN models, with alterations in the state variables shared be-
tween them. In this aspect, our approach is more general, since
it allows variability in the entire structure of an SAN model
(instead than on “interfaces” only), and it permits to generate
SAN instances that can be composed by either Join or Rep
operators. Second, the main motivation behind DARep is to
improve the performance of simulation solvers [35], while we
focus on the formalization of the concept of SAN-T itself, and
we consider solution methods out of the scope of this article.

III. MOTIVATING EXAMPLE

In this section, we introduce an example to motivate our
approach. We first provide an overview of the reference system,
then we discuss the challenges in modeling it using ordinary
SANs, and finally, we extract a running example to be used in
the rest of this article.

A. Brazilian Environmental Data Collection System
(BEDCS) System

The BEDCS, also known in Portuguese as Sistema Brasileiro
de Coleta de Dados Ambientais (SBCDA), is a large-scale en-
vironmental monitoring infrastructure owned by the National
Institute of Space Research of Brazil (INPE) [37], [38]. Among
the other applications, it supports the monitoring of the Amazon
rainforest, both in Brazil as well as in other South American
countries [39], [40].

The BEDCS is composed of three segments: space, ground,
and application (see Fig. 1). The application segment features
a deployment of approximately 800 automated platforms scat-
tered throughout the country and at sea. In each of these data
collection platforms (DCPs), groups of sensors collect different
kinds of environmental data. The space segment consists of satel-
lites, which carry a data-collecting transponder and periodically
receive the data collected by the DCPs. Satellites also collect
data by themselves, typically Earth images or physics-related
measurement like density of electrons. Finally, the ground seg-
ment consists of ground stations for the reception of data from
satellites, a center for remote control and tracking, and a mission
center responsible for data processing and dissemination to the

Fig. 1. Network architecture of the Brazilian Environmental Data Collection
System (BEDCS). Figure adapted from [41].

end users. The data are stored at the mission center, where they
are processed and made available to end users through a web
interface.

Due to the large number of applications relying on it [42], the
system has to fulfill strict non-functional requirements; among
others: availability of the platform to end users; reliability of the
data collection functionality, in order not to miss data points; and
performance of data transmission, both DCPs to satellites and
satellites to ground station. Note that low performance in data
transmission may also cause data loss, in case the buffers of
satellites or DCPs become full.

The system, which is in operation since the 90s, has gained
importance in the Brazilian and International community over
time, resulting in an increasing demand for system moderniza-
tion, for the provision of new services, and for improvements
in performance and dependability. In this context, model-based
evaluation is a valuable tool to help engineers understanding the
impact of maintenance actions, and to support informed design
decisions.

The BEDCS is one of the two case studies of the ADVANCE
project [43], whose objective is to define new verification and
validation techniques for cyber-physical systems. Within the
project, the system is being analyzed according to different
points of view, supporting the INPE in its evolutive maintenance
efforts.

B. Challenges

The BEDCS is a representative example of a CPSoS: It is
composed of a large number of components, with complex
interactions between them that possibly change over time, and
it is organized as SoS architecture. That is, its constituent sys-
tems (CSs) may have different governance and ownership (e.g.,
satellites and sensors deployed by third parties) and they are put
together to provide a higher goal that could not be provided by
individual CSs alone.

Model-based evaluation is the primary evaluation means for
this kind of system, due to the difficulties in applying ex-
perimental approaches, especially at system level. However,



644 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

when modeling systems like BEDCS with SANs or similar
formalisms, practical issues concerning the scalability arise.
Scalability in the solution process is a well-known problem that
has been addressed in several ways, e.g., see [1], [31], and [44].
Instead, in this article, we address the challenges concerning the
specification and maintenance of such models.

In this perspective, the main challenge is represented by the
large number of similar components, which exhibit variability
aspects due, for example, to different roles, location, or con-
figuration. Furthermore, these aspects can change over time,
leading to what in software engineering is known as variability
in space and time [45]. In the BEDCS case, variability exists in
different aspects. As a simple example, each satellite may use
a subset of the available communication protocols, which has
impact on which DCPs it may receive data from. More in general,
different dependencies may exist between system components.
Often, a certain relation or global behavior can be described in
a general way. However, its instances vary depending on the
number and kind of components involved, and possibly other
context-dependent parameters.

To some extent, this problem is being addressed by modu-
larization. When modeling a complex system with SANs, the
complete model is typically built out of a well-defined set of
submodels representing specific aspects of the system, which
are then composed by state sharing, following predefined rules.
Basic building blocks are first identified (e.g., components or
functions), and then, examples of the corresponding SAN mod-
els are described. Variability is addressed by defining these
building blocks in a general way, as “templates,” explaining how
variants can be derived from a general abstract structure.

This kind of approach has been used by different authors in the
construction of models based on SANs, but always in an informal
way; see, for example, [15], [16], [19], and [46]. In fact, while an
SAN can be used to accurately describe the model of a specific
instance of a building block, with its specific characteristics, the
general structure of the model and its possible variations can
only be described with examples or with descriptions in natural
language. This is especially true when variations affect the model
structure, e.g., number and names of places or number of cases
of activities.

The SAN-T formalism that we define in this article aims
to solve this problem, by providing a formal way to specify
a general (i.e., template) SAN model and its possible variations.
The idea is to provide an abstract representation of multiple SAN
models that exhibit similar structure and behavior, but having
some systematic differences that can be parameterized. Then,
from such base skeleton, different variants can be generated,
based on the values assigned to its parameters.

C. Running Example: The User Model

We introduce here one of the building blocks of the BEDCS
model, which will be used as running example.

Among the other things, the BEDCS model has to take into
account for different kinds of services (e.g., raw picture data
transfer or telemetry to satellites), having different characteris-
tics but a similar behavior. Also, different kinds of user models

are needed, having access to different subsets of these services,
and accessing services with different probabilities. Metrics of
interest are both related to performance (e.g., throughput) and
reliability (e.g., disconnection probability).

The basic idea behind SAN-Ts is visualized in Fig. 2. The
SANs models in Fig. 2(a) and (b) are adapted from [47], in
which we modeled a vehicular network. We chose this example
for its simplicity; a more extensive application of the SAN-T
formalism is described later in Section VI.

The behavior represented by the two SAN models in Fig. 2(a)
and (b) is the following. Each user is initially in idle state, and
may then, request a network service. With a certain probability
they can request one of the services that are available to them, by
adding a token in the corresponding place. While the service is
being delivered, a token stays in the place with the corresponding
identifier (e.g., Req1 or Req6). The request can fail or be
dropped; in these cases, a token is received in the corresponding
place, and the user returns to idle state. The figure shows two
instances of the model: an internal user may request services
1, 6, and 7, with the respective probabilities, while a press user
may request services 3 and 7 only, with different probabilities.

It is clear that the two models have a similar structure. In fact,
they differ only by the number of services available to the user,
the identifiers of those services, and the probabilities of the user
requesting each service. The structure of these two models can be
generalized by establishing the following informal rule: “Create
one place ReqX for each of the services that are available to the
user, and name them according to the identifier of these services.
The activity request should have the same amount of cases as
the number of ReqX places, and each of them should have an
output arc connecting the case to the corresponding ReqX place.
The probabilities associated with request cases are set based on
a vector parameter having the same length as the number of
services available to the user.” This would result in an SAN
“template,” depicted in Fig. 2(c), which abstracts the common
structure among models of different users.

Note that the template in Fig. 2(c) does not represent the
instances in Fig. 2(a) and (b) only, but in general, any SAN
model that follows the same pattern. Having to maintain similar
models that only differ from some details is a common issue in
the modeling of complex systems. The formal definition of the
User SAN-T model is discussed later in Section IV-F.

IV. STOCHASTIC ACTIVITY NETWORK TEMPLATES (SAN-TS)

A. Overview and Design Choices

In the definition of the SAN-T formalism, we focus on sup-
porting the specification of reusable submodels that are meant to
be composed by state sharing (i.e., place superposition), and that
can be used with the approach presented in [11]. The objective
is to be able to reuse a submodel in different configurations of
a global system model. We focus, therefore, on variability with
respect to places, which constitute the “interface” of an SAN
model with the other submodels.

Another strategy for the composition of SPNs-based models
is action synchronization. However, despite the support of tools
like Möbius [14], this approach is not particularly common



MONTECCHI et al.: STOCHASTIC ACTIVITY NETWORKS TEMPLATES: SUPPORTING VARIABILITY IN PERFORMABILITY MODELS 645

Fig. 2. General idea of SAN-Ts. The two SAN models in (a) and (b) have a similar structure and behavior, and are meant to be connected with other SAN models
in the same way. This structure can be abstracted into an SAN-T model as depicted in (c), where dashed elements are template versions of SAN elements, i.e.,
activity templates and place templates. (a) UserInternal SAN model. (b) UserPress SAN model. (c) User SAN-T model.

in performability evaluation. Possibly, this is because of the
problems raised by synchronization of timed transitions (i.e.,
defining the resulting firing distribution). Also, there is often
greater interest in the current state of system components (e.g.,
healthy, failed, degraded, etc.), rather than in how a component
behaves internally. State sharing is, therefore, a more flexible
modularization solution for this domain.

