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Abstract
Early-stage security analysis can be used for a preliminary assessment of the security level of a system, thus providing useful
insights to guide the whole system’s development. In this paper, we focus on a specific meta-level modeling framework
for security analysis, ADVISE Meta, which allows representing a system using generic built-in blocks and relationships
constituting the ontology of the framework, and to automatically derive complex low-level stochastic models representing
attack steps and adversaries. In this paper, we extend the ADVISE Meta ontology to enlarge the variety of the possible attack
paths and adversaries that can be represented in the framework, by modeling (i) attack patterns available in the CAPEC
database, a comprehensive dictionary of known patterns of attack, and (ii) the adversaries’ profiles defined in the Threat
Agent Library (TAL), a reference library which describes the characteristics of threat agents. The paper provides a detailed
description of the whole process for extending the ADVISE Meta ontology, and the application of the extended modeling
framework for an early-stage security analysis of a public transport supervision system. The framework enables a variety
of security-oriented analyses, in particular to assess the probability that a given adversary can successfully reach a specific
goal, to analyze the most probable attack path that adversaries can follow to reach a goal, to perform sensitivity analysis at
varying of attack patterns and adversaries’ profiles, to compare different architectural solutions, and to identify the system’s
components that can be more probably attacked by adversaries.
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1 Introduction

Models for early-stage security analysis can be used for
a preliminary assessment of the most critical architectural
components of a system, allowing to identify those that
should be more protected. Such analysis is performed having
a very preliminary knowledge of the system, without know-
ing which are the vulnerabilities of the components, which
are the possible involved attacks, which are the adversaries’
profiles that could potentially perform such attacks, and the
consequences of such attacks.

In the literature, several formalisms have been proposed
for helping with such challenging activity [3, 13]. However,
for complex systems, the application of such formalisms is
often a time-consuming and error-prone activity, and infor-
mation from experts in the application domain is required
for properly capturing key elements (e.g., attack patterns
or adversaries), which are rarely formalized. Model-driven
engineering frameworks [24] can thus play a fundamental
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role and, starting from an high-level architectural description
of the system, they can be used to derive complex low-level
analyzable models.

In our previous work [15], we proposed a preliminary
version of a methodology for the extension of the security-
oriented modeling framework called ADVISE Meta [10].
The methodology aims at integrating into the ontology:
(i) attack patterns from the CAPEC (Common Attack Pat-
tern Enumerations and Classifications) database [18], which
is a publicly available catalog of common attack patterns;
and (ii) adversaries’ profiles from the Threat Agent Library
(TAL) [4] by Intel, that provides a description of the human
agents that can threaten IT systems and other information
assets.

In this work, we refine the methodology, we discuss its
application for extending the ADVISE Meta ontology with
all the TAL adversaries and some representative CAPEC
attacks, and we make use of the extended framework for
an early-stage security analysis of a public transport super-
vision system called Smart Passenger Center (SPaCe) [14].
ADVISEMeta allows computing the probability that a given
adversary can successfully reach a specific goal, and ana-
lyzing the most probable attack path that the adversary
will follow to reach the goal. With the proposed exten-
sion, we enable additional analysis scenarios, ranging from
broad security analysis at varying of TAL adversaries, where
CAPEC attacks are involved, to the identification of the com-
ponents of the system that are most exposed to threats. Such
kind of analysis can be used to guide the system development
process.

The rest of this paper is organized as follows. In Sect. 2,
we provide some background information about CAPEC,
TAL, ADVISE, and ADVISE Meta, for a better understand-
ing of the rest of the paper. The methodology to map CAPEC
and TAL elements into the ontology of ADVISE Meta is
presented in Sect. 3, and it is applied in Sect. 4 for the
extension of the ADVISE Meta ontology with TAL adver-
saries’ profiles and CAPEC attack patterns. In Sect. 5, we
introduce the SPaCe system and its high-level architecture,
which is then modeled in Sect. 6, and analyzed in Sect. 7
considering different analysis scenarios. Related works are
discussed in Sect. 8, while conclusions are finally drawn in
Sect. 9.

2 Background

In the following, we give a brief description of the core
elements used in the rest of paper, namely CAPEC, TAL,
ADVISE, and ADVISE Meta.

2.1 Common attack pattern enumeration and
classification

Throughout the history of IT security, it has become increas-
ingly necessary to have reference lists of possible threats to
IT systems, like the “OWASP Top 10” for web applications
[20], or theMITRECommonWeaknessEnumeration (CWE)
[19].

The MITRE Common Attack Pattern Enumeration and
Classification (CAPEC) [18] is a large online catalog con-
taining more than 500 entries of common attack patterns.
An attack pattern is a description of the common attributes
and approaches used by adversaries to exploit known weak-
nesses in IT systems.

Each entry in the database describes a particular attack
pattern and contains, among others, the following sections: a
general Description of the attack; the Prerequisites that are
needed in order to carry out the attack; Resources Required,
providing information on devices, tools, and other resources
needed to perform the attack;SkillsRequired,which indicates
the skills that an adversary must possess to carry out the
attack; and possible Consequences of the attack (its scope
and its possible impact).

2.2 Threat agent library

When considering the possible threats that can threaten a
system, it is also fundamental to identify which are the
adversaries’ profiles that can attempt the attack. Naming
an adversary with generic terms like “hacker” or “spy”
can be misleading. In order to have a detailed description
of the adversaries that might be involved in attacks, Intel
developed the Threat Agent Library (TAL) [4], a standard-
ized reference that provides a description of the human
agents that can threaten IT systems and other information
assets.

TAL relies on a common set of characteristics, or
attributes, to define each adversary, or “threat agent”, in
a unique way. In particular, the following eight attributes
are defined: Access, Intent, Limits, Objective, Outcome,
Resources, Skill Level, and Visibility. Each of these attributes
can have different predefined values. For instance, theAccess
can be “internal” or “external”, while the Skill Level can be
“none”, “minimal”, “operational” or “adept”. In TAL, the
combination of these attributes’ values results in a total of 21
different adversaries (e.g., Vandal, Employee Disgruntled,
and Terrorist).
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2.3 ADVISE

ADVISE (ADversary VIew Security Evaluation) [6, 13] is
a security modeling framework that allows modeling adver-
saries and attack steps, aiming to analyze the probability that
an adversary can achieve a certain goal, and the required
effort. A model developed with ADVISE consists of two
parts: the Attack Execution Graph (AEG) and the Adversary
Profile.

The AEG describes the actions that an adversary has to
follow to reach a certain goal, and it consists of items of
five basic types. The skill, knowledge, and access items play
the role of requirements (or prerequisites) for executing an
attack, i.e., items that must be held by an adversary for
enabling the execution of a specific attack. These items can
also be gained as a result of a successful execution of an
attack step. An attack step item represents a single step of
an attack that can have different outcomes (e.g., success or
failure), while a goal is an objective that the adversary wants
to reach (like the logical access to a server).

In the Adversary Profile, we can define the profile of an
adversary through the specification of a set of attributes,
whose values determine if a particular adversary can reach
a specific goal. Those attributes are: name, decision param-
eters (planning horizon, attack preference weights), skills,
initial access, initial knowledge, and goals.

ADVISE is implemented as an atomic formalism in the
Möbius framework [5, 22], which integrates the ADVISE
execution algorithm [13] for simulating the adversary’s
behavior. The algorithm is based on Markov Decision Pro-
cesses (MDPs), and consists of two steps repeated cyclically:
(i) selection of the optimal attack step to be attempted next,
and (ii) simulation of its outcome.

