Capítulo 4: Planejamento De projetos de SOFTWARE

Plano de projeto

- objetivo \rightarrow melhorar a qualidade através da melhoria administrativa e técnica dos projetos.
- oficializa estimativas feitas para custos, prazos e recursos do projeto.
- não é estático \rightarrow deve evoluir junto com os progressos alcançados no desenvolvimento.
- só pode ser avaliado parcialmente enquanto o desenvolvimento não tiver sido concluído.
- permite ao gerente \rightarrow acompanhar e controlar o processo de desenvolvimento através da comparação entre o que foi planejado e o que realmente ocorre.

Plano de projeto (cont.)

- Duas partes:

1. determinar as necessidades específicas do usuário (definição e análise do escopo do projeto) \rightarrow técnicas de extração de requisitos.
2. como implementar o sistema para suprir essas necessidades (desenvolvimento do sistema, validação, instalação, treinamento e operação) \rightarrow modelos de custo.

- Atividades:

1. determinação de objetivos e restrições do projeto:

- observação dos requisitos do usuário;
- elaboração da declaração de objetivos e restrições;

2. estudo de viabilidade:

- elaboração da lista de alternativas;
- elaboração de estimativas de custo, tempo e recursos;
- determinação dos riscos;
- análise de custo-benefício;

3. organização do projeto:

- organização do desenvolvimento e da equipe;
- programação do projeto.

Declaração de objetivos e restrições do projeto

- contrato entre o cliente e o desenvolvedor.
- definição dos objetivos do projeto (funcionalidades descritas e avaliadas);
- restrições e/ou delimitações impostas pelo software ao hardware (memória disponível, outros sistemas existentes ou limite de recursos);
- critérios de seleção (facilidade de acesso e disponibilidade de apoio ao treinamento);
- interfaces com outros sistemas (hardware, software, dispositivos de entrada/saída etc.);
- desempenho esperado (processamento e tempo de resposta, número de usuários simultâneos, quantidade de clientes e tempo máximo de resposta necessário);
- confiabilidade (sistema que monitora pacientes versus sistema que controle estoque).

Sementes $\mathfrak{6}$ Companhia é uma empresa que comercializa sementes para jardinagem. Ela tem um sistema manual de manufatura de mercadorias que atendia plenamente a demanda; no entanto, a expansão de mercado acabou apontando falhas tanto no setor de vendas como no setor de produção.

- Técnica de extração utilizada: entrevistas

1. Sobre a empresa:

Nunca teve um sistema computadorizado; tem forte vínculo com métodos de trabalho manual utilizados; necessitará longo tempo de treinamento e adaptação; tem desconfiança em relação às mudanças.
2. Sobre os funcionários:

Vários tipos de usuários; total inexperiência no uso de computadores.
3. Problemas com as funcionalidades do sistema:

- Falta de eficiência para lidar com produtos manufaturados no estoque.
- Erros no controle de estoque de matérias-primas: a elaboração de uma receita (manufatura do produto) depende do estoque de várias matérias-primas que a compõem. A ausência de estoque de qualquer uma delas fará com que o pedido fique pendente até que matéria-prima seja comprada.
- Atraso na atualização de informações sobre produção:
- Erros e dificuldade na obtenção de informações, gerando descontentamento de clientes.
- Excesso de burocracia na manipulação e encaminhamento de pedidos, gerando atrasos, descontentamento de clientes e sobrecarga de trabalho para os funcionários.
- Problemas com maus pagadores por não se ter disponíveis informações de crédito do cliente.