Based on these considerations, we allow the number of places
in an SAN-T model to be parametric, while the number of ac-
tivities is instead fixed. In the proposed approach, replication of
activities, or parts of a model involving a sequence of activities, is
done by creating multiple instances of a template and composing
them as in [11]. The objective of our work is being able to
define libraries of small, reusable, templates for performability
evaluation based on SANs.

B. Preliminary Definitions

We first introduce some basic notations that will be used in the
rest of this article. In particular, the following definitions clarify
what is a parameter of a template model, and how it connects to
the rest of the formalism.

We adopt the definitions of sort, operator, term, and assign-
ment from the ISO/IEC 15909 standard [25], which apply to a
wide range of PN-based formalisms, including SANs. Accord-
ing to this formalization, the set of possible values held by a
place is defined by its associated sort (i.e., type).

A many-sorted signature is a pair (S,O), where S is a set
of sorts and O is a set of operators, together with their arity.
The arity is a function O → S∗ × S, where S∗ is the set of
finite sequences over S, including the empty string ε. The arity
function defines, for each operator, the number and sort of its
input parameters (S∗), and the sort of the produced result (S).
An operator can be denoted as o(σ,s), where σ ∈ S∗ are the input
sorts, and s ∈ S is the output sort. Constants are operators with
empty input sorts, and are denoted as o(ε,s) or simply os.

We denote with Δ a set of parameters; an element of Δ of
sort s ∈ S is denoted with δs. Δs ⊆ Δ is, therefore, the set of
parameters of sort s.

Terms of sort s ∈ S may be built from a signature (S,O)
and a set of parameters Δ. Intuitively, these are all the possible
expressions of sort s made of any legit combination of operators

in O and parameters in Δ [25]. The set of terms of sort s is
denoted by TERM(O ∪Δ)s. To simplify the notation, in the rest
of this article, we will use TERMs, unless there are ambiguities
on the adopted O and Δ sets.

A many-sorted algebra H = (SH , OH) provides an interpre-
tation of a signature (S,O). For every sort s ∈ S, there is a
corresponding set of values Hs ∈ SH , and for every operator
o(s1...sn,s) ∈ O, there is a corresponding function in oH ∈ OH ,
such that oH : Hs1 × . . .×Hsn → Hs.

Given a many-sorted algebra H , and many-sorted parameters
in Δ, an assignment for Δ under H is a family of functions ξ,
comprising a function ξs : Δs → Hs for each sort s ∈ S. The
concept of assignment may be extended to terms, thus obtaining
the family of functions Valξ comprising the function Vals,ξ :
TERMs → Hs for each sort s ∈ S [25].

To support the subsequent definitions, we require the
existence of at least the “integer,” “real,” “boolean,” “or-
dered set of integers,” and “ordered set of reals” sorts,
in which we consider sets to be ordered. Formally,
we assume a signature (S,O), such that {Int, Real,
Bool, OrderedSet{Int}, OrderedSet{Real}} ⊆ S, and O
contains the common operators applicable on such sorts. In
particular, besides the standard arithmetic operators, in the
rest of this article, we will use the size operator, |x|, which
returns the number of elements in a set x, and the element at
operator, x[i], which returns the ith element in the ordered set
x. The corresponding many-sorted algebra is (SH , OH), with
{N,R, {0, 1},P(N),P(R)} ⊆ SH , and OH containing the set
of functions corresponding to operators in O, which are not
detailed here for simplicity.

C. SAN-T Formal Definition

Based on the previous definitions, we can now introduce the
formal definition of SAN-T. Formally, an SAN-T is a tuple

SAN-T = (Δ, P̃ , Ã, Ĩ, Õ, γ̃, τ̃ , ι̃, õ, μ̃0, C̃, F̃ , G̃) (3)

where Δ is a set of parameters, and elements marked with a
tilde accent, ·̃, are modified versions of elements existing in
plain SANs (see Section II-B), reformulated to take parameters
into account.

In more details, as follows.



646 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

1) Δ is the sorted set of parameters of the template.
2) P̃ is a finite set of place templates. A place template can be

seen as a placeholder for multiple places that, in a regular
SAN model, would be strongly related to each other and
would vary in different instances of the same template.
Based on parameters’ values, a place template will be
expanded to a precise set of concrete places. Place Req in
Fig. 2(c) is an example of place template.
Formally, a place template is defined as a pair (τ, k), where
τ is the name of the place, and k ∈ TERMOrderedSet{Int} is
its multiplicity. Evaluating the term k with respect to an
assignment ξ identifies a set of integer indices K ⊂ N.
Such indices determine the set of places to which, with
the given assignment of parameters, the place template
is expanded. Normal places (i.e., those always expanding
to a single place of ordinary SANs) are those for which
Valξ(k) = {1} for any assignment ξ.

3) Ã is a finite set of activity templates.
4) Ĩ is a finite set of input gate templates.
5) Õ is a finite set of output gate templates.
6) γ̃ : Ã → TERMInt specifies the number of cases for each

activity template. For any activity template ã ∈ Ã, evalu-
ating γ̃(ã)with respect to an assignment ξ yields an integer
number, which determines the number of cases of ã under
that assignment, i.e., Valξ(γ̃(ã)) ∈ N.

7) τ̃ : Ã → {timed, instantaneous} specifies the kind of each
activity template, exactly as in ordinary SANs.

8) ι̃ : Ĩ → Ãmaps input gate templates to activity templates.
9) õ : Õ → Ã maps output gate templates to activity

templates.
In order to completely define the elements of an SAN-T, the

concept of marking needs to be extended. In particular, we need
to take into account for the existence of place templates. In
general, the marking of a place template is not a single value
(like in ordinary SANs), but a function, which associates a value
to each index of the place template. We call this function the
marking template of a place.

LetFN be the set of all the possible functions f : N → N, i.e.,
FN = {f | f : N → N}. If S̃ ⊆ P̃ is a set of place templates, a
marking of S̃ is a mapping μ̃ : S̃ → FN . In the particular case
in which a place does not have variability, the marking template
will be a constant function. The set of possible markings of S̃ is
the set of functions M̃S̃ = {μ̃ | μ̃ : S̃ → FN}.

Based on these definitions of marking and marking template,
most of the other elements of an SAN-T can be defined by
adapting the definitions in [9] to make them depend on the
assignment of parameters ξ. In the following, we denote with Ξ
the set of all the possible assignments.

An input gate template defines an enabling condition for an
activity template, and an input function that specifies how the
marking is altered by the firing of the activity. An input gate
template will always result in a single input gate in the concrete
SAN model. Still, the projected output gate may depend on the
assignment of parameters. Formally, an input gate template is
defined as a triple (G̃, ẽ, f̃), where G̃ ⊆ P̃ is the set of input
places associated with the gate, ẽ : M̃G̃ × Ξ → {true, false}

is the enabling predicate, and f̃ : M̃G̃ × Ξ → M̃G̃ is the input
function.

In ordinary SANs, an output gate defines an output function
that is executed upon the firing of an activity. Differently from
an input gate, it is associated to an individual case of an activity.
In SAN-Ts, an output gate template has a similar purpose.
However, since the number of cases of an activity template is not
known beforehand, the gate is connected directly to the activity.
When a regular SAN is generated from the template, an output
gate template will be expanded to multiple concrete output gates,
depending on the number of cases of the activity to which it is
connected.

Formally, an output gate template is a pair (G̃, f̃), where G̃ ⊆
P̃ is the set of output places associated with the gate, and f̃ :
M̃G̃ × N × Ξ → M̃G̃ is the output function of the gate. It should
be noted that the output function f̃ depends on the index of the
case of the associated activity template (N), as well as on the
assignment of values to parameters (Ξ).

The probability of cases of an activity template is given by
the case distribution assignment C̃, which defines a function
C̃ã ∈ C̃ for each activity template ã ∈ Ã. Such functions also
depend on parameters, thus, C̃ã : M̃P̃ (ã) × N+ × Ξ → [0, 1],

where P̃ (ã) is the set of input and output places of the activity.
For the model to be well-formed, the following must hold:
(
∑

1≤i≤Valξ(γ̃(ã))
Cã(μ, i, ξ)) = 1. This means that the proba-

bilities of the cases of the activity instance should sum to 1,
which also implies that the probability of cases beyond those
generated with the given assignment ξ should be zero.

Similarly, the firing time of activities is given by the activity
time distribution assignment F̃ , which defines a function F̃a ∈
F̃ for any timed activity template a, with F̃a : R × M̃P̃ × Ξ →
[0, 1]. That is, the probability of a certain firing time (R) depends
on the marking (M̃P̃ ) and on the parameters assignment (Ξ).

The reactivation function of activity templates is given by
the reactivation function assignment G̃, such that for any timed
activity template a, function G̃a ∈ G̃ defines the reactivation
markings, with G̃a : M̃P̃ × Ξ → ℘(M̃P̃ ) and ℘(M̃P̃ ) denoting
the power set of M̃P̃ .

Finally, the initial marking of an SAN-T should also depend
on the assignment of values to parameters. For this reason, it
is defined by the function μ̃0 : Ξ → M̃P̃ . The original defini-
tion of SANs requires the initial marking μ0(ξ) to be a stable
marking in which the network is stabilizing (see Section II-B).
However, because in SAN-T, the actual structure of the model
is not completely specified until a value is assigned to all the
parameters, we relax this constraint. Well-formedness checks
on the structure of the resulting SAN models can be performed
at the time of instantiation, based on existing techniques that are
applied to ordinary SAN models (e.g., [48]).

