MemScale: Active Low-Power Modes for Main Memory *

Qingyuan Deng

Dept. of Computer Science
Rutgers University

qdengQ@cs.rutgers.edu

Thomas F. Wenisch

Advanced Computer Architecture Lab
University of Michigan

twenisch@umich.edu

Abstract

Main memory is responsible for a large and increasing fraction
of the energy consumed by servers. Prior work has focused on
exploiting DRAM low-power states to conserve energy. However,
these states require entire DRAM ranks to be idled, which is dif-
ficult to achieve even in lightly loaded servers. In this paper, we
propose to conserve memory energy while improving its energy-
proportionality by creating active low-power modes for it. Specifi-
cally, we propose MemScale, a scheme wherein we apply dynamic
voltage and frequency scaling (DVFS) to the memory controller
and dynamic frequency scaling (DFS) to the memory channels and
DRAM devices. MemScale is guided by an operating system pol-
icy that determines the DVFS/DFS mode of the memory subsys-
tem based on the current need for memory bandwidth, the poten-
tial energy savings, and the performance degradation that applica-
tions are willing to withstand. Our results demonstrate that Mem-
Scale reduces energy consumption significantly compared to mod-
ern memory energy management approaches. We conclude that the
potential benefits of the MemScale mechanisms and policy more
than compensate for their small hardware cost.

Categories and Subject Descriptors C.5 [Computer System Im-
plementation]: Miscellaneous

General Terms Design, experimentation, performance
Keywords Memory subsystem, energy conservation, dynamic
voltage and frequency scaling

1. Introduction

Over the last several years, it has become clear that the massive
energy consumption of datacenters represents a serious burden on
their operators and on the environment [12]. Concern over energy

* This research has been partially supported by NSF under grants #CCF-
0916539, #CSR-0834403, #CCF-0811320, and Google.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ASPLOS’11, March 5-11, 2011, Newport Beach, California, USA.

Copyright © 2011 ACM 978-1-4503-0266-1/11/03. .. $10.00

David Meisner

Advanced Computer Architecture Lab
University of Michigan

meisner@umich.edu

Luiz Ramos

Dept. of Computer Science
Rutgers University

luramos@cs.rutgers.edu

Ricardo Bianchini

Dept. of Computer Science
Rutgers University

ricardob@cs.rutgers.edu

waste has led to numerous academic (e.g., [35, 37, 39]) and indus-
trial efforts to improve the efficiency of datacenter infrastructure.
As a result, in state-of-the-art facilities, over 80% of power is now
consumed by servers themselves [15].

Historically, within the server, the processor has dominated energy
consumption. However, as processors have become more energy-
efficient and more effective at managing their own power consump-
tion, their contribution has been decreasing. In contrast, main mem-
ory energy consumption has been growing [5, 25, 28], as multi-
core servers are requiring increasing main memory bandwidth and
capacity. Making matters worse, memory energy management is
challenging in the context of servers with modern (DDR*') DRAM
technologies. Today, main memory accounts for up to 40% of
server energy [S]—comparable to or slightly higher than the pro-
cessors’ contribution. In reality, the fraction attributable to memory
accesses may be even higher, since these estimates do not consider
the memory controller’s energy consumption.

The early works on memory energy conservation focused on cre-
ating memory idleness through scheduling, batching, and layout
transformations, so that idle low-power states could be exploited
[10, 13, 20, 24, 27, 36]. Those studies generally assumed the
rich, chip-level power management permitted in older technolo-
gies, such as RDRAM [8]. More recent works have considered
reducing the number of DRAM chips that are accessed at a time
(rank subsetting) [1, 44] and even changing the microarchitecture
of the DRAM chips themselves to improve energy efficiency [43].
A common theme of these works is to reduce the number of chips
or bits actually touched as a result of a memory access, thereby
reducing the dynamic memory energy consumption.