In order to reach a specific goal, in the first step, the algo-
rithm selects the next attack step for an adversary among
those that may lead to the goal and that can be actually exe-
cuted (i.e., the attack steps for which the adversary has the
prerequisites). The most attractive attack step also depends
on adversary parameters, in particular on the Planning Hori-
zon, which determines the number of steps in the future the
adversary considers when making an attack decision; on the
Payoff (gain of an adversary in case a goal is successfully
reached), and on the Cost of Detection.

2.4 ADVISE Meta ontology

ADVISE Meta [10, 21] is a meta-level modeling framework
that has been proposed tomitigate the complexity of building
ADVISE models by hand, which can be a very difficult and
time-consuming task. In themeta-level framework themodel
is built at an higher abstraction level (i.e., at meta-level), and
the low-levelADVISEmodels are derived automatically. The
system is describedusinggeneric built-in blocks and relation-

ships that constitute the ontology of the framework, and that
embed information on possible attacks in their definition. The
elements of the ontology are briefly described in the follow-
ing: the ontology consists of the following elements: those
marked with a star (*) are also present in the plain ADVISE
formalism.

• Component. It defines a base category of elements that
can be part of a system. Some examples: Device, Oper-
atingSystem, Network.

• Relationship. It defines a kind of relation that may exist
between two components. Note that a relationship only
applies to the specific kinds of components for which it
is defined. Some examples: onNetwork, storageDevice,
canDamage.

• Attribute. It represents a characteristic of a component,
and can be used as parameter of the attack steps attached
to the component. Some examples: dataIntegrityControl,
mediaPortEnabled, userAuthenticationType.

• Access*. It defines an access that an adversary may have
at the beginning of an attack, or which may be gained
during the attack. Some examples: InsiderAccess, Logi-
calAccess, PhysicalAccess.

• Skill*. It defines a skill that an adversary may have in
varying degrees of proficiency. Some examples: Basic-
CyberOffense, Cryptanalysis, NetworkPenetration.

• Knowledge*. It defines something that the adversaries
may know beforehand, or that it may be acquired dur-
ing the attack. The ADVISE Meta ontology from [10]
includes only one knowledge: FirewallRulesetKnowl-
edge.

• Other State Variable. It can be used to define state
variables related to system components, which are also
typically used to define adversary attack goals. Some
examples: Damaged, Disabled, MalwareInstalledOn.

• Attack Step*. It defines a step of an attack that can be
performed by an adversary. Some examples: PhysicalD-
isable, GainUserCredentials, ModifyDataLocally.

• Adversary*. It defines an adversary’s profilewith several
characteristics. Some examples of built-in adversary tem-
plates: ForeignGovernment, HackerGroup, Organized-
Crime.

• Metric. Only one metric (goalAchieved) was defined in
the base ontology from [10], but other metrics can be
added.

The modeling process using ADVISE Meta consists of:
(i) adding the components that are part of the system into the
System Instance Diagram (SID) and setting the correspond-
ing attributes; and (ii) connecting the components through
the available relationships, based on the system architecture.

Once the model has been defined, the low-level model
(i.e., ADVISE model) is generated, based on the definition
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of the particular configuration of the system to be analyzed,
i.e., one system diagram, one adversary, and a subset of avail-
ablemetrics. Othermodeling elements are also automatically
generated, including performance variable reward models,
set studies, and the simulator. The attacks generated into
the ADVISE model depend on the components (and their
attributes) and the relationships between them, so if a partic-
ular component is not present in the SID model, the related
attacks will not be derived.

TheADVISEMeta framework (and thegeneratedADVISE
models) relies on some properties that are embedded in the
definition of each attack step and in each adversary’ profile.
Each attack step has the following properties:

• Attack Cost, which determines the cost of the attack (e.g.,
expressed in dollars);

• Attack Execution Time, which expresses the time needed
to perform the attack;

• Precondition Expression, which determines the prereq-
uisites needed by the adversary to perform the attack (a
few examples are given in Sect. 4.2);

• Success Probability (and Failure Probability), which
defines the probability that an attack step succeeds (or
not);

• Detection Probability, which provides the probability
that the adversary will be detected during the attack.

When one defines the SID model, several attributes
are associated with each Component, inherited from the
ADVISEMeta ontology. Components of type “Device” have
a total of sixteen attributes (e.g., componentAnomalyDetec-
tionStrength, resistanceToPhysicalDisable and userCyber-
SecurityAwareness), while “Network” components have a
total of thirteen attributes (e.g., limitedIncomingProtocols,
networkEncryptionStrength and networkWhiteList). Some of
these attributes are common to both types of components,
e.g., strengthOfUserAuthentication.

The values assigned to the properties of each attack step,
to the properties defined in the adversary’s profile (i.e., Plan-
ning Horizon, Payoff and Cost of Detection, as explained at
the end of Sect. 2.3), and to the attributes associated to each
Component can have an impact on the adversary’s behav-
ior and on the probability of successfully reaching a goal. In
Sect. 7.2, we will provide a concrete example at varying of
one of these parameters.

3 Methodology: linking CAPEC, TAL and
ADVISEMeta elements

In this work, we are interested in preliminary security eval-
uation conducted at an early stage of development. By
definition, this type of analysis is subject to significant

uncertainty about the effective attacks likely to be seen in
operation. Thus, having a wide selection of attacks and
adversaries would allow to conduct broad security analyses.
After observing the ontology provided by the ADVISEMeta
framework, two main aspects can be noted:

1. There are only a few attack steps in the ontology, catego-
rized into just five attack types (i.e., damage and disable,
malware, gain access, compromise data integrity, and
compromise data confidentiality). The CAPEC database,
on the other hand, providesmore than 500 attack patterns.

2. The adversaries’ templates provided by the ontology are
still too generic. For example, considering the Hacker
Group, any individual with enough IT skills could be
potentially classified as “hacker”. Conversely, the adver-
saries’ profiles proposed by TAL are more specialized
(e.g., Government Cyberwarrior, Thief, Civil Activist).

In this section, we present the refined methodology, ini-
tially proposed in [15], which is based on the definition of
relationships between theproperties identified in theCAPEC,
TAL, and ADVISE Meta domains. The identified relation-
ships can be used to extend the ADVISE Meta framework
with CAPEC attacks and TAL adversaries (see Sect. 4), and
thus use them to build ADVISEmodels for security analysis.

3.1 From CAPEC sections to TAL attributes

We have first identified the relationships between CAPEC
and TAL, to understand how the information found in the
CAPEC sections are linked to TAL attributes. This mapping
allows CAPEC attack patterns to be described in terms of
attributes of TAL adversaries. We have identified the follow-
ing relationships between CAPEC and TAL, which are also
summarized in the left part of Fig. 1:

• According to the TAL’s Intent, which defines the adver-
sary’s intention to cause harm, an adversary can be
“Hostile” or “Non-Hostile”. The “Description” section
of a CAPEC entry usually provides some inferable infor-
mation related to this TAL attribute.

• In TAL, the Access attribute can have two values, “Inter-
nal” or “External”, denoting the extent of the adversary’s
access to the system’s assets. A list of prerequisites that
an adversary must satisfy in order to execute the attack
(including the access to assets) is usually given in the
“Prerequisites” section of CAPEC. If this section is not
detailed enough, additional information can be derived
from the “Description” section.