D. Arc Templates

One of the distinguishing features of SPNs and their ex-
tensions is their convenient graphical notation, which permits
describing most aspect of a model using a diagram. In particular,
SANs use input arcs and output arcs, represented by arrows in



MONTECCHI et al.: STOCHASTIC ACTIVITY NETWORKS TEMPLATES: SUPPORTING VARIABILITY IN PERFORMABILITY MODELS 647

the diagram, as the graphical representation of particular cases
of input gates and output gates, respectively. Following the same
idea, we propose a graphical representation of a subset of the
new concepts introduced in SAN-Ts.

1) Output Arc Templates: In ordinary SANs, an output arc
connecting activitya and placep represents an output gate whose
function simply adds one token to place p.

Without additional information, drawing a “normal” output
arc in an SAN-T can be ambiguous. For example, it is not
specified whether the arc should add one token to all the instances
of the place template, or only to one of them. Therefore, we
extend this concept introducing output arc templates, which can
be used in SAN-T models.

Considering an SAN-T model as defined previously, an
output arc template connects an activity template asrc ∈ Ã
to a place template pdest ∈ P̃ . An output arc template has a
label that defines the function f of the corresponding gate
template. The syntax of the label is given by the following
grammar.

〈oatlabel〉 |= 〈out〉 |〈int〉 →〈out〉 | 〈int〉 →〈out〉 /〈out〉
〈out〉 |= 〈int〉 | +〈int〉
〈int〉 |= any integer term t ∈ TERM(O ∪Δ ∪ {⊗,�})Int.

The term � is a placeholder for the index of the case of the
associated activity template asrc, while⊗ is a placeholder for the
index of places generated from place template pdest.

A label may specify an unconditional expression, 〈out〉, or a
conditional expression, 〈int〉 → 〈out〉/〈out〉.

When an unconditional expression is specified, the same
expression is used for all the places derived from place template
pdest. The expression may specify that the marking of the place(s)
should be set to a certain value, 〈int〉, or that a number of tokens
should be added to the marking, +〈int〉. The actual value is
specified by a term (i.e., expression) of integer type. Note that
in this case, the integer term may also include the � and ⊗
operators, and may, therefore, depend on them. For example,
the label “+3⊗” specifies that to each place derived from pdest

it should be added a number of tokens equal to three times its
index.

A conditional expression allows specifying a different expres-
sion for a specific instance of the place template. The expression
〈int〉 → 〈out〉 means that for the place template with index
〈int〉, the specification 〈out〉 will be used, while for all the other
ones, the marking is left unchanged. An explicit assignment can
be added for the other places, by adding a second 〈out〉 element.
For example, the label “1 → +2/0” means that for instance of
place pdest having index 1, the marking should be incremented
by two tokens, while for all the other instances, it should be set
to zero.

When no label is specified, the label “+1” is assumed, that is,
one token is added to all the instances of the pdest place. When
the place template has multiplicity {1}, and the number of cases
of the transition is fixed, an arc with label “+1” corresponds to
a “normal” output arc.

2) Input Arc Templates: A similar approach can be followed
for input arcs. However, in this case, the label must also specify
the input predicate, in addition to the input function.

An input arc template connects a place template psrc ∈ P̃ to
an activity template adest ∈ Ã. The label of an input arc template
is defined by the following grammar, where ⊗ is a placeholder
for the index of places derived from psrc.

〈iatlabel〉 |= [〈pred〉 ]〈func〉 | −〈int〉
〈pred〉 |= ∀〈cond〉 | ∃〈cond〉 | 〈int〉 〈cond〉
〈cond〉 |= = 〈int〉 | >〈int〉 | ≥〈int〉
〈func〉 |= 〈int〉 | −〈int〉
〈int〉 |= any integer term t ∈ TERM(O ∪Δ ∪ {⊗})Int.

The label of an input gate template may specify explicitly
both the predicate and the input function, [〈pred〉 ]〈func〉, or the
input function only, −〈int〉, leaving the predicate implicit. The
input function 〈func〉 is specified in a similar way as for output
arc templates: it can set the marking of all the places to a specific
value, or it can subtract a certain number of tokens.

The predicate is composed of a quantifier and a condition.
The condition 〈cond〉 specifies a condition on the marking of
the connected place template, while the quantifier specifies on
which instances of that place the condition should hold.

The predicate ∀〈cond〉 is true when the markings of all the
concrete places derived from psrc satisfy the condition 〈cond〉.
The predicate ∃〈cond〉 is true if at least one place instance
satisfies that condition. Finally, the predicate 〈int〉 〈cond〉 is true
if the marking of the place instance having index corresponding
to 〈int〉 satisfies the condition. When the predicate is stated
explicitly, the input function is applied only to places satisfying
the condition, that is: all the places in the case of ∀〈cond〉; only
the places satisfying the condition in the case of ∃〈cond〉; and
only the place with index 〈int〉 in the case of 〈int〉 〈cond〉.

For example, the label “[∃ = 1] 0” means the following:
1) the predicate is true if at least one of the place instances

has exactly one token;
2) the function sets the marking of all the place instances

satisfying the condition to zero.
When no 〈pred〉 term is specified, the input function may

only remove a certain number of tokens, and the predicate is
considered to hold if all the place instances contain at least that
number of tokens. If no label is specified at all, “−1” is assumed,
that is, the gate is enabled if all the instances of the place contain
at least one token, and the function removes one token from
all of them. Similarly as for output arc templates, an arc with
label “−1” connected to place template with multiplicity {1}
corresponds to a “normal” input arc.

E. Graphical Notation

Besides the extended notation for input arc templates and
output arc templates, we also adopt some conventions in the
graphical representation of SAN-Ts models.



648 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

The main difference in notation is that “template elements”
in the model are surrounded with a dashed line, as previously
shown in Fig. 2(c). With template elements, we mean model
elements that carry some variability aspect, in particular the
following:

1) place templates having nonunary multiplicity (i.e., k �=
{1});

2) activities with a variable number of cases (i.e., γ̃(ã) is not
constant);

3) input gate templates connected to a place template with
nonunary multiplicity;

4) output gate templates connected to a place template with
nonunary multiplicity;

5) output gate templates connected to an activity having a
variable number of cases.

Highlighting elements that have variability helps the modeler
to better understand which parts of the model will change in the
concrete SANs instances.

F. Example: User SAN-T Model

We now apply the proposed formulation of SAN-Ts to the
running example introduced in Section III-C. Here, we show
how such SAN-T can be specified in a formal way, according to
the definitions given in the previous section.

As a support to the specification in this section, and to those
provided later, we define the following functions in FN , which
can thus be used to define the marking of the SAN-T (see
Section IV-C).

fk(x) = k, ∀x ∈ N;

[
fk
j (h)

]
(x) =

{
k, if x = j
h(x), otherwise

[fJ(g, h)] (x) =

{
g(x), if x ∈ J
h(x), otherwise

J ⊆ N. (4)

Basically, this is a simplified notation for functions defining
the marking template of an SAN-Ts. Function fk is a constant
marking template, which assigns the same marking to all the
place instances; fk

j (h) uses the value k for place instance having
index j, and the function h for the others; and fJ(g, h) uses
function g for places whose index is in J and function h for the
others.

Two parameters can be identified for the User template
model. The first, s, identifies the number and indices of services
that the user can access, and it is, therefore, of type “ordered
set of integers.” The second, pb, determines the probabilities of
being selected of the different services, and it is of type “ordered
set of reals.”

The variable elements of the model are essentially the activity
template Request, its associated output gate template OGRe-
quest, and the place template Req. The Request activity
has a variable number of cases, given by the cardinality of the
array of integers assigned to parameter s, and each of these
cases is selected with a probability given by parameter pb. Place
template Req is expanded to a number of concrete places that is
again given by the cardinality of s. The selection of case i of the

Fig. 3. User SAN-T model with the proposed notation for output arc templates.

Request activity template results in the addition of a token in
place Reqi.

The graphical representation of the model, using the proposed
notation, is shown in Fig. 3. The output arc template connecting
activity Request and place Req has the label “s[�] → +1,”
which can be interpreted as follows: “The ith concrete output
gate adds one token to the instance of the Req place having
index s[i], and leaves the other places unchanged.” The complete
formal specification of the User SAN-T model can be found in
the Appendix (see Appendix A).

All the place templates have multiplicity 1, except for place
Req; similarly, all the activities have a fixed number of cases
except for activity Request. The initial marking is 1 (actually,
the function f1) for place template Idle, and 0 (actually, the
function f0) for all the others.

The case distribution function assigns probability 1 to the first
and only case of activity templates Drop and Fail, while for
the cases of the Req activity template, the probability of the ith
case is given by the ith value of parameter pb, which is of type
“ordered set of reals.”