We argue that none of these approaches is ideal. Creating enough
idleness is difficult in modern DDR* memories, since power man-
agement is available only at coarse granularity (entire ranks span-
ning multiple chips). Thus, deep idle low-power states can rarely
be used without excessively degrading performance. For this rea-
son, today, even the most aggressive memory controllers use only
shallow, fast-exit power-down states to conserve energy while idle.
Rank subsetting requires changes to the architecture of the mem-
ory DIMMs (Dual In-Line Memory Modules), which are expensive
and increase latency. Changing DRAM chip microarchitecture may
have negative implications on capacity and yield.

I DDR* refers to the family of Double Data Rate memory devices.

In contrast, we propose MemScale, a set of low-power modes, hard-
ware mechanisms, and software policies to conserve energy while
respecting the applications’ performance requirements. Specifi-
cally, MemScale creates and leverages active low-power modes
for the main memory subsystem (formed by the memory devices
and the memory controller). Our approach is based on the key ob-
servation that server workloads, though often highly sensitive to
memory access latency, only rarely demand peak memory band-
width. To exploit this observation, we propose to apply dynamic
voltage and frequency scaling (DVFS) to the memory controller
and dynamic frequency scaling (DFS) to the memory channels and
DRAM devices. By dynamically varying voltages and frequencies,
these mechanisms trade available memory bandwidth to conserve
energy when memory activity is low. Although lowering voltage
and frequency causes increases in channel transfer time, controller
latency, and queueing time at the controller, other components of
the memory access latency are essentially not affected. As a result,
these overheads have only a minor impact on average latency. Also
importantly, MemScale requires only limited hardware changes—
none involving the DIMMs or DRAM chips—since most of the
required mechanisms are already present in current memory sys-
tems. In fact, many servers already allow one of a small number of
memory channel frequencies to be statically selected at boot time.

To leverage the new memory DVES/DES modes, we further pro-
pose a management policy for the operating system to select a
mode using online profiling and memory power/performance mod-
els that we have devised. The models incorporate the current need
for memory bandwidth, the potential energy savings, and the per-
formance degradation that applications would be willing to with-
stand. We assume that the degradation limit is defined by users on
a per-application basis.

MemScale’s low-power modes and performance-aware energy
management policy have several advantages. Because the modes
are active, there is no need to create or rely on memory idleness.
Not relying on idleness improves memory energy-proportionality
[6]. In fact, even when the memory is idle, scaling can lower power
consumption further. Because MemScale does not require changes
to DIMMs or DRAM chips and largely exploits existing hardware
mechanisms, it can be implemented in practice at low cost. Because
MemScale’s energy-management policy is driven by the operating
system (at the end of each time quantum), the memory controller
can remain simple and efficient. Finally, MemScale can be com-
bined easily with rank subsetting, since each addresses comple-
mentary aspects of energy management (memory controller energy
and background energy vs. dynamic energy, respectively).

We evaluate MemScale using detailed simulations of a large set of
workloads. Our base results demonstrate that we can reduce mem-
ory energy consumption between 17% and 71%, for a maximum
acceptable performance degradation of 10%. In terms of system-
wide energy savings, our approach produces energy savings rang-
ing from 6% to 31%. For comparison, a system that uses aggressive
transitions to fast-exit powerdown for energy management con-
serves only between 0.3% and 7.4% system energy. In contrast,
Decoupled DIMMs [45], the closest prior work, conserves between
-0.8% and 11% system energy. MemScale can save almost a fac-
tor of 3x more system energy on average than Decoupled DIMMs,
without exceeding the allowed performance degradation.

We also perform an extensive sensitivity analysis to assess the im-
pact of key aspects of our memory system design and manage-
ment policy: the number of memory channels, the contribution of
the memory subsystem to overall power consumption, the power
proportionality of the memory controller and DIMMs, the maxi-
mum acceptable performance degradation, and the length of Mem-

Scale epochs and profiling phases. This analysis demonstrates that
the fraction of memory power and the power proportionality have
the largest impact on our results. MemScale’s energy savings grow
with a decrease in power proportionality or an increase in the mem-
ory subsystem’s contribution to overall power, while still maintain-
ing performance within the allowed degradation bound.

Based on our experience and results, we conclude that the potential
benefits of MemScale are significant and more than compensate for
its small hardware and software costs.