Projeto: Sistema de venda de sementes

- Problemas do sistema atual:
(a) atualização dos registros de estoque não acompanha ritmo da produção, ocasionando problemas no setor de manufatura e de vendas por telefone;
(b) produção não acompanha ritmo das vendas;
(c) tempo consumido no processamento de pedidos é tão grande que o pessoal do armazém precisa exceder a jornada de trabalho.
- Objetivos do projeto:
- agilizar a comunicação entre os departamentos da empresa, viabilizando seu sistema de compras, produção e comercialização.
- controlar pedidos: cadastrar pedido; controlar pedidos da fila de espera; e gerar ordens de serviço;
- controlar estoque de matéria-prima: atualizar e conferir estoque; gerar ordem de compra; e gerar relatórios de controle de estoque;
- controlar estoque de produtos manufaturados: atualizar e conferir estoque; gerar ordem de produção relatório de controle de estoque;
- controlar contas a receber;
- agilizar produção;
- fazer composição de custos: calcular preço do produto de acordo com o preço das matérias-primas que o compõem;
- emitir fatura.
- Restrições do projeto
- Pedidos recebidos até o meio-dia devem estar prontos para entrega até o início do expediente do dia seguinte.
- Relatórios de controle de estoque devem ser diários.
- Composição de custos refeita toda vez que houver alteração no preço de alguma das matérias-primas.
- Faturas devem ser arquivadas para uso futuro.
- Critérios de aceitação
- Facilidade de utilização, pois os usuários têm total inexperiência no uso de computador.
- Facilidade de manutenção, pelo mesmo motivo.
- Idéias preliminares
- Colocar código do produto no próprio produto para auxiliar sua localização no depósito e reduzir enganos de estocagem.
- Produzir "guias de busca" de matérias-primas para agilizar o processo de manufatura dos produtos.
- Criar uma interface semelhante à atual para minimizar o problema da inexperiência dos usuários no uso de computadores.
- Informatizar o sistema de vendas e de produção.

Estudo de viabilidade

- fazer a análise dos requisitos para definir várias alternativas de solução para o projeto.
- alternativas ordenadas por preferência e feita recomendação.
- requisitos freqüentemente são conflitantes ou economicamente inviáveis.
- requisitos podem e devem ser negociados.
- deve-se ir excluindo aqueles que não são viáveis tecnicamente, operacionalmente e economicamente.
- as alternativas que sobrarem serão consideradas viáveis.
- Três tipos de viabilidade:
- Viabilidade técnica (desenvolvimento interno só alternativas que necessitem apenas do conhecimento técnico da equipe).
- Viabilidade operacional ou organizacional (rejeição do usuário a alguma alternativa tecnicamente viável, por ex., desenvolvimento do sistema por terceiros, ou compra de outro equipamento).
- Viabilidade econômica (custo operacional e de desenvolvimento; economias de custo e/ou aumentos de receita em comparação com o sistema existente).

Lista de alternativas

- o grau de funcionalidade do sistema deve ser examinado (diferentes fronteiras de automação e brainstorming).
- os aspectos funcionais de cada alternativa devem ser verificados e pontuados pela complexidade de implementação.
- se duas funcionalidades têm a mesma prioridade de implementação e a mesma prioridade de negociação, a mais simples (menos complexa) é a melhor.
- um conjunto de alternativas será gerado.
- a viabilidade técnica de cada alternativa deve ser examinada, rejeitando-se as que não forem viáveis.
- as alternativas tecnicamente viáveis podem ser apresentadas ao usuário para verificar se ele rejeita alguma delas (viabilidade operacional).
- deve-se passar então para o estudo da viabilidade econômica.

Sistema de venda de sementes

- para cada uma das alternativas técnica e operacionalmente viáveis \rightarrow estimativas de custo (em geral em termos de mão-de-obra e tempo de desenvolvimento), benefício e recursos e determinar os riscos, preparando um estudo de custo-benefício para cada alternativa.
- as alternativas viáveis devem ser apresentadas ao cliente, incluindo-se considerações sobre vantagens e desvantagens de cada uma.
- deve-se apresentar também uma recomendação da melhor solução para o problema, com um estudo de custo-benefício detalhado.
- Alternativa 1: manter o funcionamento atual da fábrica, aumentando o número de funcionários e o tamanho das instalações, para atender a demanda crescente.
- Alternativa 2: desenvolver um sistema informatizado para agilizar o funcionamento do sistema atual, mantendo seu modo de operação. Esse sistema terá as seguintes funções:

F1: controlar estoque de matéria-prima e de produtos manufaturados;

F2: controlar pedidos;
F3: controlar contas a receber;
F4: produzir guia de busca;
F5: compor os custos dos produtos manufaturados;
F6: emitir fatura.