Most of the variability in this model is contained in the output
gate template OGrequest, which is defined as follows:

G̃OGRequest = {Req}

f̃OGRequest(μ̃, i, ξ) = fm+1
s[i] (μ̃(p̃)) ∀p̃ ∈ G̃OGRequest (5)

where m = [μ̃(p̃)](s[i]), that is, the current value assigned by
the marking template to the s[i]th instance of the place p̃.
Summarizing, the function of the output gate associated with
the ith case should add one token into the instance of the Req
having index s[i], and leave the other places unchanged.

V. GENERATION OF SAN-T INSTANCES

To actually use SAN-T models for model-based evaluation,
concrete instances must be generated, by assigning values to
their parameters. Such instances, which are ordinary SAN mod-
els, can be evaluated in isolation, or composed into larger
models using the TMDL framework [11] or the plain Rep/Join
formalism [32].

A. Overview

Instances are generated by the concretize function, described
in the following, which generates an ordinary SAN model from a
from a pair (SΔ, ξ). That is, it generates an SAN model from an



MONTECCHI et al.: STOCHASTIC ACTIVITY NETWORKS TEMPLATES: SUPPORTING VARIABILITY IN PERFORMABILITY MODELS 649

SAN-T model SΔ and an assignment of values to its parameters
ξ.

Given an SAN-T SΔ

SΔ = (Δ, P̃ , Ã, Ĩ, Õ, γ̃, τ̃ , ι̃, õ, μ̃0, C̃, F̃ , G̃) (6)

and a parameter assignment function ξ, the concretize function
generates an SAN model Sξ as

Sξ = (P ξ, Aξ, Iξ, Oξ, γξ, τ ξ, ιξ, oξ, μξ
0, C

ξ, F ξ, Gξ). (7)

The rest of this section describes how its elements are derived
from the SAN-T specification. We separate the algorithm in the
following two parts:

1) concretization of the individual places, markings, and
gates;

2) concretization of the overall model structure.
In all the following definitions, ξ is the assignment of param-

eters from which the instance should be generated.

B. Places, Marking, and Gates

1) Places: For each place template in the SAN-T model, one
or more “normal” places are created in the instance model. How
many places are created, and with which indices, is given by
applying the assignment function on the multiplicity of the place
template.

Formally, given a place template p̃ = (τ, k) ∈ P̃ of the SAN-
T model, and being Valξ(k) = {a1, . . . , am} the indices ob-
tained from applying the assignment function to the multiplicity
specification, the places {τ ξa1

, . . . , τ ξam
} are created in the con-

crete SAN model.
We denote with Π(p̃, i) ∈ P ξ the ith concrete place originat-

ing from place template p̃. That is, Π(p̃, i) = τ ξai
.

2) Marking: From any given marking of an SAN-T model, a
unique mapping to a marking of the generated SAN instance can
be identified. Essentially, this is done by applying the marking
template function to the index of the generated places.

Formally, given a marking of the SAN-T model, μ̃ ∈ M̃P̃ , the
marking μξ ∈ MP of the instance model is defined as

μξ(τai
) = fp̃(ai) ∀p̃ ∈ P̃ ∀i ∈ N (8)

where

τai
= Π(p̃, i), fp̃ = μ(p̃). (9)

That is, the marking of the ith place (τai
) generated from

place template p̃ is obtained by applying the marking template
function (fp̃) to the index of the concrete place (ai).

Given a marking μ̃ ∈ M̃P̃ of the SAN-T model, we denote the
corresponding marking μξ ∈ MP of the generated instance as
Γ(μ̃). Conversely, given a markingμξ of the concrete (generated)
SAN model, we denote as Γ−1(μξ) the corresponding marking
μ̃ of the originating SAN-T.

3) Input Gates: Each input gate template of the SAN-T
model is translated to exactly one input gate in the SAN instance.
Given an input gate template g̃ = (G̃, ẽ, f̃) ∈ Ĩ , we denote with
α(g̃) the corresponding input gate gξ = (Gξ, eξ, fξ) ∈ Iξ in the

concrete SAN model, which is obtained as

Gξ =
{
Π(p̃, j) | p̃ = (τ, k) ∈ G̃, j ∈ Valξ(k)

}

eξ(Γ(μ̃)) = Valξ(ẽ (μ̃))

fξ(Γ(μ̃)) = f̃ (μ̃, ξ) . (10)

That is, the input places of the concrete input gate, Gξ, are
all the places generated from place templates in G̃; the input
predicate applied to a marking Γ(μ̃) is the result of applying the
assignment function to the predicate of the gate template; and
the input function applied to marking Γ(μ̃) is the input function
of the gate template applied on marking μ̃ and assignment ξ.

4) Output Gates: Differently from input gate templates, each
output gate template may be expanded to one or more concrete
output gates. The number of concrete output gates that should be
generated depends on parameters, and more specifically, from
the parameter that controls the number of cases of the connected
activity.

Given an output gate template (G̃, f̃) ∈ Õ, we denote with
β(g̃, i) the ith output gate (Gξ

i , f
ξ
i ) ∈ O generated from it in the

SAN model, which is obtained as

Gξ
i =

{
Π(p̃, j) | p̃ = (τ, k) ∈ G̃, j ∈ Valξ(k)

}

fξ
i (Γ(μ̃)) = f̃ (μ̃, i, ξ) . (11)

That is, the output places Gξ are all the places generated from
output place templates in G̃, and the output function applied to
marking Γ(μ̃) is the output function of the gate template applied
on marking μ̃, index i, and assignment ξ.

C. Overall SAN Definition

We can now provide the complete specification of the SAN
derived from an SAN-T SΔ and an assignment ξ. That is, we
can precisely define all the elements in (7), as follows:

P ξ =
⋃

p̃=(τ,k)∈P̃

{Π(p̃, i) | i ∈ Valξ(k)}

Aξ = Ã

γξ(a) = Valξ(γ̃ (ã))

Iξ =
{
α(g̃) | g̃ ∈ Ĩ

}

Oξ =
⋃
g̃∈Õ

{β(g̃, 1), . . . , β(g̃,Valξ(γ̃ (ã))) | ã = õ(g̃)}

τ ξ = τ̃

ιξ(α(g)) = ι̃(g) ∀g ∈ Ĩ

oξ(β(g, i)) = õ(g) ∀g ∈ Õ ∀i ∈ {1, . . . ,Valξ(γ̃ (ã))}

μξ
0 = μ̃0(ξ). (12)

The rationale behind the aforementioned derivation can be
summarized as follows:



650 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

1) the set of places P ξ is given by all the places derived from
all the place templates in P̃ ;

2) the set of activities remains unchanged;
3) the function γ, which specifies the number of cases of an

activity, is the result of applying the assignment function
to the γ̃ function;

4) there is an input gate in Iξ for each input gate template in
Ĩ;

5) each output gate template in Õ is expanded to a certain
number of output gates, given by the number of cases of
the activity to which it is connected;

6) the function τ that determines if an activity is timed or
instantaneous remains unchanged;

7) if an input gate template is connected to an activity tem-
plate, then its concrete projection is connected to the
projection of the activity template;

8) if an output gate template is connected to an activity
template, then all its concrete projections are connected
to the projection of the activity template;

9) the initial marking μξ
0 is given by the initial marking of

the SAN-T model, applied to the assignment ξ.
Furthermore, the following.
1) For each function C̃ã in the case distribution assignment

C̃, a corresponding function Cξ
a is included in Cξ, defined

as Cξ
a(Γ(μ), k) = C̃ã(μ, k, ξ) ∀μ ∈ MP̃ ∀k ∈ N+.

2) For each function F̃ã in the activity time distribu-
tion assignment F̃ , a corresponding function F ξ

a is in-
cluded in F ξ, defined as F ξ

a (Γ(μ), r) = F̃ã(μ, r, ξ) ∀μ ∈
MP̃ ∀r ∈ R.

3) For each function G̃ã in the reactivation function assign-
ment G̃, a corresponding function Gξ

a is added to Gξ,
defined as Gξ

a(Γ(μ)) = {Γ(μ̃) | μ̃ ∈ G̃a(μ̃)} ∀μ ∈ M̃S̃ .

D. Example: Instances of the User SAN-T

Following the concretize algorithm described in the previous
section, we show here how it is possible to derive multiple
instance of the User SAN-T depicted in Fig. 3. Note that it
is the same model as the one in Fig. 2(c) drawn with the new
notation for arc templates. Its formal definition is given in (19)
in the Appendix (see Appendix A).

We show how the two concrete SAN models of Fig. 2(a)
and 2(b) can be derived by different assignments of parameters.
We define two different assignment functions, ξUserInternal and
ξUserPress, which will result in the generation of the two SAN
instances

ξUserInternal = {(s, {1, 6, 7}), (p, {0.7, 0.2, 0.1})}
ξUserPress = {(s, {3, 7}), (p, {0.6, 0.4})}. (13)

The generation of the two instances follows a similar pro-
cess; we discuss only one of them in details. The SAN
model UserInternal is derived by the template–assignment pair
(SUser, ξUserInternal), resulting in the SAN model detailed in the
Appendix (see Appendix B).

Among its elements, it is worth detailing the generation of the
output gate templateOGRequest, which contains variability. In

fact, in the SAN-T model, it is connected to an activity template
with a variable number of cases.