• The TAL’s Limits attribute defines the ethical and legal
limits of an adversary, and how much the adversary
is prepared to break the law. Four different values are
allowed (“Code of Conduct”, “Legal”, “Extra-Legal
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Fig. 1 Relationships between CAPEC sections, TAL attributes, and ADVISE Meta elements

Minor” and “Extra-Legal Major”). No specific section
containing information about ethical and legal limits
exists in CAPEC, so one must infer such information
from the “Description” section.

• The type of organization and the amount of resources
owned by the adversary to run attacks are defined by
the TAL’s Resource attribute, which can have six dif-
ferent values (“Individual”, “Club”, “Contest”, “Team”,
“Organization”, and “Government”). The “Resources
Required” CAPEC section provides a little information
about specific equipment, software, and other kinds of
resources needed in order to perform the attack. If this
section is not present, this information must be inferred
from the “Prerequisites” section.

• The expertise of an adversary is determined by the
TAL’s Skill Level. Four different values are available
(“None”, “Minimal”, “Operational” and “Adept”). The
“Skills Required” CAPEC section describes the skill
level needed to execute the attack. Additional informa-
tion can be found in the “Prerequisites” section.

• In TAL, the Objective attribute defines the goal that
an adversary wants to achieve. Five different values
are allowed (“Copy”, “Destroy”, “Injure”, “Take” and
“Don’t Care”). This attribute can be associated to the
“Consequences” CAPEC section. Here the scope (e.g.,
confidentiality, integrity, or availability), and the impact
of the attack are described. If this section is not present,
the information must be inferred from the “Description”
section.

• The extent to which the adversary intends to hide/reveal
her or his identity is described by the Visibility attribute,
which can have one of the following values: “Overt”,
“Covert”, “Clandestine” and “Don’t Care”. No dedicated
section is available in CAPEC, so the “Description” sec-
tion should be checked.

Note that these relationships do not depend on the underly-
ingmodeling framework.On the other hand, the relationships
are not always easy to identify, as theCAPECdatabase some-
times does not provide all the necessary information. For
example, in CAPEC entries, while the “Description” and
“Prerequisites” sections can always be found, other useful
sections like “Resources Required” and “Skills Required”
might be missing. In such cases, the missing information
must be inferred and interpreted from the available sections,
when possible.

3.2 FromTAL attributes to ADVISEMeta elements

As a second step, we have identified the relationships
between TAL and ADVISEMeta elements, to represent TAL
adversaries’ profiles in the ADVISE Meta framework. In the
right part of Fig. 1, we can see how the TAL attributes are
related to the ADVISE Meta elements:

• TheTAL’s Intent attribute can be associated to theKnowl-
edge concept of ADVISE Meta, as the adversary knows
if she/he has an hostile intent or not. To execute a mali-
cious attack, a malicious intent is usually necessary, so
we have added a new Knowledge element named Intent
to the ontology, to be associated tomalicious adversaries.

• The Access attribute from TAL can be intuitively related
to theAccess element (ADVISE concept) already present
in the ontology, called InsiderAccess.

• TheTAL’sLimits attribute represents the ethical and legal
limits of the adversary. This concept has been associated
to a Skill in ADVISE Meta, which can be interpreted as
the adversary’s ability to act at different levels of legality.
We have, therefore, added a new Skill element called
Limits to the ontology, tomodel such attribute inADVISE
Meta.
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• Also the Resources TAL’s attribute can be associ-
ated to a Skill in ADVISE Meta, because it can be
seen as the adversary’s ability to gain the appropri-
ate resources required for attacks. A new Skill element
named Resources has been added to the ontology.

• The TAL’s Skill Level represents the expertise level of
an adversary. We have related this attribute to its coun-
terpart in ADVISE Meta, i.e., Skill. A new Skill element
called SkillLevel has been added to the ontology of the
framework.

• No ADVISE Meta element can be easily associated to
TAL’s Objective attribute. Goal is the closest concept in
the ADVISE formalism, which is however associated to
attack steps. Therefore, one should not add this element
to the ontology when modeling adversaries’ profiles, but
when modeling attack steps.

• The degree of importance for the adversary to remain
hidden is represented by TAL’s Visibility attribute. Con-
ceptually it is something that the adversary knows, but
because it has more than two possible values, it cannot
be associated to a Knowledge element, which is instead a
Boolean property. Therefore, a new Skill element named
Visibility has been added to the ontology, which can be
interpreted as the extent to which the adversary intends
to hide/reveal her or his identity.

In ADVISE, a Skill element is defined as an integer which
can have integer values between 0 and 1000. The numerical
thresholds used to represent the different TAL attributes’ val-
ues are shown in Table 1. This should only be interpreted as a
translation of the TAL attributes’ values from a qualitative to
a quantitative point of view, needed to practically represent
these attributes in the framework. As a default setting, we
have equally distributed the qualitative values of each TAL
attribute in a quantitative range between 0 and 1000. This
setting can be anyway modified according to the modeler’s
need and could be made parametric using global variables.

3.3 From CAPEC sections to ADVISEMeta elements

The extension of the ADVISE Meta ontology with CAPEC
attacks may require further information that can be found
in CAPEC sections. In particular, when a new attack step
is added to the ontology, the target of the attack (i.e.,
the involved system’s component) should be specified. In
ADVISE Meta, each attack step is associated with a single
component, but the outcome of the execution of an attack
step can have an impact on other components according to the
relationships involved (the “Relationship” element is defined
in the ontology, see Sect. 2.4).

Such kind of information can be derived from the CAPEC
“Description” section. Moreover, the “Description” and
“Precondition” sections can be used to derive additional

Table 1 Assignment of numerical values to TAL attributes. Table
adapted from [15]

TAL attribute TAL attribute value Numerical value

Intent Not hostile 0

Hostile 1

InsiderAccess Outsider 0

Insider 1

Limits Code of Conduct 250

Legal 500

Extra-legal minor 750

Extra-legal major 1000

Resources Individual 0

Club 200

Contest 400

Team 600

Organization 800

Government 1000

SkillLevel None 0

Minimal 250

Operative 750

Adept 1000

Visibility Overt 1000

Covert 500

Clandestine 250

Do not care 0

information on attacks, like preconditions related to the exis-
tence of particular architectural components.

4 Extension of ADVISEMeta

The methodology presented in Sect. 3 has been applied to
extend the ontology of the ADVISE Meta framework, to
include some representative CAPEC attack patterns and all
the adversaries’ profiles provided by TAL.

4.1 Extension of ADVISEMeta with TAL adversaries’
profiles

Following the TAL/ADVISE Meta relationships and the
attributes’ values specified in the TAL library, we translated
the TAL adversaries’ profiles to ADVISE Meta adversaries.

To exemplify the application of the methodology, we
discuss how to extend the ontology with the Terrorist pro-
file (another illustrative example can be found in [15]). In
TAL this adversary has “External” Access, “Hostile” Intent,
“Adept” Skill Level, “Extra-Legal Major” Limits, “Organi-
zation” Resources and “Covert” Visibility. To add this profile
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Fig. 2 TAL “Terrorist” adversary’s profile visualized in the ADVISE
Meta framework

to the ontology, we have created a new ADVISEMeta adver-
sary called “Terrorist”.