Summary of contributions. We propose dynamic memory fre-
quency scaling, or “MemScale”, a new approach to enable mem-
ory active low-power modes. We further examine varying memory
controller voltage and frequency in response to memory demand,
an opportunity that has been overlooked by previous energy man-
agement studies. This paper describes the few additional hardware
mechanisms that are required by dynamic scaling, as well as an op-
erating system policy that leverages the mechanisms. Finally, we
present extensive results demonstrating that we can conserve sig-
nificant energy while limiting performance degradation based on a
user-selected performance target.

2. Background

We provide a brief overview of modern memory subsystems and
the impact of dynamic scaling on their performance and power
consumption.

2.1 Memory System Technology

First, we discuss memory organization, timing, and power con-
sumption. Although there have been numerous memory architec-
tures, DRAM technologies and variations, we restrict ourselves
to today’s pervasive JEDEC-style DDR* SDRAM (Synchronous
DRAM) memory subsystems [23]. A more detailed and complete
treatment of memory subsystems can be found in [22].

DRAM organization. Figure 1 illustrates the multiple levels of or-
ganization of the memory subsystem. To service memory accesses,
the memory controller (MC) sends commands to the DIMMs on be-
half of the CPU’s last-level cache across a memory bus. As shown,
recent processors have integrated the MC into the same package
as the CPU. To enable greater parallelism, the width of the mem-
ory bus is split into multiple channels. These channels act indepen-
dently and can access disjoint regions of the physical address space
in parallel.

Multiple DIMMs may be connected to the same channel. Each
DIMM comprises a printed circuit board with register devices (for
buffering address and control signals), a Phase Lock Loop device
(for maintaining frequency and phase synchronization), and multi-
ple DRAM chips (for data storage). The DRAM chips are the ulti-
mate destination of the MC commands. The subset of DRAM chips
that participate in each access is called a rank. The number of chips
in a rank depends on how many bits each chip produces/consumes
at a time. For example, the size of the rank is 8 DRAM chips (or
9 chips for DIMMs with ECC) when each chip is x8 (pronounced
“by 8”), since memory channels are 64 bits wide (or 72 bits wide
with ECC). Each DIMM can have up to 16 chips (or 18 chips with
ECC), organized into 1-4 ranks.

Each DRAM chip contains multiple banks (typically 8 banks nowa-
days), each of which contains multiple two-dimensional memory
arrays. The basic unit of storage in an array is a simple capaci-
tor representing a bit—the DRAM cell. Thus, in a x§ DRAM chip,
each bank has 8 arrays, each of which produces/consumes one bit at
atime. However, each time an array is accessed, an entire multi-KB
row is transferred to a row buffer. This operation is called an “ac-

DIMMs

Channel 1 DRAM Chip Arrays
Banks

Bus 64 /
CPU | MC ||« 5
128 g
Channel 2 §

64 Sense Amps

T 1T T T T 11
fmcYme fBus foinvm

Figure 1: Organization of a modern memory subsystem. The parameters that our control mechanisms impact are highlighted. The
parameters Vsc and fyrc control the memory controller (MC) voltage and frequency respectively. fp.s and fprarar are the memory
bus frequency and DIMM frequency, respectively; the DIMMs’ PLL allows interfacing of these components at different frequencies

(i.e., fBus = fDIMM).

tivation” or a “row opening”. Then, any column of the row can be
read/written over the channel in one burst. Because the activation
is destructive, the corresponding row eventually needs to be “pre-
charged”, that is, written back to the array. Under a closed-page
management scheme, the MC pre-charges a row after every column
access, unless there is another pending access for the same row.
Prior studies suggest that closed-page management typically works
better than open-page management for multi-core systems [40].
The DIMM-level Phase-Lock Loop (PLL) and chip-level Delay-
Lock Loop (DLL) devices are responsible for synchronizing signal
frequency and phase across components.

DRAM timing. For the MC to access memory, it needs to issue a
number of commands to the DRAM chips. These commands must
be properly ordered and obey a number of timing restrictions. For
example, a row activation first requires a pre-charge of the data in
the row buffer, if the row is currently open. If the row is closed,
the activation can proceed without any delay. An example timing
restriction is the amount of time between two consecutive column
accesses to an open row.