- Alternativa 3: instalar um sistema integrado, totalmente informatizado, envolvendo os subsistemas de produção, controle de estoque e vendas. Esse sistema conterá todas as funções da alternativa 2 e mais a função controlar produção das máquinas. As ordens de serviço irão diretamente para as máquinas disponíveis.

Estimativas

- diretamente relacionadas com a decomposição do produto e do processo de desenvolvimento.
- as estimativas iniciais em geral são baseadas em experiências de desenvolvimentos anteriores.
- nas fases que se sucedem os valores estimados são registrados, de forma que seja possível verificar se o processo de estimativa permitiu que os resultados intermediários das estimativas convergissem para o valor real conforme o projeto foi avançando.
- para obter bons resultados, um método de estimativa deve:
- ter a primeira estimativa entre $\pm 30 \%$ do valor real;
- ter definida uma faixa de valores (erro-padrão de estimativa) que garanta que em pelo menos 68% das vezes o valor estimado esteja compreendido nessa faixa;
- permitir refinamentos da estimativa durante o desenvolvimento do sistema (reestimar ao final de cada fase, incluindo novas informações);
- ser fácil de utilizar;
- ter ferramentas de suporte e documentação.
- a imprecisão nas estimativas feitas nas fases iniciais do projeto é grande, pois pouco se sabe sobre o produto a ser desenvolvido.
- conforme o projeto avança, mais se passa a conhecer sobre o produto, e o grau de imprecisão tende a diminuir.
- os desenvolvedores de software não são bons estimadores por:
- não saberem exatamente o que é estimativa;
- não fazerem previsões adequadas para contrabalançar o efeito de distorções;
- não saberem lidar com os problemas políticos que dificultam o processo de estimativa; e
- não basearem as estimativas em desempenhos passados.
- um projeto de software requer estimativas no início do projeto e, periodicamente, daí por diante.

Estimativa de custo

- custo principal \rightarrow esforço (custo de mão-de-obra);
- Boehm sugere 152 horas (max. de horas produtivas num mês) como parâmetro para o cálculo do esforço.
- se para um projeto forem estimadas 40 pessoas-mês \rightarrow trabalho equivalente a 6.080 horas (152 x 40).
- esforço diretamente relacionado à produtividade \rightarrow quant. de trabalho realizada por uma unidade de esforço (ex. linhas de código/pessoas-mês).
- técnicas de decomposição: decompõem o software em pequenas subfunções que podem ser estimadas individualmente.
- Dois tipos de decomposição:

1. estimar o número de linhas de código, utilizando-se a métrica LOC (lines of code), ou estimando a funcionalidade através da métrica $F P$ (function points); e
2. decomposição do processo considerando-se as atividades de cada etapa da engenharia de software, dependendo do paradigma utilizado.

- LOC \rightarrow número de linhas de código executáveis de um software.
- FP \rightarrow pontos de função determinados estimando-se o número de entradas, saídas, arquivos de dados, consultas e interfaces externas, bem como valores de ajuste de complexidade.
- Pert \rightarrow utiliza o valor otimista e o valor pessimista para o cálculo da variável estimada:

$$
V e_{i}=\frac{o_{i}+p_{i}}{2}
$$

- erro-padrão de estimativa \rightarrow corrige para garantir que em pelo menos 68% das vezes o valor real esteja dentro do esperado ($V e_{i}$) corrigido pelo erro.
- Pert mais sofisticado: considera os valores otimista, pessimista e mais provável dos componentes do sistema:

$$
V e_{i}=\frac{o_{i}+4 m_{i}+p_{i}}{6}
$$

- estimativa global, incluindo todos os n componentes de um sistema, será:

$$
V e=\sum_{i=1}^{n}\left(V e_{i}\right)
$$

Funções	Otim.	Mais prov.	Pessim.	Esper.
F1	1.400	2.000	2.800	2.033
F2	3.500	5.400	6.300	5.233
F3	1.500	2.300	3.700	2.400
F4	5.000	6.300	7.500	6.283
F5	1.000	1.500	1.900	1.483
F6	2.300	2.940	3.175	2.833

Tabela 1: Tamanho estimado para as funções da alternativa 2

- pode-se utilizar um modelo de custo e estimar o esforço e tempo necessários para o desenvolvimento do projeto.
- o tamanho total estimado para a alternativa 2 é $S=20.265(20 \mathrm{KLOC})$.
- utilizando o modelo básico de Boehm, o esforço total estimado será $\mathrm{E}=56$ pessoas-mês.
- estimativa grosseira \rightarrow apenas o tamanho do sistema foi considerado.
- estimativas podem ser refinadas estimando-se o esforço das funções em cada etapa (de acordo com o paradigma).

Etapa	\% de esforço
Planejamento/análise dos requisitos	6 a 8
Projeto	16 a 18
Implementação	48 a 68
Teste/integração	16 a 34

Tabela 2: Proporção de esforço gasto nas fases de desenvolvimento

- porcentagem de esforço \rightarrow tipo de sistema e do ambiente de desenvolvimento.
- custo monetário da alternativa \rightarrow multiplicar o total de cada fase pela taxa relativa ao custo em pessoas-mês (pm) para a fase (custo monetário de cada fase)
- permite programar a utilização dos recursos financeiros (por ex., se a fase de planejamento/análise dos requisitos requer quatro pessoas-mês; se o custo por pessoa-mês $=\$ 230,00$, então o custo total $=\$ 920,00)$.

Etapa	Esforço estim.
Planejamento/análise dos requisitos	4 pm
Projeto	10 pm
Implementação	22 pm
Teste/integração	20 pm

Tabela 3: Distribuição do esforço para a alternativa 2.

Estimativa de tempo

- tempo de desenvolvimento \rightarrow depende da produtividade da equipe (quanto maior a produtividade, menor é o tempo de desenvolvimento).
- modelo de Boehm utilizado para estimar o tempo de desenvolvimento da alternativa $2 \rightarrow T_{d}=10$ meses.

Etapa	\% de tempo
Planejamento/análise dos requisitos	10 a 40
Projeto	19 a 38
Implementação	19 a 38
Teste/integração	18 a 34

Tabela 4: Proporção de tempo gasto nas fases de desenvolvimento

Estimativa de recursos

- devem ser estimados os recursos necessários para o desenvolvimento do projeto e para a operação do produto de software.
- principais recursos são: humano, de software e de hardware.

recursos humanos

- habilidades exigidas, disponibilidade, duração das tarefas e data em que esse recurso deve estar disponível; o número de pessoas só pode ser determinado após a estimativa de esforço ter sido efetuada.
- para projetos pequenos (uma pessoa-ano ou menos), uma única pessoa pode executar todas as etapas, consultando especialistas quando necessário.
- para projetos grandes, deve-se organizar uma equipe; o número de pessoas na equipe pode ser estimado dividindo-se o esforço total pelo tempo de desenvolvimento.
- sistema de venda de sementes \rightarrow número de pessoas na equipe é igual ao esforço dividido pelo tempo de desenvolvimento, ou seja:
(56 pessoas-mês $/ 10$ meses $=6$ pessoas).

recursos de hardware

- descrição, disponibilidade, duração do uso e início da utilização.
- hardware utilizado durante o desenvolvimento; hardware em que o produto será instalado, ou ainda outros equipamentos necessários para o desenvolvimento e operação do sistema.