According to the algorithm, the number of concrete
output gates that are generated is given by Valξ(γ̃(ã)),
where ã is the associated activity template. In our case,
ValξUserInternal(γ̃(Request)) = 3, and therefore, three out-
put gates are created: OGRequest1, OGRequest2, and
OGRequest3. Each of these output gates is connected to the
corresponding case of the Request activity (see oξ in (21) in
the Appendix B).

Their definition, in terms of its input places and output func-
tion, is obtained by (11). For the UserInternal instance, they are
defined as follows:

OGRequest1 = (G1, f1), G1 = {Req1, Req6, Req7}

f1(μ) = μ′
1 ∀μ ∈ MG | μ′

1(p) =

{
μ(p) + 1 if p = Req1
μ(p) otherwise.

OGRequest2 = (G2, f2), G2 = {Req1, Req6, Req7}

f2(μ) = μ′
2 ∀μ ∈ MG | μ′

2(p) =

{
μ(p) + 1, if p = Req6
μ(p), otherwise.

OGRequest3 = (G3, f3), G3 = {Req1, Req6, Req7}

f3(μ) = μ′
3 ∀μ ∈ MG | μ′

3(p) =

{
μ(p) + 1, if p = Req7
μ(p), otherwise.

(14)

Each of the three gates adds a token to the corresponding place
generated from place template Req, corresponding to the output
arcs appearing in Fig. 2(a).

VI. APPLICATION TO THE BEDCS NETWORK

In this section, we show how the proposed SAN-T formaliza-
tion can be used to model a real system. We apply the formalism
to the modeling of the BEDCS, and in particular, we discuss
here the modeling of its backbone network.

To demonstrate the generality of our formalism, we base
the BEDCS network model on the work in [16], in which the
objective of the authors was to evaluate a backbone network
in Norway, detailing failure correlation between system com-
ponents. The model in [16] is based on SANs, and it has been
defined in a modular way as typically done in the literature. How-
ever, as discussed in the motivations for this article, the authors
of [16] described model elements only by examples, because
they include variability aspects that cannot be represented using
SANs alone.

Here, we show how the SAN-T formalism can accurately
specify such SAN-based models, including their variability as-
pects. We emphasize that the authors of [16] defined their models
without any collaboration with the authors of this article, and
they are not involved in this work.

A. Models of the Backend Network

We focus here on the modeling of the ground sector, and
in particular, of the backbone network connecting the ground



MONTECCHI et al.: STOCHASTIC ACTIVITY NETWORKS TEMPLATES: SUPPORTING VARIABILITY IN PERFORMABILITY MODELS 651

stations. In fact, the ground segment is currently composed of
four ground stations located in different states of Brazil: two
receiving stations, in Cuiabá (MT) and Alcântara (MA), the
mission center in Natal (RN), and the remote control center
in São José dos Campos (SP) [41]. The two closest stations are
more than 1000-km apart.

As mentioned previously, we adopt the approach of [16] to
model the BEDCS backbone network. That work fits particularly
well to our problem, because the authors provided models for
different architectural options, including traditional network
infrastructures, as well as those based on software-defined net-
works (SDNs). Furthermore, the model takes into account for
different kinds of correlation between component failures, due
to, e.g., physical proximity.

The modeling approach in [16] defines different kinds of
building blocks for the system model, grouped in two categories:
Component Blocks and Dependence Blocks.

The Component Blocks are simple SAN models that represent
physical components of the system architecture. In particular, the
authors consider “template” models for aLink, anIPRouter,
a SDNSwitch, and a SDNController. The variability in
these models is given only by the rates associated with the firing
of activities, and the probabilities associated with their cases.
Therefore, these models can be represented by plain SANs.

The Dependence Blocks are used to model the occurrence of
dependent failures between components. The authors consider
seven kinds of dependencies between components.

1) Geographical proximity (GEO), when a small geographi-
cal distance results in common sensitivity to bad weather
and natural disasters.

2) Physical proximity (PHY), which causes a strong failure
correlation (e.g., blackout).

3) Common O&M (COM), in which the operation and main-
tenance (O&M) is actually the same for multiple network
elements.

4) Misconfiguration (MIS), when elements share the same
configuration or have a correlated logic.

5) Compatibility issue (CIS), when a simultaneous failure
may occur on multiple components due to incompatibility
issues.

6) Homogeneous equipment (HEQ), that is, when a failure
happens in a network element, another element with the
same equipment may likely fail as well.

7) Traffic migration (TMI), when a network element fails and
its replacement is not able to take over.

Specific SAN models that represent these dependencies are
“plugged” in the overall system model, according to the scenario
to be represented. While these models have been described with
examples in [16], they have variability that cannot be expressed
with plain SANs, for example, how many components, and
which ones, are involved in the dependence.

B. Modeling With SAN-Ts

We discuss here how SAN-Ts can be used to formally specify
such dependence blocks, in particular, for the GEO and TMI

Fig. 4. Example of the GEO building block specified with SANs, for two
components. Figure reproduced from [16].

Fig. 5. (a) Generalized GEO building block specified with SAN-T, for any
number of components. (b) Simplified notation using input arc templates and
output arc templates.

dependencies. Models for the other dependencies can be defined
in a similar way.

1) GEO Dependence Block: The original GEO dependence
block as defined in [16] is depicted in Fig. 4. The general idea
of the block is as follows.

PlacesWorking_S1 andWorking_S2 represent the work-
ing state of the two components involved in the dependence, in
this case, two SDN switches (S1 and S2). If placeWorking_SX
contains a token it means that the corresponding component is
currently working. When both components are working, the ac-
tivity GEO_F is enabled, meaning that the GEO common cause
failure may occur. Once the failure has occurred, restoration
is possible after some time, represented by the timed activity
GEO_R. Restoration makes the involved components working
again, by adding a token to the Working_SX places.

This block has been defined, as an example, for two compo-
nents only. However, the GEO dependence may involve three
or more switches, and in general, any number of components.
The block can be generalized, informally as follows: “For each
switch X involved in the dependence create a place Work-
ing_SX. The enabling predicate of the input gateIG_GF is true
when all the placesWorking_SX contain a token, and the input
function removes all the tokens from those places. The output
function of gate OG_GR adds a token to all the Working_SX
places.”

Using the proposed SAN-T formalism, the generalized “tem-
plate” version of the block can be defined in a precise way,
as follows. The corresponding graphical representation of the
model is depicted in Fig. 5(a) using gates, and in Fig. 5(b),
using the compact notation with arc templates. Note that the
arc between Working_S and GEO_F is an input arc template



652 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

having the default label “−1” (which is thus hidden). Similarly,
the arc between GEO_R and Working_S is an output arc
template, having the default label “+1.”

The SAN-T model has three parameters: n, the identifiers
of the components involved in the dependence; λf , the rate of
occurrence of the GEO failure; and λr, the restoration rate.

SAN-TGEO = (Δ, P̃ , Ã, Ĩ, Õ, γ̃, τ̃ , ι̃, õ, μ̃0, C̃, F̃ , G̃)

Δ = {nOrderedSet{Int}, λ
f
Real, λ

r
Real}

P̃ = {(GEO, 1), (Working_S, n)}

Ã = {GEO_F, GEO_R}

Ĩ = {IG_GF, GEOtoGEO_R}

Õ = {OG_GR, GEO_FtoGEO}
γ̃ = {(GEO_F, 1), (GEO_R, 1)}
τ̃ = {(GEO_F, timed), (GEO_R, timed)}
ι̃ = {(IG_GF, GEO_F), (GEOtoGEO_R, GEO_R)}
õ = {(OG_GR, GEO_R), (GEO_FtoGEO, GEO_F)}

μ̃0(ξ) = μ′(p̃) ∀ξ | μ′(p̃) =

{
f1, if p̃ = Working_S
f0, otherwise.

C̃ = {C̃GEO_F, C̃GEO_R} (16)

C̃GEO_F(μ̃, i, ξ) = C̃GEO_R(μ̃, i, ξ) =

{
1, if i = 1
0, otherwise

F̃ = {F̃GEO_F, F̃GEO_R}, G̃ = {G̃GEO_F, G̃GEO_R}.
(15)

As in the previous examples, the G̃GEO_F and G̃GEO_F functions
are empty, as none of the activities is reactivating. The firing
distributions are negative exponential distributions based on
the λf and λr parameters, that is, F̃GEO_F(t) = 1− e−λf ·t and
F̃GEO_R(t) = 1− e−λr ·t. The gates GEO_FtoGEO and GEOto-
GEO_R correspond to the two arcs incoming to and outgoing
from the GEO place, respectively, which are “normal” arcs as in
ordinary SANs.

Conversely, the gates IG_GF and OG_GR are where the
variability in the behavior resides. Intuitively, the input gate
template IG_GF specifies that the activity is be enabled if all
the instances of Working_S contain at least one token, and
that when the activity fires, it removes all the tokens from all of
them. The function of the output gate template OG_GF sets the
marking of all the instances of Working_S to 1, meaning that
all the components have been repaired. Their formal definitions
are detailed in the following.

IG_GF = (G̃IF_GF, ẽIF_GF, f̃IF_GF)

G̃IG_GF = {Working_S}

ẽIG_GF(μ̃, ξ) =
∧

i∈Valξ(n)

(
μ̃p̃(i) > 0

)
, with μ̃p̃ = μ̃(p̃)

f̃IG_GF(μ̃, i, ξ) = f0 ∀p̃ ∈ G̃IG_GF

Fig. 6. Example of the TMI dependence between switches S1 and S2, modeled
with SANs. Figure adapted from [16].