In DRAM lingo, a pre-charge, an activation, and a column access
are said to take Trp, Trep, and Ty, times, respectively. The
latest DDR3 devices perform each of these operations in around
10 memory cycles at S00MHz. At this frequency, transferring a 64-
byte cache line over the channel takes 4 cycles (I'suyrsT), since
data is transferred on both edges of the clock in DDR technology.

MC and DRAM power. Because an increasing fraction of a
server’s power budget is dedicated to the memory subsystem [5,
25, 28], it is important to understand where power is consumed in
this subsystem. We categorize the power breakdown into three ma-
jor categories: DRAM, register/PLL, and MC power. The DRAM
power can be further divided into background, activation/pre-
charge, read/write, and termination powers. The background power
is independent of activity and is due to the peripheral circuitry, tran-
sistor leakage, and refresh operations. The activation/pre-charge
power is due to these operations on the memory arrays. The
read/write power is due to these column accesses to row buffers.
The termination power is due to terminating signals of other ranks
on the same channel. The three latter classes of DRAM power are
often referred to as “dynamic DRAM power”, but they also include
a level of background power.

Figure 2 quantifies the average power breakdown for three cate-
gories of workloads: memory-intensive (MEM), compute-intensive

100%
c 80%
H I
o
% 60% A A A e
[V
o m
g 40% 7
e

20%

0% + t |

AVG_MEM AVG_MID AVG_ILP

M Background ®EAct/Pre COOW/R ETERM MPLL/REG [IMC

Figure 2: Conventional memory subsystem power break-
down. There is substantial opportunity for MemScale: it can
reduce Background, PLL/REG, and MC power.

(ILP), and balanced (MID). The results are normalized to the aver-
age power of the MEM workloads. (We explain the details of our
workloads and simulation methodology in Section 4.)

We make four main observations from this figure: (1) background
power is a significant contributor to power consumption, especially
for the ILP and MID workloads (upcoming feature size reductions
will make the background power an even larger fraction of the to-
tal); (2) activation/pre-charge and read/write powers are significant
only for MEM workloads; (3) despite the fact that register/PLL
power is often disregarded by researchers, this category of power
consumption also contributes significantly to the total; and (4) de-
spite the fact that the MC has not been included in previous studies
of memory subsystem energy, it contributes a significant amount to
overall consumption.

2.2 Impact of Voltage and Frequency Scaling

Figure 2 suggests that any mechanism that can lower the back-
ground, register/PLL, and MC powers without increasing other
power consumptions or degrading performance excessively could
be used to conserve significant energy. As it turns out, modern
servers already embody one such mechanism. Specifically, in these
servers, the voltage and frequency of MCs and the frequency of
memory buses, DIMMs, and DRAM chips are configurable (in tan-
dem, since incompatible frequencies would require additional syn-

chronization devices). Unfortunately, these parameters must cur-
rently be set statically at boot time, typically through the BIOS.

To exploit this mechanism for energy conservation, one has to
understand the effect of lowering frequency on both power and
performance. Lowering frequency affects performance by making
data bursts longer and the MC slower, both by linear amounts.
(The wall-clock performance of other operations is unaffected,
despite the fact that their numbers of cycles increase linearly with
decreases in frequency.) Because of these delays, queues at the
MC may become longer, increasing memory access times further.
Nevertheless, note that these latency increases in certain stages of
the memory access process do not translate into linear increases in
overall memory access time. In fact, our detailed simulations show
only minor increases in average memory access time.

Lowering frequency affects power consumption in many ways.
First, it lowers background and register/PLL powers linearly. Sec-
ond, it lowers MC power approximately by a cubic factor. The rea-
son for this large benefit is two-fold: (1) lowering the MC frequency
is accompanied by lowering its voltage; and (2) MC DVEFS pro-
vides similar dynamic power advantages to CPU DVFS (Power
Voltage? x frequency). In fact, note that, even though the MC
is in the CPU chip nowadays, it is often in a voltage domain that
is separate from those of the cores. Third, lowering frequency in-
creases read/write and termination energy almost linearly (power
is not affected but accesses take longer). Finally, if lowering fre-
quency causes a degradation in application performance, the energy
consumed by the server’s non-memory-subsystem components will
increase accordingly.