recursos de software

- recursos necessários ao desenvolvimento e gerenciamento do projeto.
- conjunto de ferramentas que auxiliem nas diversas tarefas de engenharia de software (CASE): desenvolvimento, planejamento, gerenciamento, programação, integração e testes e construção de protótipos.
- recursos para a operação do sistema (softwares básicos e aplicativos).
- a proporção dos recursos gastos em cada etapa do ciclo de vida depende da natureza do projeto:
- grande e complexo arquivo de dados \rightarrow os recursos devem se concentrar no projeto;
- se o sistema for utilizar um arquivo existente para a programação de produção \rightarrow as fases de implementação e o treinamento de operadores vão requerer mais recursos.
- em sistemas de apoio à decisão, se o usuário não souber direito quais são as informações necessárias, como serão usadas e com que freqüência \rightarrow o estudo de viabilidade e a especificação de requisitos do sistema exigirão mais recursos.

Estimativa de benefícios

- tangíveis: aumento de receita, redução de custo operacional, aperfeiçoamento de serviços ao cliente etc.
- intangíveis: moral da equipe, melhoria do processo de tomada de decisão, melhoria na documentação e facilidade de uso do sistema.
- cliente pode esperar aumentar o lucro \rightarrow mais trabalho na mesma quantidade de tempo.
- pedir auxílio ao usuário, pois ele, melhor do que ninguém, conhece os benefícios possíveis.
- nem sempre é possível estimar todos os benefícios; muitos são baseados em fatos futuros que, não ocorrendo, modificam a estimativa feita.
- benefícios considerados em partes do sistema podem afetar outras partes; nem sempre é possível estimar quais partes e quanto serão afetadas.
- benefícios baseados em novas tecnologias não podem ser previstos.

sistema de venda de sementes

- Alternativa 1: rotina de trabalho não será alterada; aumento do número de funcionários tornará desnecessário o pagamento de horas-extras e permitirá que as operações de atualização de estoque não se atrasem em relação ao ritmo de trabalho das unidades produtivas. Custo de investimento de $10.400,00$, referentes a reformas e ampliação das dependências da empresa. Custo operacional de $23.560,00$ anuais, gastos com salários e encargos de três novos funcionários. Economia esperada de 12.070,00 ao ano, correspondentes a economias hoje pagas em horas-extras.
- Alternativa 2: o custo de investimento previsto para essa alternativa é de $\$ 22.930,00$, referentes ao desenvolvimento de software. O custo operacional será de $\$ 20.420,00$ ao ano, necessários à manutenção do hardware, pagamento de funcionário para manutenção de software e outros gastos. A economia anual esperada é de $\$ 30.880,00$.
- Alternativa 3: para essa alternativa, estima-se um custo de $\$ 52.900,00$, que correspondem a gastos com aquisição de hardware e desenvolvimento de software.
O custo operacional esperado é o mesmo da alternativa anterior, ou seja, $\$ 20.420,00$ ao ano, e o benefício estimado é de $\$ 39.500,00$ ao ano.

Análise de risco

- identificar as partes que apresentam as maiores dificuldades no desenvolvimento.
- apontar os riscos e as ações que devem ser tomadas para contornar as causas desses riscos.
- estabelecer mecanismos para avaliar o progresso do desenvolvimento e a organização do pessoal que construirá o produto.
- fatores que podem provocar o encerramento do projeto devem ser tratados antes do início do desenvolvimento.
- Considerações:
- quais riscos podem fazer com que o projeto do software fracasse?
- como a mudança nos requisitos do cliente, nos computadores a que se destina o software, nas tecnologias de desenvolvimento e nas entidades ligadas ao projeto afetará o sucesso global e o cumprimento do cronograma?
- quais métodos e ferramentas devem ser usados para o desenvolvimento do sistema?
- quantas pessoas devem ser envolvidas?
- quanta ênfase deve ser dada à qualidade?
- Riscos \rightarrow medidos pelo grau de incerteza das estimativas estabelecidas para:
- custo;
- prazo; e
- recursos.
- escopo do projeto mal estabelecido ou requisitos sujeitos a mudanças \rightarrow incerteza das estimativas aumenta e os riscos de fracasso também.
- Atividades:
- Identificação: produzir uma lista de fatores de risco que podem comprometer o sucesso do projeto (complexidade do produto, ambigüidade na especificação, construir um produto para o qual não existe mercado).
- Análise: determinar a probabilidade da ocorrência de cada fator de risco e o impacto (natureza, alcance e tempo de ocorrência).
- Priorização: ordenar os fatores de risco identificados e analisados.