According to Table 1, the Terrorist profile has the follow-
ing attributes values (Fig. 2):

• InsiderAccess with value 0 (“External”), i.e., the Access
is not added to the profile;

• Intent with value 1 (“Hostile”);
• Limits with value 1000 (“Extra-Legal Major”);
• Visibility with value 500 (“Covert”);
• Resources with value 800 (“Organization”);
• SkillLevel with value 1000 (“Adept”).

4.2 Extension of ADVISE Meta with CAPEC attacks

To show how it is possible to extend the ontology of the
framework with new attacks by using the proposed method-
ology, we have chosen some representative attack patterns
involving the core components of the CIA triad, i.e., Confi-
dentiality, Integrity and Availability [2]. We have focused on
the following CAPEC attacks (the affected security proper-
ties are specified in brackets):

• CAPEC-94: Adversary in the Middle (Confidentiality
and Integrity);

• CAPEC-125: Flooding (Availability);
• CAPEC-153: Input Data Manipulation (Integrity);
• CAPEC-248: Command Injection (Confidentiality,
Integrity, and Availability);

• CAPEC-549: Local Execution Of Code (Confidentiality,
Integrity and Availability).

Although we have considered only a few representative
CAPEC attacks, the methodology illustrated in Sect. 3 is
applicable to all the attack patterns defined in the CAPEC
database. However, in handling the largeness of the CAPEC
database (more than 500 attacks), two main problems arise:
(i) adding manually all the CAPEC attacks to the ontology
would be an error-prone and very time-consuming activity,
and (ii) the complexity of the derived ADVISE models will
become unmanageable due to an exponential growth in the
number of states to explore.

The identification of the relationships between CAPEC,
TAL, andADVISEMeta (described in Sect. 3) and the subse-
quent extension of the framework ontology have been done
entirely manually. For a complete integration of the CAPEC
database in the ADVISEMeta ontology, an automatic way to
import theCAPECattackswould be essential. CAPEC is also
available in XML format, therefore, it would be a good can-
didate for automatic processing through the employment of
model transformation languages and tools [9]. As previously
explained, there are some information that are hidden or not
always present in CAPEC sections, so further investigation
would be necessary to implement the automatic process. This
could be an interesting future work.

By adding more attack patterns to the ontology, the gen-
erated ADVISE models will become more complex and
the number of states to explore will grow exponentially.
However, as already explained in Sect. 2.4, the automatic
generation of attacks depends on some modeling constraints
that can (at least partially)mitigate the problem. In particular,
an attack will not be generated if the related component is
not present in the SID model. Moreover, to limit the number
of generated attack steps, it could be helpful to disable one or
more attacks on one or more specific components’ instances
in the SID model. For example, the modeler may believe
that a specific workstation cannot be the target of flooding
attacks, because of how the system is deployed. In this case,
one could add some “flag” attributes to specific component
elements in the ontology, and then use them as prerequisites
of the attacks, so that some specific attacks can be disabled.

4.2.1 Flooding

Here, we describe the application of the methodology to
the Flooding attack. Flooding is a Denial of Service attack,
in which the adversary wants to deplete the resources of a
target system to deny the access to users. In CAPEC, this
attack is classified under the “Software” and “Communica-
tion” domains, and under the “Abuse Existing Functionality”
attack mechanism.

This attack has been modeled by adding a new attack step
to the ontology (Fig. 3). The targets of this attack are those
system components that are classified as Device (according
to the “Description” section of the CAPEC entry). Precondi-
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Fig. 3 “Flooding” attack step added to the ontology of ADVISE Meta

tions for this attacks are at least “Extra-Legal Minor” Limits,
and the adversary’s intent to cause damage to the system
(from the “Description” section of the CAPEC entry). Fur-
thermore, at least “Club” Resources are required, because
a script or a network able to generate an high number of
requests is needed (from “Resources Required” section of
the CAPEC entry).

Considering the default setting for the values of the TAL
attributes presented in Table 1, the above preconditions are
met if the value of the Limits TAL attribute is greater or equal
than 750 (value of the “Extra-Legal Minor” Limits), and the
value of the Resources TAL attribute is greater or equal than
200 (value of the “Club” Resources). Another precondition is
the access to a network (still from the “Description” CAPEC
section). Thus, the Precondition Expression of the Flooding
attack step, i.e., theBoolean expression that has to be satisfied
to perform the attack, is the following:

return((${Limits}>=750)
&& (${Intent})
&& (${Resources}>=200)
&& (${AccessToNetwork}));

To better model this attack, the handlingRate attribute has
been added to the ontology for the Device element, denoting
the rate at which the device is able to handle requests. This
attribute can have values in the range between 0 and 10:
low (0–3), medium (4–6), and high (7–10). In the following,
we show the expression of the Success Probability for the
Flooding attack:

if (${handlingRate}>=7) return 0.2;
else if (${handlingRate}>=4) return 0.5;
else return 0.9;

The handlingRate attribute has an impact on the probabil-
ity that an adversary can successfully perform an attack: the
lower its value, the higher the probability to perform a suc-
cessful attack.When creating the SID, themodeler can adjust
the value of the attribute, according to the characteristics of
the device to be represented in the model.

4.2.2 Adversary in the middle

In the CAPEC-94 Adversary in the Middle, also known as
Man in theMiddle, the adversary takes position between two
network nodes, to retrieve ormodify themessages exchanged
between the two victims before forwarding them to the other
node. In the CAPEC entry, the “Description” section reports
that the possible targets of this kind of attack are components
classified as Device.

To model this attack in ADVISE Meta framework, we
have added three different attack steps to the ontology, fol-
lowing the “Execution Flow” section of the CAPEC entry. In
the first step (MITMDetermineCommunicationMechanism),
the adversary identifies the mechanism used for the commu-
nication between the two nodes. Preconditions for this step
are “Extra-Legal Minor” Limits (i.e., with value of at least
750), “Hostile” Intent (i.e., the Intent element is present),
and “Team” Resources (i.e., with value of at least 600). We
retrieved this information from the “Description” section of
theCAPECentry.Moreover, according to the “Prerequisites”
section of CAPEC, two components communicating through
a network must be present in the system model (in this case,
a client and a server). The Preconditions Expression of this
attack step is the following:

return((${Limits}>=750)
&& (${Intent})
&& (${commAccessAlready}==0)
&& (${Resources}>=600)
&& (${ClientExists})
&& (${ServerExists}));

After successfully performing the attack, the Commu-
nicationAccess Access is gained by the adversary. In the
subsequent attack step (MITMPositionBetweenTargets), the
adversary takes position inside the network to intercept the
messages exchanged between the two victims. The precondi-
tions of this attack are the same as the previous ones, with the
addition of theCommunicationAccessAccess. If this attack is
successfully completed, the adversary gains the Monitored-
NetworkAccess Access.

In the last attack step (MITMMonitoringNetworkAccess),
the adversary attempts to read or modify the intercepted data.
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Fig. 4 DMZ architecture for the SPaCe system

For the previous attack steps, no major law breaches were
required, while a major illegal action is required to carry out
this final step. Thus, additional preconditions for this attack
step are “Extra-Legal Major” Limits, along with the Moni-
toredNetworkAccess Access obtained in the previous step. If
the attack step is successful, the attacker finally obtains the
UseInterceptedData Access.

5 Case study: SPaCe system

The Smart Passenger Center (SPaCe) system [14] is designed
for the orchestration and supervision of the mobility of pub-
lic transport, improving the passenger experience, trying to
prevent security breaches and facilitating investigations after
a system violation.