OG_GR = (G̃OG_GR, f̃OG_GR)

G̃OG_GR = {Working_S}

f̃OG_GR(μ̃, i, ξ) = f1 ∀p̃ ∈ G̃OG_GR.

(16)

2) TMI Dependence Block: The example in Fig. 6 shows the
introduction of the TMI dependence among two SDN switches.
The idea is that upon software failure of one of them, there is a
probability that traffic migration also causes the second switch
to fail. This dependence does not actually add a new block to the
system model, but instead it modifies the existing SAN models
of the involved components.

The model in Fig. 6 shows the SAN models of the two
switches (S1 on the left and S2 on the right), and a new output
gate OG_SW that represents the dependence. With respect to the
normal model of the switch, a new case is added to the failure
activity (SW_F_S1 and SW_F_S2), and it is connected to the
newly introduced OG_SW output gate. It should be noted that
the figure contains a slight abuse of notation (as in the original
article), because formally an output gate can be connected to
only one activity. We consider, therefore, two identical copies
of the gate, OG_SW1 and OG_SW2, each connected to the first
case of one of the two activities.

As in the previous case, this dependence can span multiple
switches; more in general, each switch can affect a different
subset of the switches in the system. This dependence can
be generalized and formalized by modeling the SDN switch
as an SAN-T. Which switches will be affected by the TMI
dependence, and whether the dependence must be represented
at all, will be specified by the parameters of the template. Note
that the template will represent only a single switch; a model
equivalent to the one in Fig. 6 is then obtained by instantiation
and composition of two instances.

A graphical representation of the resulting SAN-T model is
provided in Fig. 7, while its formal specification is provided in
(17). The template has five parameters: k, the index of the switch
represented by the instance; J , an array of identifiers of other
switches that can be affected when the switch fails; pTMI, the
probability that the TMI dependence occurs; and λf and λr as
failure and repair rates of the switch, respectively.

SAN-TSwitchTMI = (Δ, P̃ , Ã, Ĩ, Õ, γ̃, τ̃ , ι̃, õ, μ̃0, C̃, F̃ , G̃)

Δ = {kInt, JOrderedSet{Int}, pTMIReal, λ
f
Real, λ

r
Real}



MONTECCHI et al.: STOCHASTIC ACTIVITY NETWORKS TEMPLATES: SUPPORTING VARIABILITY IN PERFORMABILITY MODELS 653

Fig. 7. SAN-T model of the SDN switches considering the TMI dependence
in a general way.

P̃ = {(Working_S, J ∪ {k}),
(Failed_SW_S, J ∪ {k})}

Ã = {SW_F, SW_R}

Ĩ={Working_StoSW_F, Failed_SW_StoSW_R}

Õ = {OG_SW, SW_RtoWorking_S}

γ̃ = {(SW_F, 1 + (pTMIReal > 0)), (SW_R, 1)}
τ̃ = {(SW_F, timed), (SW_R, timed)}
ι̃ = {(Working_StoSW_F, SW_F),

(Failed_SW_StoSW_R, SW_R)}
õ = {(OG_SW, SW_F), (SW_RtoWorking_S, SW_R)}

μ̃0(ξ) = μ′(p̃) ∀ξ | μ′(p̃) =

{
f1 if p̃ = Working_S,
f0 otherwise.

C̃ = {C̃SW_F, C̃SW_R}

C̃SW_F(μ̃, i, ξ) =

⎧⎨
⎩

1− pTMIReal, if i = 1
pTMIReal, if i = 2
0, otherwise.

C̃SW_R(μ̃, i, ξ) =

{
1, if i = 1,
0, otherwise.

F̃ = {F̃SW_F, F̃SW_R}, G̃ = {G̃SW_F, G̃SW_R}.
(17)

Places Working_S and Failed_SW_S are place tem-
plates, and their multiplicity is given by the union of index of the
switch and those of the switches that should be affected by the
TMI failure. That is, the generated SAN instances would contain
a place Working_Sk and a place Failed_SW_Sk for the
switch represented by the instance, and a place Working_Sj
and Failed_SW_Sj for each other switch j ∈ J that can be
affected by the dependence.

Gates Working_StoSW_F, Failed_SW_StoSW_R, and
SW_RtoWorking_S correspond to the arc templates depicted
in the figure. The label “[k = 1] → 0” of input arc Work-
ing_StoSW_Fmeans that the activity is enabled if the instance
having index k contains exactly one token, and the marking of
that place is set to zero upon firing. The same applies to the label
of Failed_SW_StoSW_R. The label “k → +1” of output arc

Fig. 8. Workflow of the TMDL framework for the automated generation of
performability models [49].

SW_RtoWorking_Smeans that one token is added to the place
instance having index k, while the others remain unchanged.

The specification of the output gate template OG_SW is de-
tailed in the following. Basically, for the first case of the activity,
it adds one token only to the place with the same index as
parameter k, and for the second case, it also adds one token to
the places corresponding to the affected switches, and removes
the token from their Working_S place.

OG_SW = (G̃OG_SW, f̃OG_SW)

G̃OG_SW = {Working_S, Failed_SW_S}

f̃OG_SW(μ̃, i, ξ) = μ′
i(p̃) ∀p̃ ∈ G̃OG_SW |

μ′
1(p̃) =

{
f1
k (μ̃(p̃)), if p̃ = Failed_SW_S
μ̃(p̃), otherwise.

μ′
2(p̃) =

{
fJ (0, μ̃(p̃)), if p̃ = Working_S
f{k}∪J(1, μ̃(p̃)), if p̃ = Failed_SW_S.

(18)

VII. TDML FRAMEWORK

The work in this article complements the TMDL framework
that we defined in [11]. In this section, we briefly recall it, and
discuss the relation with the work in this article.

The idea behind the TMDL framework is organized in the
following three steps:

1) there exists a library of parametric reusable submodels,
defined with a template-level formalism, and called model
templates;

2) based on the scenario to be modeled, a set of templates is
selected and proper parameters are assigned;

3) models in the instance-level formalism are automatically
generated and assembled to obtain the overall system
model.

The corresponding workflow is detailed in Fig. 8.
In Step #1, a library of reusable model templates is created

by an expert. In Step #2, the different system configurations
that should be analyzed are defined in terms of “scenarios.”
Scenarios are composed of model variants, that is, a selection
of model templates with their parameter assignment. In Step #3,
all the needed model instances are automatically created and
assembled, thus generating the complete system model for each
scenario. Note that the steps in the workflow are not strictly



654 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

sequential. In particular, the creation of the model library is
performed once, and the library is stored for future access.

What makes the model templates reusable is that they have
well-defined interfaces and parameters. Briefly summarizing,
interfaces specify how they can be connected to other templates,
while parameters make it possible to derive different concrete
models from the same template. A model template has a specifi-
cation (of its parameters and interfaces), and an implementation.

The specification of a template is provided with the TMDL, a
domain-specific language specifically defined for that purpose.
The implementation of a template can be atomic or composite.
A composite implementation simply specifies which other tem-
plates can be composed and how, and it is also specified with
the TMDL. The implementation of an atomic template should
be given using a template-level formalism, that is, a modeling
formalism that defines partially specified models. Conversely,
we call instance-level formalism the modeling formalism con-
cretely used for the analysis, generated in Step #3 (e.g., “normal”
SANs).

In [11], we introduced some assumptions, both for simplicity
but also to keep the approach independent of a specific mod-
eling formalism. In particular, we assumed that for a certain
instance-level formalism (e.g., SANs), it was possible to define
the following:

1) a corresponding template-level formalism, to specify
model templates;

2) a concretize function that, given a model in the template-
level formalism and an assignment of values to its param-
eters, generates a model in the instance-level formalism;

3) a notion of compatibility between the TMDL specification
of a template (i.e., interfaces and parameters) and its
implementation with the template-level formalism.

In this article, we have provided a formal definition of
SAN-Ts, and of the corresponding concretize function. These
definitions enable the application of the TMDL framework
considering SANs as the instance-level formalism. In particular,
an SAN-T model S can be used as the atomic implementation
of any TMDL template T that is compatible with it. For T to be
compatible with S , the following two conditions must hold:

1) for each metavariable in an interface of T , there should be
a corresponding place template in S;

2) for each parameter specified in T , there should be a
corresponding parameter in S .

VIII. CONCLUSION

In this article, we proposed a formal definition of SAN-Ts, a
formalism that generalizes SANs with the addition of variability
aspects. SAN-T models defined abstract models depending on
parameters, from which concrete SAN models can be generated
by assignment of values. We demonstrated the applicability of
the formalism by using it for the generalization of SAN-based
models present in the literature. The proposed formalization can
accurately describe the variation points present in the models,
and at the same time, provide a compact notation, thanks to the
proposed extensions to the graphical notation of SANs.