Análise de custo-benefício

- quanto maior o risco \rightarrow maior deverá ser o benefício.
- indicar prioridades para obtenção dos beneficios (tangíveis e intangíveis):
- obrigatório;
- importante mas negociável; ou
- opcional.
- duas maneiras de aumentar o lucro \rightarrow aumentando a receita e/ou diminuindo o custo:

$$
\text { lucro }=\text { receita }- \text { custo }
$$

Análise de custo

- custo: varia com a funcionalidade e características de qualidade.
- dois tipos: (1) investimento (custo fixo); e (2) custo operacional (custo variável, que depende da utilização que será feita do software).
- baseado:
- nas estimativas de esforço e/ou tempo;
- na quantidade e qualidade de recursos;
- na conversão do sistema antigo no novo e operação do sistema novo.

1. Custos de desenvolvimento: ocorrem apenas uma vez e são considerados investimento.

- Pessoal: analistas, programadores, operadores, pessoal administrativo etc.
- Equipamentos: tempo de máquina, espaço em disco, instrumentos e equipamentos novos.
- Software: ferramentas Case.
- Materiais: discos, fitas, publicações, papéis.
- Despesas gerais: apoio administrativo, espaço, luz.
- Despesas externas: consultoria, treinamento especial.

2. Custos operacionais: iniciam-se com a instalação e continuam durante a vida útil do sistema.

- Custo de hardware: tempo de residência, espaço de memória, operações de E/S.
- Custo de pessoal: operador, administrador, programador (manutenção).
- Materiais: formulários, discos.
- Despesas gerais: aluguéis, auditoria, serviços externos.

3. Outros custos:

- Custo de instalação: integração do software ao complexo de facilidades, equipamentos, pessoal e procedimentos do sistema operacional do usuário.
- Custo de treinamento: do usuário, pessoal de operação, preparação de dados e manutenção.
- Custo de conversão: de programas, base de dados, documentação, teste de validação e aceitação.
- Custo de documentação: associada ao tamanho do produto; deve-se estimar o esforço necessário para escrever, revisar e especificar a documentação.

Análise de benefício

- benefícios são medidos avaliando-se: a melhoria nos negócios dos clientes, a remoção de um problema, ou a exploração de uma oportunidade.
- análise de benefício: compara pares de requisitos e benefício para verificar se eles são consistentes e realistas.
- cada requisito: deve refletir benefícios e, se isso não ocorrer, deve-se considerar a possibilidade de o requisito ser supérfluo ou de os benefícios correspondentes não terem sido apropriadamente determinados.

Retorno do investimento

- cada parte do projeto rende seus próprios benefícios, acarreta seus próprios custos e exige recursos próprios.
- enumeração de custos, benefícios e recursos \rightarrow ajuda a decidir quais partes devem ser realizadas, em que ordem devem ser implantadas e quais devem ser canceladas ou adiadas no caso de faltarem recursos.
- facilita o processo de estimativa total de custo e benefício do projeto.
- deve-se prever em quanto tempo o cliente recuperará o dinheiro aplicado.
- o custo estimado \rightarrow alto ou não, dependendo do valor do benefício esperado e do tempo para o retorno do investimento.
- preferência a investimentos \rightarrow retorno é mais rápido e maior no início.
- o valor estimado do benefício deve ser projetado para o futuro \rightarrow quando o benefício acumulado cobrirá o investimento feito.
- valor futuro do dinheiro:

$$
F=P(1+i)^{n}
$$

- investimento tem chance de ser um bom negócio $\rightarrow 0$ retorno se dá em aproximadamente três anos e se o tempo de vida do sistema for longo o suficiente para que haja tempo de se recuperar o investimento e ter lucro.
- se o valor presente líquido for igual a zero \rightarrow melhor aplicar o dinheiro num investimento de menor risco.

Sistema de venda de sementes

- Alternativa 1: não haverá necessidade de treinar pessoal para novos procedimentos; investimento pequeno; risco \rightarrow problema inicial pode voltar a ocorrer caso a expansão de mercado continue; não há previsão de recuperação do investimento.
- Alternativa 2: com automatização das funções básicas os sistemas de produção e de controle de estoque serão agilizados; a expansão não afetará essa solução; investimento não é alto; estima-se que o retorno se dê por volta de três anos. Desvantagens \rightarrow riscos inerentes ao desenvolvimento, custos com aquisição de equipamentos e treinamento.
- Alternativa 3: omunicação direta da linha de montagem com os sistemas de controle (estoque e finanças) trará agilidade no processo produtivo e de vendas; risco \rightarrow custo e a modificação radical nos processos de praticamente todos os setores da empresa.
O investimento é 2,3 vezes maior que o da alternativa
2 , e o benefício apenas 1,3 vez maior.
- Recomendações:
- segunda alternativa irá suprir as necessidades operacionais da empresa sem, no entanto, modificar muito radicalmente sua estrutura de funcionamento;
- permite que os negócios da empresa possam se expandir sem que haja necessidade de reinvestimento no sistema;
- retorno do investimento se dará após 2,5 anos e, durante a sua vida útil (cinco anos), o sistema dará um lucro de:
$\$ 37.403,00-\$ 23.930,00=\$ 13.473,00$.

Estudo de custo-benefício detalhado para alternativa 2
Custo do desenvolvimento
Pessoal (56 pm) \$ 16.300,00
Equipamentos
Materiais
$\$ 5.800,00$
\$ 500,00
Despesas gerais
\$ 330,00
\$ 22.930,00

Custo operacional (anual)

Hardware (manutenção) \$ 3.600,00
Mão-de-obra
$\$ 14.420,00$
\$ 1.560,00
Despesas gerais
\$ 840,00
\$ 20.420,00
Receita adicional esperada
$\$ 2.240,00$ por mês $=\$ 30.880,00$ por ano
Economia anual de custo
Benefício $=\$ 30.880,00-\$ 20.420,00=\$ 10.460,00$ por ano.

Retorno do investimento

- benefício (valor futuro) \rightarrow igual para todos os anos;
- taxa de juros $\rightarrow 12 \%$ ao ano.

Ano	Benefício	Taxa	Valor pres.	V. pr. ac.
1	$10.460,00$	1,12	$9.339,00$	$9.339,00$
2	$10.460,00$	1,25	$8.368,00$	$17.707,00$
3	$10.460,00$	1,40	$7.071,00$	$25.178,00$
4	$10.460,00$	1,57	$6.662,00$	$31.840,00$
5	$\$ 10.460,00$	1,88	$5.563,00$	$37.403,00$

Tabela 5: Retorno do investimento para a alternativa 2

Organização do projeto

- decompor cada fase do desenvolvimento em atividades;
- selecionar e organizar as pessoas que farão parte da equipe;
- atribuir as atividades às pessoas da equipe;
- estimar a duração das atividades (atividades a ser realizadas em seqüência e em paralelo);
- conhecer as habilidades necessárias para realizar cada atividade.