The SPaCe system receives the data collected by sen-
sors (mainly video cameras) installed on board of vehicles
(trains and buses), and processes them to infer the status of
vehicles in real time. Through the analysis of the collected
data, the system is able to obtain information on the occu-
pancy level of vehicles, informing users and administrators
and thus enabling the optimization of passengers flow. The
system can also identify possible dangerous situations on
board, such as the presence of suspicious objects or damaged
equipment.

The network architecture adopted for the SPaCe system
is based on the DMZ (DeMilitarized Zone) model, which
generally aims to protect a private network from external
threats. A DMZ is a subnetwork that exposes services to
external networks that are not considered secure (e.g., the
Internet), and it is located between the internal network and
the external one, ensuring that if a machine inside the DMZ
is attacked, it does not directly affect the private network.
A typical DMZ architecture consists of a private LAN net-

work, a first firewall that acts as a filter between it and the
DMZ network, and a second firewall with the same purpose
between the DMZ network and the external network. DMZ
hosts have the dual task of (i) receiving information and
requests from the external network and forwarding them to
the private network hosts, and (ii) receiving messages from
the private network hosts and forwarding them to the external
network.

Figure 4 shows the system-level architecture of the SPaCe
system and its components. The main components are the
following:

• User Configuration Item (CI), located on the external
network, as it is installed on the devices (e.g., PCs or
smartphones) owned by users of the system, who can use
them to retrieve information about on-board conditions
(e.g., the occupancy level of the vehicles).

• Vehicle Configuration Item (CI), positioned on the exter-
nal network, as it is installed on board of the vehicles. It
supplies the data coming from vehicle sensors.

• ServerConfiguration Item (CI), locatedwithin the private
network. Its objective is to provide the main function-
alities of the system and to protect the stored data. A
sub-component, called View Interface is located in the
DMZ and it is responsible for retrieving, organizing and
delivering information to be displayed to final users.

6 Security analysis of the SPaCe system

In this section,wedescribe the security analysis performedon
the SPaCe system, using themethodology and the framework
extension described in Sects. 3 and 4, respectively.
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6.1 Objectives of the analysis

Thanks to the extensions to the ADVISE Meta modeling
framework, we are able to perform broader security anal-
yses with respect to the base ontology of the framework. In
particular, the extended framework allows us to: (i) com-
pute the probability that an adversary can successfully reach
a goal in a given time window; (ii) derive the attack path
(i.e., the sequence of attack steps) that allows the adversary
to reach a goal; (iii) perform sensitivity analysis at varying
of attack patterns and adversaries’ profiles; (iv) compare dif-
ferent implementation solutions; and v) identify the system’s
components that can bemore probably attacked by the adver-
saries.

These analyses are carried out during an initial phase of
system development, in which just the main architectural
aspects of the system are known and the exact security mech-
anisms that will be adopted are not yet defined.

Given the early-stage nature of the analyses, besides
offering preliminary quantitative indications on the targeted
security aspects, the derived results can provide qualitative
indications to guide the design process of the system. For
example, analysis results can be used to support architectural
decisions, to identify the most vulnerable components with
respect to different CAPEC attacks and TAL adversaries, and
to compare the impact of adopting different implementations
and security mechanisms.

6.2 Modeling process

In this section, we provide the steps required for the security
analysis of the SPaCe system using the extended ADVISE
Meta framework. We first show the architectural model
of SPaCe, then we provide instruction on how to define
goals, adversaries and metrics in ADVISE Meta framework.
Finally, we give some details about the security models gen-
eration and simulation.

6.2.1 Definition of the architectural model

The first step is the creation of the architectural model, also
called System Instance Diagram (SID), of the SPaCe system
by using ADVISE Meta framework. This model, shown in
Fig. 5, has been created following the architecture described
in Sect. 5. The architectural components have been added to
the model using the elements from the ADVISE Meta ontol-
ogy, and the components have been connected to each other
through relationships. The main relationship involved in the
model is the onNetwork relationship, which connects com-
ponents of type Device (e.g., the ServerCI) to components of
typeNetwork (e.g., the LAN), to indicate that the device is on
the network.Another relationship that appears in themodel is
the readData relationship, which connects a Data element to

a Sensor component, meaning that the sensor collects those
data from the environment.

The main architectural components introduced in Sect. 5
are represented in the model as it follows:

• User CI is represented in the model by a Device of
type Workstation. In fact, the Workstation type defines
a host supporting the interaction of a human user with
application functions, thus including PCs, tablets and
smartphones.

• Vehicle CI is represented by a Device of type Sensor.
• Server CI is represented by two different Devices of type
Server, called ViewInterface and ServerCI.

Several attributes, inherited from the ontology of the
framework, are associated to each component of the SID.

Referring to the analyses shown in the following sections,
we focus on the strengthOfUserAuthentication attribute: it
determines the level of security measures used to authenti-
cate users for that particular component. The attribute can
have the following values: 0 (no authentication or authen-
tication with short or poorly validated passwords); 4 (long
and strongly validated passwords, e.g., using Bloom Filters);
6 (use of a Primary Key Infrastructure, PKI); 7 (two-factor
authentication); 9 (biometrics). This attribute is associated
to each component of type Device and Network (i.e., every
component of the SID model in Fig. 5, with the exception of
InputData).

6.2.2 Definition of the goals

Once the architectural model of the system is defined, the
objectives (Goals) of the adversaries must be specified. The
modeler must associate each goal with an element related
to a specific component in the SID (e.g., the components’
accesses, like Logical Access). For each component of the
system, one or more representative goals involving that com-
ponent have been defined. The added goals have been chosen
among the CAPEC attacks added to the ontology. In partic-
ular:

• For each component of Network type, two objectives
have been defined: one regarding access to the network
(NetworkAccess), and another regarding the use of inter-
cepted data in a potential Man-In-The-Middle attack
(UseInterceptedData).

• For each component of Device type (in this case, the
Firewall and Server type components), three objec-
tives have been defined: logical access to the device
(LogicalAccess), installation of a ransomware software
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Fig. 5 Architectural model (SID) of SPaCe system created with ADVISE Meta framework

(RansomwareInstalled) and unavailability of the device
(UnableToService).

• For components of Sensor type, the goal Manipulated-
InputData has been defined. Achievement of this goal
can be obtained, for example, with attacks that attempt
to deceive the images classification algorithms by expos-
ing an ad hoc crafted sign (Adversarial Patch) to a video
camera. In the analyzed scenario, we have only one sen-
sor (Sensor1).

In summary, considering all the components of the archi-
tectural model (Fig. 5), the following 21 different goals have
been defined (the names are derived from the goal names and
the names of the involved element in the SID):

• DMZNetworkAccess
• DMZUseInterceptedData
• Firewall1LogicalAccess
• Firewall1RansomwareInstalled
• Firewall1UnableToService
• Firewall2LogicalAccess
• Firewall2RansomwareInstalled
• Firewall2UnableToService
• LANNetworkAccess
• LANUseInterceptedData
• Sensor1ManipulatedInputData
• ServerCILogicalAccess
• ServerCIRansomwareInstalled

• ServerCIUnableToService
• VehicleNetworkNetworkAccess
• VehicleNetworkUseInterceptedData
• ViewInterfaceLogicalAccess
• ViewInterfaceRansomwareInstalled
• ViewInterfaceUnableToService
• WANNetworkAccess
• WANUseInterceptedData

6.2.3 Definition of the adversaries

Thenext step is to define the adversaries’ profiles to be used in
the analysis. To have the broadest possible view on the threats
represented by the adversaries, all 21 adversaries’ profiles of
the TAL library added to the ontology during the extension
of the framework have been used. All 21 previously defined
goals have been associated with each adversary. This implies
that each adversary can potentially aim to achieve all 21
defined goals, allowing for a broad comparison against var-
ious attacks and adversaries’ profiles. Concerning the initial
access to the system, it has been assumed that the adversary:
owns a device (UserDevice) connected to the WAN, and has
physical access to the sensor (Sensor1) located on the vehicle.