3. MemScale

In this section, we describe the MemScale design and the OS-level
control algorithm to use it. First, we describe our proposed mecha-
nisms to allow dynamic control of the memory subsystem leverag-
ing underlying hardware capabilities. Next, we provide an overview
of the control policy used to maximize the energy-efficiency of the
system, while adhering to a performance goal. We then detail per-
formance and energy models used by our control policy. Finally,
we address the MemScale implementation costs.

3.1 Hardware and Software Mechanisms

Our system utilizes two key mechanisms: (1) our dynamic fre-
quency scaling method, MemScale; and (2) performance counter-
based monitoring to drive our control algorithm.

MemScale. The key enhancement we add to modern memory sys-
tems is the ability to adjust MC, bus, and DIMM frequencies during
operation. Furthermore, we propose to adjust the supply voltage of
the MC (independently of core/cache voltage) in proportion to fre-
quency.

Though commercially-available DIMMs support multiple frequen-
cies already, today, switching frequency typically requires system
reboot. The JEDEC standard provides mechanisms for changing
frequency [23]; the operating frequency of a DIMM may be reset
while in the precharge powerdown or self-refresh state. Accord-
ingly, we propose a mechanism wherein the system briefly sus-
pends memory operation and can reconfigure itself to run at a new
power-performance setting. For DIMMs, we leverage precharge
powerdown for frequency re-calibration because the latency over-
head is significantly less than self-refresh. The majority of re-
calibration latency is due to DLL synchronization time, tprix [32],
which consumes approximately 500 memory cycles. Although our
system adjusts the frequency of the MC, bus and DIMM together,
from now on we shall simply refer to adjusting the bus frequency.

The DIMM clocks lock to the bus frequency (or a multiple thereof),
while the MC frequency is fixed at double the bus frequency.

Performance counter monitoring. Our management policies re-
quire input from a set of performance counters implemented in the
on-chip MC. Specifically, we require counters that track the amount
of work pending at each memory bank and channel (i.e., queue
depths). Counters similar to those we require already exist in most
modern architectures, and are often already accessible through the
CPU’s performance-monitoring interface. Under our scheme, the
operating system reads the counters, like any other performance
register, during each control epoch. We use the following counters:

e Instruction counts — For each core, we need a counter for the
Total Instructions Committed (TIC), and Total LLC (Last-Level
Cache) Misses (TLM). These counters increment each time any
instruction is retired and any instruction causes an LLC miss,
respectively. Our control algorithm uses these counters to de-
termine the fraction of CPI attributable to memory operations.

Transactions-outstanding accumulators — To estimate the
impact of queueing delays, our performance model requires
counters that track the number of requests outstanding at banks
and channels. The Bank Transactions Outstanding (BT0) and
Channel Transactions Outstanding (CTO) accumulators are in-
cremented by the number of already-outstanding requests to the
same bank when a new request arrives for a bank/channel. We
also require a Bank Transaction Counter (BTC) and Channel
Transactions Counter (CTC) that increment by one for each ar-
riving request. The ratio of BTO/BTC (or CTO/CTC) gives the
average number of requests an arriving request sees ahead of it
queued for the same bank/channel. Note that only a single set of
counters is needed regardless of the number of banks/channels,
as only the average (rather than per-bank or per-channel) counts
are used in our performance model.

Row buffer performance — To estimate the average DRAM
device access latency, our model requires a Row Buffer Hit
Counter (RBHC), which tracks accesses that hit on an open
row; an Open Row Buffer Miss Counter (OBMC), which counts
the number of accesses that miss an open row and require the
row to be closed; a Closed Row Buffer Miss Counter (CBMC),
which counts accesses that occur when the corresponding bank
is closed (since we use a closed-page access policy, this case is
the most common for our multiprogrammed workloads; a row
buffer hit occurs only when the next access to a row is already
scheduled while the previous access is performed); and an Exit
PowerDown Counter (EPDC), which counts the number of exits
from powerdown state. As noted above, only a single set of
these counters is needed, since average counts are enough to
compute accurate DRAM access latencies.