As atividades do desenvolvimento

- quando o projeto é planejado, uma série de marcos deve ser estabelecida; cada marco é o ponto final de alguma atividade do processo.
- deve-se escolher um paradigma para o desenvolvimento do sistema; cada tarefa a ser executada deve ser definida, estimada, documentada e transmitida de etapa para etapa do desenvolvimento de software.
- divisão do trabalho de desenvolvimento de software em partes gerenciáveis.

Organização da equipe

- diferentes opções para aplicação de recursos humanos em um projeto que exija n pessoas trabalhando durante k anos:
- n indivíduos designados para m tarefas funcionais diferentes; pouco trabalho combinado; coordenação cabe a um gerente de software que pode ter outros projetos com que se preocupar;
- n indivíduos designados para m tarefas funcionais diferentes, com $m<n$, de forma que equipes informais sejam estabelecidas. Um chefe de equipe pode ser designado; a coordenação das equipes fica sob a responsabilidade de um gerente;
- n diferentes indivíduos são organizados em t equipes; cada equipe tem uma organização específica e tem a ela atribuídas uma ou mais tarefas funcionais; coordenação é controlada tanto pela equipe quanto pelo gerente (mais produtivo).
- Composição da equipe: desenvolvedores com experiência (sênior), pessoal técnico e engenheiros substitutos. Além disso, deve-se especificar o pessoal auxiliar, como especialistas, pessoal de apoio e bibliotecário.

Programação de projeto

- organizar as atividades de desenvolvimento em uma seqüência coerente.
- equilibrar recursos de pessoal, hardware e software, de maneira que sejam usados da melhor forma possível.
- cronograma do projeto: como e quando esses recursos devem estar disponíveis.
- quem será responsável pelas atividades do ciclo de vida do sistema.
- duas perspectivas:

1. Uma data final para a entrega do sistema já foi estabelecida de forma irrevogável. Nesse caso, o esforço deverá ser distribuído dentro desse espaço de tempo.
2. Limites cronológicos aproximados são discutidos, mas a data final para a entrega é estabelecida pela equipe de engenharia de software. O esforço é distribuído para se tirar o melhor proveito dos recursos, e uma data final é definida após cuidadosa análise.

- perguntas a serem respondidas:
- Como se relaciona o tempo cronológico com o esforço humano?
- Quais tarefas e paralelismos devem ser esperados?
- Quais marcos de referência podem ser usados para mostrar o progresso?
- Como o esforço é distribuído ao longo do processo de engenharia de software?
- Existem métodos disponíveis para determinação de prazos?
- Como representar fisicamente o cronograma e como rastrear o progresso?
- cronograma do projeto: representado como um conjunto de diagramas mostrando a divisão do trabalho, a dependência entre atividades e a alocação da equipe.
- pode ser gerado automaticamente, a partir do banco de dados do projeto, utilizando-se uma ferramenta automatizada para gerenciamento de projetos.

Tarefa	Descrição	Sem.	Preced.
A	1-3 Criar telas	3	nenhuma
B	3-4 Implementar cadastrar cliente	5	A e G
C	3-6 Implementar estoque matéria-prima	4	A e G
D	3-7 Implementar estoque produto	5	A e G
E	4-8 Implementar verificar crédito	3	B
F	1-2 Criar banco de dados	5	nenhuma
G	2-3 Inicializar base de dados teste	1	F
H	7-11 Implementar guia de busca	9	D
I	6-10 Implementar comprar matéria-prima	5	C
J	8-12 Implementar controlar pedidos	4	E
L	3-5 Implementar controlar contas a receber	3	A e G
M	5-9 Implementar compor custos de produto	5	L
N	9-12 Implementar emitir fatura	3	M
O	12-13 Integrar subsistema vendas	4	J e N
P	10-13 Integrar subsistema estoque	3	I
Q	11-13 Integrar subsistema produção	3	H
R	13-14 Realizar o teste do sistema	4	O, P e Q

Figura 1: Pert/CPM para o sistema de venda de sementes