6.2.4 Definition of the metrics

In order to evaluate the probability of achieving goals by
the adversaries, a goalAchieved metric has been associated
with each goal. By running the simulation, this set of metrics
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Fig. 6 ADVISE model generated by the tool for the Terrorist adversary. In the red box, details of the Man in the Middle attack steps on the LAN
are highlighted

provides the probability that, as time varies, the adversary
reaches each of the goals.

To define suchmetrics, wemust select the goal to observe,
the first and the last observation time-point and the length
of time between the observations. One or more metrics can
be assigned to each adversary. Through the model genera-
tor, ADVISE Meta will automatically create a reward model
associated to each metric. In particular, the metrics are com-
puted by an instant of time rate reward variable that returns
the number of tokens in the goal element at the different
observation times.

6.2.5 Generation and simulation of the models

The ADVISE models associated with each adversary’s pro-
file have been derived using the model generator (the
framework generates a different ADVISE model for each
adversary). Creating such models manually would have been
a time-consuming and error-prone task. This complexity is
clearly visible in Fig. 6 (left part), which shows the gener-
ated ADVISE model for the Terrorist adversary. A detail of
the model is highlighted in the red box of Fig. 6 (right part),
showing the attack steps related to Man In the Middle attack
on the LAN component. This is one of the CAPEC attack
patterns that we added to the ontology.

Each attack step has some prerequisites that the adversary
must fulfill in order to successfully complete it, i.e., elements
like Skills, Accesses, Knowledge and State variables. For

example, theLAN_MITMPositionBetweenTargets attack step
requires the LAN_CommunicationAccess, which is obtained
after successfully completing the LAN_MITMDetermine
CommunicationMechanism attack step. Indeed, the com-
pletion of each attack step can lead to the adversary
gaining one or more elements (e.g., Accesses). Then,
the attack path followed by the adversary can lead to
one goal. As an example, a goal can be associated with
the UseInterceptedData Access obtained after completing
the LAN_MITMMonitoringNetworkAccess attack step. The
names of these attack steps have been derived from the “Exe-
cution Flow” section of the CAPEC–94 entry.

Once the ADVISE models are derived, it is possible to
simulate them using the simulator integrated in the Möbius
tool, and to observe the values associated with the previously
defined metrics. The tool automatically generates one simu-
lator for each ADVISE model.

7 Analysis scenarios and results

The analyses we carried out are described in this section.
Unless differently specified, we computed the probability of
achieving the different goals within 96 time units (hours).
The adopted interval of time allow us to observe signifi-
cant variations in the probability of completing the attacks
and successfully reaching the goal. We ran each simulation
with, respectively, 1000 and 10,000minimum andmaximum
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number of batches (simulation runs), converging within 95%
probability in a 0.1 relative interval.

As part of the extension of the framework, we assigned
numerical values to the properties of attack steps and adver-
saries’ profiles. For the attack steps, the values have been
derived from CAPEC, inferring them from the entries of the
database (as an example, we have already discussed the Pre-
condition Expression for the Flooding attack in Sect. 4.2.1).
Regarding the adversaries, we have used the following set-
ting: Planning Horizon=5, Payoff = 500,000 and Cost of
Detection=1000.

If not differently specified, the properties of the model
(e.g., the components’ attributes in the SID model) have
been set to the default values as they are defined in the orig-
inal ADVISE Meta framework. Specific sensitivity analyses
should be performed at varying of the values of these param-
eters to evaluate their impact on the targeted metrics (see
Sect. 7.2 for a concrete example).

7.1 Analysis at varying of adversaries’profiles

Table 2 shows the results related to the probability of achiev-
ing the goals defined in Sect. 6.2.2, at varying of some
adversaries’ profiles. The adversaries have been chosen
among some of the most representative for the SPaCe sys-
tem: Vandal, Employee Untrained, Employee Disgruntled
and Terrorist. For this analysis, the system authentication
level has been configured as low. In particular, the strength-
OfUserAuthentication parameter defined in each element of
the SID model has been set to 0. This means that authentica-
tion is either absent or of an extremely low level (e.g., short
passwords are used, with no constraints on characters).

The first observation that can be made is that, for the
Employee Untrained adversary, the probability of achiev-
ing each objective is always 0. This happens because all
the involved attacks require the adversary’s hostility, i.e.,
the adversary’s profile must have the Intent attribute of type
Knowledge with value equal to 1. The Intent attribute of the
Employee Untrained adversary has value 0, therefore, he can
never reach any goal.

The Employee Disgruntled adversary is instead able
to achieve the sensor data manipulation goal (Sensor1
ManipulatedInputData), but not any other goal. The val-
ues of the attributes associated with this adversary are in
fact inadequate to reach the other goals. In particular, the
Resources attribute of this adversary is of type Individual,
therefore, the adversary’s profile in ADVISE Meta has the
Skill Resources with value 0. Most of the involved attacks
instead require that the adversary has at least some club-level
resources (e.g., the Flooding attack, see the Precondition
Expression in Sect. 4.2.1), meaning that in ADVISE Meta
the Skill Resources must have value greater or equal to 200
(see Table 1).

Comparing the results obtained for the Vandal and Ter-
rorist adversaries, we can see that the probabilities that the
Terrorist can achieve each goal is usually higher than those of
the Vandal (in some cases for the Vandal it is even equal to 0).
However, on some goals (e.g., Firewall2UnableToService),
the probability of success obtained by the Vandal is instead
higher than what is achieved by the Terrorist. In fact, some
goals (e.g., Firewall2UnableToService) are actually much
more attractive for a Vandal adversary than for a Ter-
rorist, since the latter will have other exploitable attack
paths that are more attractive and more convenient to
attempt.

7.2 Analysis at varying of the attack step success
probability

As mentioned in Sect. 2.4, there are several parameters
embedded in the ADVISE Meta framework (and in the gen-
erated ADVISE model) whose setting can have an impact on
the adversary’s behavior and on the probability of success-
fully reaching a goal.

In this section, we perform a sensitivity analysis consider-
ing one of these parameters, the Success Probability property
defined for each attack step.

The analysis has been performed considering the Man In
the Middle attack pattern (already discussed in Fig. 6) and
the Terrorist profile. For successfully completing the Man In
theMiddle attack and reaching theUseInterceptedData goal,
the adversary must successfully execute three sequential
attack steps: LAN_MITMDetermineCommunicationAccess,
LAN_MITMPositionBetweenTargets and LAN_MITM
MonitoringNetworkAccess.