This work complements our work in [11], in which we defined
an approach to simplify the composition of models based on
SPNs. As future work, we are working on different directions.
The first one is to apply the methodology for the actual eval-
uation of a real system. In this article, we showed parts of
the model of the BEDCS systems, a large-scale infrastructure
for environmental monitoring in Brazil. Further work is on-
going, in collaboration with the INPE, within the ADVANCE
project [43].

Second, we have not addressed how metrics were defined
at the template level. A straightforward adaptation of reward
variables to SAN-Ts consists in defining operators that allow
reasoning on the marking of the different instances of the place,
in a similar way as done for arc templates in Section IV-D.
Further work is needed in this direction. However, we note that
often metrics need to be defined at the system level; it is thus
not possible to avoid defining metrics on the final composed
model.

Finally, we are working on providing tool support for the
proposed formalism, to facilitate its application by other re-
searchers. This task involves an expanded and more precise
formalization for the arc templates notation, and in general, a
simplified user-friendly notation for specifying SAN-T mod-
els. A prototype editor for SAN-Ts models, based on the
eclipse modeling framework and the Sirius modeling tools is
being developed as open source software. The architecture
of the editor and tool under development has been presented
in [49].

APPENDIX

This section contains some definitions that were omitted in the
main body of the document to improve legibility. In particular,
it contains the formal specification of the SAN-T model in
Fig. 3 (see Appendix A), and the formal specification of its
concretization to yield the SAN models in Fig. 2(a) and (b) (see
Appendix B).

A. Example: User SAN-T Model

The formal specification of the User SAN-T model is as
follows.

SAN-TUser = (Δ, P̃ , Ã, Ĩ, Õ, γ̃, τ̃ , ι̃, õ, μ̃0, C̃, F̃ , G̃)

Δ = {sOrderedSet{Int}, pbOrderedSet{Real}}

P̃ = {(Idle, 1), (Req, s), (Dropped, 1),
(Failed, 1)}

Ã = {Request, Fail, Drop}

Ĩ = {IGRequest, ArcInFail, ArcInDrop}

Õ = {OGRequest, ArcOutFail, ArcOutDrop}
γ̃ = {(Request, |s|), (Fail, 1), (Drop, 1)}
τ̃ = {(Request, timed), (Fail, instantaneous),

(Drop, instantaneous)}



MONTECCHI et al.: STOCHASTIC ACTIVITY NETWORKS TEMPLATES: SUPPORTING VARIABILITY IN PERFORMABILITY MODELS 655

ι̃ = {(IGRequest, Request),
(ArcInFail, Fail),

(ArcInDrop, Drop)}
õ = {(OGRequest, Request),

(ArcOutFail, Fail),

(ArcOutDrop, Drop)}

μ̃0(ξ) = μ′(p̃) ∀ξ | μ′(p̃) =

{
f1, if p̃ = Idle

f0, otherwise.

C̃ = {C̃Request, C̃Drop, C̃Fail} (20)

C̃Request(μ̃, i, ξ) =

{
Valξ(pbi) if 1 ≤ i ≤ |s|
0 otherwise.

C̃Drop(μ̃, i, ξ) = C̃Fail(μ̃, i, ξ) =

{
1, if i = 1
0, otherwise.

F̃ = {F̃Request}

G̃ = {G̃Request, G̃Drop, G̃Fail}. (19)

In the reference model presented in [47], the firing time of the
Request activity is regulated by a uniform distribution, thus
F̃Request is set accordingly. None of the activities are reactivating,
that is, G̃Request = G̃Fail = G̃Drop = ∅, or, in other words, the
set of reactivating markings is empty.

B. Example: Instances of the User SAN-T

We define two different assignment functions, ξUserInternal
and ξUserPress, which will result in the generation of the follow-
ing two SAN instances:

ξUserInternal = {(s, {1, 6, 7}), (p, {0.7, 0.2, 0.1})}
ξUserPress = {(s, {3, 7}), (p, {0.6, 0.4})}. (20)

The generation of the two instances follows a similar pro-
cess, and for this reason, we show only one of them in de-
tails. The SAN model UserInternal is derived by the template–
assignment pair (SUser, ξUserInternal), resulting in the following
SAN model, where ActivityName(k) denotes the kth case of
the (concrete) activity ActivityName.

SANUserInternal = (P ξ, Aξ, Iξ, Oξ, γξ, τ ξ, ιξ, oξ, μξ
0,

Cξ, F ξ, Gξ)

P ξ = {Idle1, Req1, Req6, Req7,
Dropped1, Failed1}

Aξ = {Request, Fail, Drop}

Iξ = {IGRequest, ArcInFail, ArcInDrop}

Oξ = {OGRequest1, OGRequest2, OGRequest3,
ArcOutFail, ArcOutDrop}

γξ = {(Request, 3), (Fail, 1), (Drop, 1)}

τ ξ = {(Request, timed), (Fail, instantaneous),

(Drop, instantaneous)}

ιξ={(IGRequest,Request),(ArcInFail,Fail),
(ArcInDrop, Drop)}

oξ = {(OGRequest1, Request(1)),
(OGRequest2, Request(2)),

(OGRequest3, Request(3)),

(ArcOutFail, Fail(1)),

(ArcOutDrop, Drop(1))}

μξ
0(p) =

{
1, if p = Idle1,
0, otherwise.

Cξ = {CRequest, CDrop, CFail}

CRequest(μ̃, i) =

⎧⎪⎪⎨
⎪⎪⎩

0.7, if i = 1
0.2, if i = 2
0.1, if i = 3
0, otherwise.

CDrop(μ̃, i) = CFail(μ̃, i) =

{
1, if i = 1
0, otherwise.

F ξ = {FRequest},

Gξ = {GRequest, GDrop, GFail}. (21)

Elements F ξ and Gξ are not discussed in details, since their
derivation is straightforward for this model. Also, as discussed
before, there are no reactivation markings, and therefore, the
functions GRequest, GDrop, and GFail are in this case the empty
function.

According to (12), the number of concrete output gates
that are generated from each output gate template is given
by Valξ(γ̃(ã)), where ã is the associated activity template. In
our case, ValξUserInternal(γ̃(Request)) = 3, and therefore, three
output gates are created: OGRequest1, OGRequest2, and
OGRequest3. Each of these output gates is connected to the
corresponding case of the Request activity [see oξ in (21)].

The definition of each output gate, in terms of its input places
and output function, is obtained by (11). For the UserInternal
instance, they are defined in (14).

REFERENCES

[1] D. M. Nicol, W. H. Sanders, and K. S. Trivedi, “Model-based evaluation:
From dependability to security,” IEEE Trans. Dependable Secure Comput.,
vol. 1, no. 1, pp. 48–65, Jan.–Mar. 2004.

[2] J. Coplien, D. Hoffman, and D. Weiss, “Commonality and variability in
software engineering,” IEEE Softw., vol. 15, no. 6, pp. 37–45, Nov./Dec.
1998.

[3] J. van Gurp, J. Bosch, and M. Svahnberg, “On the notion of variability in
software product lines,” in Proc. Work. IEEE/IFIP Conf. Softw. Architec-
ture, 2001, pp. 45–54.

[4] A. Bondavalli, S. Bouchenak, and H. Kopetz, Eds., Cyber-Physical Sys-
tems of Systems - Foundations - A. Conceptual Model and Some Deriva-
tions: The AMADEOS Legacy, (Programming and Software Engineering),
vol. 10099. New York, NY, USA: Springer, 2016.



656 IEEE TRANSACTIONS ON RELIABILITY, VOL. 71, NO. 2, JUNE 2022

[5] A. Avižienis, J.-C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Trans. De-
pendable Secure Comput., vol. 1, no. 1, pp. 11–33, Jan.–Mar. 2004.

[6] J. Meyer, “On evaluating the performability of degradable computing
systems,” IEEE Trans. Comput., vol. C- 29, no. 8, pp. 720–731, Aug. 1980.

[7] L. Montecchi, P. Lollini, and A. Bondavalli, “Towards a MDE transforma-
tion workflow for dependability analysis,” in Proc. 16th IEEE Int. Conf.
Eng. Complex Comput. Syst., Las Vegas, NV, USA, 2011, pp. 157–166.

[8] S. Bernardi, J. Merseguer, and D. C. Petriu, “Dependability modeling and
analysis of software systems specified with UML,” ACM Comput. Surv.,
vol. 45, no. 1, pp. 1–48, 2012.

[9] W. Sanders and J. Meyer, “Stochastic activity networks: Formal definitions
and concepts,” in Lectures on Formal Methods and Performance Analysis
(Lecture Notes in Computer Science). Berlin, Germany: Springer, 2002,
vol. 2090, pp. 315–343.

[10] G. Clark et al., “The mobius modeling tool,” in Proc. 9th Int. Workshop
Petri Nets Perform. Models, 2001, pp. 241–250.

[11] L. Montecchi, P. Lollini, and A. Bondavalli, “A template-based method-
ology for the specification and automated composition of performability
models,” IEEE Trans. Rel., vol. 69, no. 1, pp. 293–309, Mar. 2020.

[12] M. Stamatelatos et al., “Fault tree handbook with aerospace applications,”
NASA Office of Safety and Mission Assurance, Washington, DC, USA,
Aug. 2002.

[13] G. Ciardo, R. German, and C. Lindemann, “A characterization of the
stochastic process underlying a stochastic petri net,”IEEE Trans. Softw.
Eng., vol. 20, no. 7, pp. 506–515, Jul. 1994.