The three plots in Fig. 7 show the probabilities of success-
fully completing the three attack steps at varying of the Suc-
cessProbability of theLAN_MITMMonitoringNetworkAccess
attack step (the last step before achieving the goal). It is
interesting to note that when increasing this probability
within the interval [0.1;0.7], the computed metrics remain
almost constant: this means that in the identified inter-
val this parameter is actually not affecting the adversary’s
behavior. On the contrary, when the Success Probability
becomes greater than 0.7, we can note a steepening of all
the three curves: not only the one directly describing the
LAN_MITMMonitoringNetworkAccess attack step (the bot-
tom one, in gray), but also the ones of the two preceding
attack steps. In fact, for values greater than 0.7, the Man In
theMiddle attack becomes more appealing for the adversary,
thus increasing the attack attempts and, in turn, increasing
the probability of successfully completing the attack in the
considered time interval (96h).
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Table 2 Probability of
successfully achieving goals as
the adversaries’ profiles vary

Goal Vandal Employee untrained Employee disgruntled Terrorist

DMZNetworkAccess 1 0 0 1

DMZNetworkAccess 1 0 0 1

DMZUseInterceptedData 0 0 0 0.8191

Firewall1LogicalAccess 0.9667 0 0 0.9999

Firewall1RansomwareInstalled 0 0 0 1

Firewall1UnableToService 0.9834 0 0 0.9548

Firewall2LogicalAccess 1 0 0 1

Firewall2RansomwareInstalled 0 0 0 1

Firewall2UnableToService 0.8264 0 0 0.0551

LANNetworkAccess 0.9647 0 0 0.8058

LANUseInterceptedData 0 0 0 0.3617

Sensor1ManipulatedInputData 1 0 1 1

ServerCILogicalAccess 0.8279 0 0 0.7756

ServerCIRansomwareInstalled 0 0 0 0.8978

ServerCIUnableToService 0.522 0 0 0.0615

VehicleNetworkNetworkAccess 1 0 0 1

VehicleNetworkUseInterceptedData 0 0 0 0

ViewInterfaceLogicalAccess 0.9995 0 0 0.3462

ViewInterfaceRansomwareInstalled 0 0 0 1

ViewInterfaceUnableToService 0.9698 0 0 0.9788

WANNetworkAccess 1 0 0 1

WANUseInterceptedData 0 0 0 0.3657

Fig. 7 Probability of successfully achieving the LANUseIntercepted-
Data goal for the Terrorist adversary, as the Success Probability
parameter of the LAN_MITMMonitoringNetworkAccess attack step
varies. The probabilities of successfully completing each of the three
attack steps composing the MITM attack are shown

7.3 Analysis at varying of implementation
characteristics of the system

Figure 8 shows the results of a simulation inwhich two differ-
ent system configurations are compared. The first uses a low

authentication level (as in the previous scenario), while the
second was configured with a high system’s authentication
level, i.e., more severe restrictions are placed on pass-
words. In the architectural model, the second configuration
is represented by setting the strengthOfUserAuthentication
parameter to 4, on each component of the system.

The results shown in the plot refer to a subset of the goals
considered in Sect. 6.2.2, evaluated only for the Terrorist
adversary, on the two configurations. As it can be imme-
diately noted, for most goals the success probability with the
“strong” authentication configuration is significantly lower
than with the “weak” authentication configuration, and in
most cases it is even zero.

Conversely, for some goals, the probability of the attacker
achieving them increases with the stronger authentication
method. It is the case, for example, of the LanNetworkAccess
goal:with a strong user authentication, the adversary (follow-
ing the execution algorithmmentioned inSect. 2.3) “realizes”
that reaching some goals (e.g., the Firewall1LogicalAccess
goal) would be too costly, and then she/he focuses on other
goals that are more rewarding (e.g., the LanNetworkAccess
goal). Note that this does not mean that the adversary is able
to causemore damage, but only that it is more likely to access
certain parts of the system.
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Fig. 8 Probability of successfully achieving goals for the Terrorist adversary as the user authentication level varies

Fig. 9 Simplified ADVISE model for the Terrorist adversary with the
ServerCILogicalAccess goal. Two different attack paths are taken by
the adversary, depending on whether weak or strong firewall authenti-
cation is implemented in the system. For each attack step, its success
probability is represented in square brackets

7.4 Analysis of most probable attack paths

As explained at the end of Sect. 2.3, in order to reach a goal,
the adversarywill follow the attackpath that ismore attractive
depending on the adversary’s skills and on the characteris-
tics of the target system. It is thus possible to observe how
the attack path followed by an adversary changes as some
characteristics of the system vary.

In Fig. 9 a simplified representation (ADVISE style) of
a combination of attack paths for the Terrorist adversary is

shown. In this example the goal considered by the adversary
is the ServerCILogicalAccess goal. Inside each yellow box
representing an attack step, its success probability derived
from the simulation is represented in square brackets. For this
particular example, we computed the probability of complet-
ing the attack up to 24 time units (hours). Similarly to what
have been done in Sect. 7.3, we ran two different simulations,
one where the strengthOfUserAuthentication parameters of
the two firewalls are set to “weak”, and one where they are
set to “strong”.

It is possible to observe that, after the second attack step,
two different attack paths are followed by the adversary. In
the case of “weak” firewalls’ authentication, the adversary
decides to try three different attack steps: the adversary first
tries to gain the logical access to the second firewall (i.e.,
she/he does not have the necessary preconditions), then to
gain access to the LAN network, and finally to gain access to
the Server CI. In the other case, when the firewalls’ authen-
tication is “strong”, the adversary is not able to gain logical
access to the second firewall, so she/he will try to circum-
vent the firewall rules. Even if the attack path is shorter (i.e.,
fewer attack steps) than the other, the success probabilities
are significantly lower.

7.5 Analysis of the exposure level of system’s
components

On the basis of broad analyses such as the one shown in
Sect. 7.1, it is also possible to obtain qualitative indications
on the level of exposure of the system components. As we
have already shown (e.g., in Sect. 7.1), we are able to com-
pute the probability that an adversary can successfully reach
a specific goal associated to a component. Now, we define
the exposure level of a component as the average probability
that an adversary successfully achieves all the goals associ-
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ated to the component (i.e., she/he successfully attacks the
component, thus achieving the associated goals), multiplied
by 10. This average could also be weighted according to par-
ticular needs. Once an adversary is fixed, the exposure level
of a certain component is, therefore, a score ranging from 0
to 10, which indicates how vulnerable the component is to
a set of attacks carried out by the specified adversary, in the
considered time window.

Figure 10 shows the exposure level of the SPaCe sys-
tem components for the Vandal and Terrorist adversaries.
The considered system configuration is the same used in
Sect. 7.1, i.e., with the low authentication level. Note that
the exposure level of components changes against different
adversaries. In this case, for all the components, the expo-
sure level against the Terrorist adversary is always equal to
or higher than against the Vandal adversary. For the consid-
ered attacks and the target system, the Terrorist is, therefore,
the most dangerous adversary. Besides Sensor1, which is the
most exposed component for both adversaries, we have that
(i) for the Terrorist, the second and third most exposed com-
ponents are Firewall1 and DMZ, but, (ii) for the Vandal, the
second and third most exposed components are instead View
Interface, and Firewall1.

It is not surprising that these are among the most easily
accessible components to adversaries: the sensors are avail-
able on board of vehicles, while the Firewall1 and the DMZ
(and theView Interface) can be reached by users connected to
the WAN. Paying more attention to these components is cer-
tainly a first step in strengthening system security because,
on one side, the sensors represent the entry point for sensi-
tive data coming from vehicles and, on the other side, the
Firewall1 and the DMZ represent a first point of defense for
the entire network infrastructure.

8 Related work

Security analysis has widely relied on models, especially
qualitative models, as a means to organize the information
on the system under analysis [3].