[14] T. Courtney et al., “Möbius 2.3: An extensible tool for dependability, secu-
rity, and performance evaluation of large and complex system models,” in
Proc. 39th IEEE/IFIP Int. Conf. Dependable Syst. Netw., Estoril, Portugal,
2009, pp. 353–358.

[15] S. Chiaradonna, F. Di Giandomenico, and G. Masetti, “A stochastic
modelling framework to analyze smart grids control strategies,” in Proc.
IEEE Smart Energy Grid Eng., Oshawa, ON, Canada, Aug. 21–24, 2016,
pp. 123–130.

[16] G. Nencioni, B. E. Helvik, and P. E. Heegaard, “Including failure correla-
tion in availability modeling of a software-defined backbone network,”
IEEE Trans. Netw. Service Manage., vol. 14, no. 4, pp. 1032–1045,
Dec. 2017.

[17] R. Entezari-Maleki et al., “Performance aware scheduling considering
resource availability in grid computing,” Eng. Comput., vol. 33, no. 2,
pp. 191–206, Jul. 2016.

[18] L. D. da Silva, D. Mongelli, P. Lollini, A. Bondavalli, and G. Mando,
“Performability analysis of a tramway system with virtual tags and local
positioning,” in Proc. IEEE 9th Latin- Amer. Symp. Dependable Comput.,
Nov. 2019, pp. 1–10.

[19] N. Veeraragavan et al., “Modeling QoE in dependable tele-immersive
applications: A. case study of world opera,” IEEE Trans. Parallel Distrib.
Syst., vol. 27, no. 9, pp. 2667–2681, Sep. 2016.

[20] M. Ajmone Marsan, G. Conte, and G. Balbo, “A class of generalized
stochastic Petri nets for the performance evaluation of multiprocessor
systems,” ACM Trans. Comput. Syst., vol. 2, no. 2, pp. 93–122, 1984.

[21] J. K. Muppala, G. Ciardo, and K. S. Trivedi, “Stochastic reward nets
for reliability prediction,” Commun. Rel., Maintainability Serviceability,
vol. 1, no. 2, pp. 9–20, 1994.

[22] C. A. Petri, “Communication with automata,” Ph.D. dissertation, Univer-
sität Hamburg, Hamburg, Germany, 1966.

[23] K. Jensen, Coloured Petri Nets. New York, NY, USA: Springer-Verlag,
1996.

[24] K. Jensen, and G. Rozenberg, Eds., High-Level Petri Nets: Theory and
Application. New York, NY, USA: Springer-Verlag, 1991.

[25] Systems and Software Engineering—High-Level Petri nets - Part 1:
Concepts, Definitions and Graphical Notation, ISO/IEC 15909-1:2004,
Dec. 2004.

[26] T. Murata, “Some recent applications of high-level petri nets,” in Proc.
IEEE Int. Symp. Circuits Syst., 1991, pp. 818–821.

[27] F. Liu, M. Heiner, and M. Yang, “An efficient method for unfolding colored
Petri nets,” in Proc. IEEE Winter Simul. Conf., Dec. 2012, pp. 1–12.

[28] M. Schwarick, C. Rohr, F. Liu, G. Assaf, J. Chodak, and M. Heiner, “Ef-
ficient unfolding of coloured petri nets using interval decision diagrams,”
in Proc. Appl. Theory Petri Nets Concurrency, 2020, pp. 324–344.

[29] P. Ballarini, S. Donatelli, and G. Franceschinis, “Parametric stochastic
well-formed nets and compositional modelling,” in Lecture Notes in Com-
puter Science. Berlin, Germany: Springer, 2000, pp. 43–62.

[30] S. Bernardi, S. Donatelli, and A. Horváth, “Implementing compositionality
for stochastic Petri nets,” Int. J. Softw. Tools Technol. Transfer, vol. 3, no. 4,
pp. 417–430, Sep. 2001.

[31] E. G. Amparore, G. Balbo, M. Beccuti, S. Donatelli, and G. Franceschinis,
“30 years of GreatSPN,” in Principles of Performance and Reliability
Modeling and Evaluation (Springer Series in Reliability Engineering).
Cham, Switzerland: Springer, 2016, pp. 227–254.

[32] W. H. Sanders and J. F. Meyer, “Reduced base model construction methods
for stochastic activity networks,” IEEE J. Sel. Areas Commun., vol. 9, no. 1,
pp. 25–36, Jan. 1991.

[33] D. C. Schmidt, “Guest editor’s introduction: Model-driven engineering,”
Computer, vol. 39, no. 2, pp. 25–31, 2006.

[34] M. Cinque, D. Cotroneo, and C. Di Martino, “Automated generation of
performance and dependability models for the assessment of wireless
sensor networks,” IEEE Trans. Comput., vol. 61, no. 6, pp. 870–884,
Jun. 2012.

[35] G. Masetti, F. Di Giandomenico, and S. Chiaradonna, “A stochastic mod-
eling approach for an efficient dependability evaluation of large systems
with non-anonymous interconnected components,” in Proc. IEEE 28th Int.
Symp. Softw. Rel. Eng., Oct. 2017, pp. 46–55.

[36] G. Masetti, S. Chiaradonna, F. Di Giandomenico, B. Feddersen, and W.
H. Sanders, “An efficient strategy for model composition in the möbius
modeling environment,” in Proc. IEEE 14th Eur. Dependable Comput.
Conf., Sep. 2018, pp. 116–119.

[37] M. A. Chamon, “Scientific and technological satellites at INPE/BRAZIL,”
in Proc. 57th Int. Astronautical Congr., to be published, Oct. 2006, doi:
10.2514/6.IAC-06-B5.2.01.

[38] R. Pereira., M. dos Santos, M. Lima-Marques, and M. Mattiello-Francisco,
“Improving satellite data archiving facility for environmental R&D pur-
poses based on architecture of information approach,” in Proc. SpaceOps
Conf., Jun. 2012, vol. 11, p. 15, doi: 10.2514/6.2012-1295180.

[39] BNDES Approves R 23 Million to Monitor the Amazon Forest in Other
South American Countries, Amazon Fund Newslett., no. 37, Apr. 2013.

[40] E. Cabrera, G. Galindo, and D. Vargas, “Protocolo de Procesamiento
Digital de Imágenes para la Cuantificación de la Deforestacin en Colom-
bia, Nivel Nacional Escala Gruesa y Fina,” Instituto de Hidrolog-a,
Meteorologa, y Estudios Ambientales (IDEAM). Bogot D.C., Colombia,
2011.

[41] M. J. M. de Carvalho, J. S. dos Santos Lima, L. dos Santos Jotha, and P. S. de
Aquino, “CONASAT: Constelao de Nano Satlites para Coleta de Dados
Ambientais,” in Proc. Anais XVI Simpósio Brasileiro d Sensoriamento
Remoto, Foz do Iguaçu, Brazil, Apr. 13–18, 2013, pp. 9108–9115.

[42] L. M. G. Fonseca, J. C. N. Epiphanio, D. M. Valeriano, J. V. Soares, J. C.
L. Dalge, and M. A. Alvarenga, “Earth observation applications in Brazil
with focus on the CBERS program,” IEEE Geosci. Remote Sens. Mag.,
vol. 2, no. 2, pp. 53–55, Jun. 2014.

[43] “ADVANCE: Addressing verification and validation challenges in future
cyber-physical systems,” H2020 MSCA-RISE Grant 823788, Nov. 17,
2021. [Online]. Available: https://cordis.europa.eu/project/id/823788

[44] G. Ciardo, Y. Zhao, and X. Jin, “Ten years of saturation: A petri net per-
spective,” in Transactions on Petri Nets and Other Models of Concurrency
V (Lecture Notes in Computer Science). Berlin, Germany: Springer, 2012,
pp. 51–95.

[45] C. Seidl, I. Schaefer, and U. A**mann, “Integrated management of vari-
ability in space and time in software families,” in Proc. 18th Int. Softw.
Product Line Conf., 2014, pp. 22–31.

[46] N. Ge, M. Pantel, and S. D. Zilio, “Formal verification of user-level real-
time property patterns,” in Proc. 11th Int. Symp. Theor. Aspects Softw.
Eng., Sophia Antipolis, France, Sep. 13–15, 2017, pp. 1–8.

[47] A. Bondavalli, P. Lollini, and L. Montecchi, “QoS perceived by users
of ubiquitous UMTS: Compositional models and thorough analysis,” J.
Softw., vol. 4, no. 7, pp. 675–685, 2009.

[48] D. D. Deavours and W. H. Sanders, “An efficient well-specified
check,” in Proc. 8th Int. Workshop Petri Nets Perform. Models, 1999,
pp. 124–133.

[49] L. Montecchi, F. Moncini, P. Lollini, and K. Keefe, “An eclipse-based
editor for SAN templates,” in Proc. 12th Int. Workshop Softw. Eng.
Resilient Syst., Munich, Germany, 2020, pp. 159–167.

https://dx.doi.org/10.2514/6.IAC-06-B5.2.01
https://dx.doi.org/10.2514/6.2012-1295180
https://cordis.europa.eu/project/id/823788


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