The survey in [12] proposes an extensive overview on
attack and defense modeling techniques based on Directed
Acyclic Graphs (DAGs). The authors analyze more than 30
formalisms and group them according to two main dimen-
sions, which are (i) attack and/or defense modeling, where
attack modeling focuses on attackers’ actions while defense
modeling focuses on defensive aspects, and (ii) static or
sequential approaches, where sequential formalisms can
model temporal aspects, while static approaches cannot.
Static modeling of attacks includes, among others, attack
trees, while sequential attack modeling includes Bayesian
networks. Among the static formalisms that include defense
aspects are security-activities graphs, while for sequential
approaches for defenses include, e.g., attack-response trees.
The authors also briefly illustrate a few formalisms which
are not based on DAGs, like Petri nets and attack graphs.

Attack trees [16, 26] originated from adapting the idea
behind fault trees to security analysis: basic attacks are com-
bined in a tree-like structure, until reaching a top event, which
represents a system-level security violation. Attack graphs
allow for a more detailed modeling of the possible paths an
adversary can follow, as they are not restricted to a tree struc-
ture. The ADVISE formalism [13] is a quantitative extension
of attackgraphs, inwhich the time required to performattacks
and their outcomes are determined by probability distribu-
tions. Further, ADVISE introduces specialized features to
describe different attackers.

Fig. 10 Exposure level of SPaCe components for Vandal and Terrorist adversaries
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TheADVISEMeta ontology framework [10] builds on the
ADVISE formalism to increase its abstraction level. To the
best of our knowledge, that is the only attempt in the literature
to automatically generate detailed, stochastic securitymodels
from a collection of systemmeta-components and a concrete
system configuration. For a more detailed discussion on the
peculiarities of ADVISE Meta, and of its positioning with
respect to other works sharing the same objective, we refer
the readers to the original paper byKeefe et al. that introduces
the framework [10].

In the following, we discuss the work in the literature
from a perspective that is closer to ours. That is, we focus on
work whose objective is to derive detailed security analysis
models from higher level representations of the system, and
we discuss the extent to which they consider a variety of
adversaries’ profiles and attack patterns.

The authors of [11] propose a tool that generates and simu-
lates attack scenarios based on CAPEC. The input of the tool
includes a detailed configuration of the network, information
on the hosts, the profiles of the adversaries, and the CAPEC
patterns. Their work shares some objectives with ours, most
importantly the evaluation of possible attacks against with
the inclusion of adversaries’ profiles. However, the work in
[11] is more tailored to advanced stages of system devel-
opment, when details on the system are known; conversely,
our approach can be applied since the early phases of the
systems development life-cycle. Furthermore, we provide a
more detailed characterization of adversaries, adopting the
categorization defined in the TAL library.

The authors of [17] have analyzed and evaluated sev-
eral existing conceptualizations on the topic of cyberthreat
analysis, including different taxonomies, sharing standards,
and ontologies. Like our work, they also covered both TAL
and CAPEC. Their analysis concludes that no single tax-
onomy covers all the aspects and abstraction layers that
are needed to perform an effective security analysis. We
believe that such result confirms the need for cross-taxonomy
mappings, like those we have presented in this paper. The
work in [1] proposes a framework for assigning security
scores to domain-specificCyber-Physical Systems. Thework
also includes different attack types and adversaries’ profiles.
However, differently from our work, the attacks to the sys-
tem are not simulated, but instead a scoring algorithm is used.
Besides that, the approach adopts more general categories,
both for attack types and for the capabilities of adversaries.
In our work, we specify more detailed adversaries’ profiles
(in terms of accesses, knowledge, and skills), as well as more
detailed attack patterns.

The authors of [8] propose a meta-language for modeling
threats and simulating attacks. The approach is based on a
textual meta-language that is used to specify domain-specific
models, from which Java code for simulating the system is
automatically derived.However, common attack patterns and

adversaries’ profiles are not included in the proposed meta-
language. The work in [23] proposes extensions to UML for
the specification and modeling of security aspects of critical
infrastructures. Based on such specification,models for secu-
rity analysis can be automatically generated. While UML is
relatively widespread, building detailed UML models using
customized profiles requires advanced modeling skills; con-
versely, the ADVISE Meta approach and our methodology
focus on even higher abstraction and ease of use. Besides
that, the work in [23] does not consider different types of
adversaries’ profiles.

To summarize, we believe our work is one of the first
exploring the connections between: (i) quantitative security
analysis formalisms at early-design stage, (ii) established
taxonomies of adversaries’ profiles (like the one defined in
TAL), (iii) established taxonomies of attack patterns (like
those defined in CAPEC).

In a very recent work [7], a computational environment
based on the ADVISE formalism to model attack paths on
CPSs has been developed, using a generalized stochastic
optimization framework that allows to implement attacker
agents based on different techniques, including approximate
dynamic programming, reinforcement learning, or stochas-
tic programming. While such work also builds on top of
ADVISE, the focus is on its mathematical formulation on the
evaluation algorithm. In the present work, we focus instead
on how to build complex models and how to map them to
real security taxonomies.

9 Conclusions and future work

In this paper, we proposed an approach for an early-stage
security analysis and its application to a public transport
supervision system. We focused on a meta-level modeling
framework, called ADVISE Meta, which allows represent-
ing a system at a very high-level of abstraction, and then
automatically deriving complex low-level stochastic models
that represent possible attack steps and adversaries.

Our main objective was to enlarge the variety of the pos-
sible attack paths and adversaries considered in the analyses,
and for this purpose, we extended the ADVISE Meta ontol-
ogy integrating all adversaries described in the TAL and
some representative CAPEC attacks. The paper provides a
detailed discussion on the whole process for extending the
ontology, which includes: the identification of the relation-
ships between CAPEC, TAL, and ADVISE Meta elements,
the definition of the methodology for integrating CAPEC
attacks and TAL adversaries’ profiles, and its application to
show how specific attacks and profiles have been integrated.

In the second part of the paper, we made use of the
extended framework for an early-stage security analysis of a
public transport supervision system that has been developed
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in the context of the SPaCe project. We provided a detailed
viewon the key aspects of thewholemodeling process, show-
ing how to define the architectural model of the system, the
adversaries and their goals, and the targeted metrics.

We considered several security-oriented analyses, both
targeting quantitativemetrics, like the probability that a given
adversary can successfully reach a particular goal, and qual-
itative metrics, like ranking the system’s components based
on their estimated exposure level. We compared different
implementation solutions, we analyzed different system’s
scenarios at varying of the adversaries’ profiles, and we ana-
lyzed the most probable attack path that can be followed by
the adversary to reach the goal.

Ongoing work concerns the integration of defensive
aspects in the modeling framework. Defensive strategies are
currently embedded in the model, represented by the proba-
bility that an adversary succeeds in completing a given attack
step, or by some specific property of components, for exam-
ple the strength of the user authentication mechanisms. Our
next objective is to explicitly integrate preventive and reac-
tive defensive strategies in the framework, like the Moving
Target Defence approaches, to capture the dynamic interplay
between attackers and defenders. Finally, we are planning
to use the proposed modeling extension in the domain of
future cyber-physical ecosystems, as those addressed in the
SERICS project EcoCyber (Risk management for future
cyber-physical ecosystems [25]), where systems and services
are characterized by increasingly interconnected and vulner-
able digital components, aiming to understand how cyber
threats can exploit the network environment.
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