e Power modeling — To instantiate our memory power model
[33], we need a Precharge Time Counter (PTC) to count the
percentage of time that all banks of a rank are precharged; a
Precharge Time With CKE Low (PTCKEL) to count the per-
centage of time that all banks are precharged (PTC) when the
clock enable signal is low; an Active Time With CKE Low
(ATCKEL) to count the percentage of time that some bank is
active (1 - PTC) when the clock enable signal is low; and a
Page Open/Close Counter (POCC) to count the number of page
open/close command pairs. The other information required by
the power model can be derived from the other counters. Again,
only a single set of these counters is needed to model power ac-
curately [33].

Of these counters, only BTO, CTO, PTC, PTCKEL, and ATCKEL
are not currently available (or not easily derived from other coun-

> >

I I !
| ! =1 | !
i Slack F—=t
Core 1 | Stack bt _NegatveSlacg ke _________ 3 ack !
[_———— e = | -—-— I f————— —p | - — -
[[[[
5 5 > o >
| > ! > > > » Actual
| Slack =t Negative Slack je—j Slack H I » Target
Core 2 [ottt Ittt L i ekt 1 —>p Max Frequenc
‘ —_—-—-— - —_—-— ‘ t-r_-_-_>‘ T ! q Yy
I I I H | r } Profiling
L T 1 ‘ w
 H | H [\ !
Memory Speed ! [} \ } } |
| | : | |
Epoch 1 Epoch 2 Epoch 3 Epoch 4 Epoch 5
Time

Figure 3: Memscale operation: In this example, we illustrate the operation of MemScale for two cores. The best-case execution time
is calculated at each epoch (“Max Frequency”). The target time is a fixed percent slower than this best case. Slack is the time difference
between the target and current execution; it is accumulated across epochs.

ters) in the latest Intel processors [21]. In fact, although some
of these counters track events in off-chip structures, the counters
themselves are already implemented in the MC hardware. Finally,
note that counters EPDC, PTCKEL, and ATCKEL are only needed
when we combine MemScale with a policy that transitions devices
to powerdown. We consider such a combined policy in Section 4.

3.2 Energy Management Policy

Given these mechanisms, we now describe the energy management
policy that controls frequency changes.

Performance slack. Our control algorithm is based upon the no-
tion of program slack: the difference between a baseline execution
and a target latency penalty that a system operator is willing to in-
cur on a program to save energy (similar to [9, 27]). Without energy
management, a given program would execute at a certain base rate.
By reducing the memory subsystem performance, the overall rate
of progress is reduced. To constrain the impact of this performance
loss, we allow no more than a fixed maximum performance degra-
dation. Our control algorithm uses this allowance to save energy.
The target is defined such that each executing program incurs no
more than a pre-selected maximum slowdown relative to its exe-
cution without energy management (i.e., at maximum frequency).
Given this target, the slack is then the difference in time of the pro-
gram’s execution (Lacwa) from the target (Trarger)-

Slack = TTargel — Tactual

Y]
= TMaxFreq . (1 + ’Y) — TActual

The quantity - defines the target maximal execution time increase.

Operation. Our control algorithm is based upon fixed sized-
epochs. We typically associate an epoch with an OS-level time
quantum. During each epoch, we profile the system and select a
memory subsystem frequency that (1) minimizes overall system
energy, while (2) maintaining performance within the target given
the accumulated slack from prior epochs. Each epoch proceeds in
four stages:

1. Profile applications online — At the beginning of each epoch,
the system is profiled by collecting statistics using the perfor-
mance counters described above. By default, we profile for
300 ps, which we have found to be sufficient to predict the
memory subsystem resource requirements for the remainder of
the epoch. Our default epoch length is 5 ms.

2. Control algorithm invocation — After the profiling phase (i.e.,
collecting performance counters), the operating system uses

the profiling information to calculate a new memory frequency
based on the models described in the next subsection.

3. Bus frequency re-locking — We transition the memory subsys-
tem to its new operating frequency. To accomplish this adjust-
ment, memory accesses are temporarily halted and PLLs and
DLLs are resynchronized. Since the resynchronization over-
head (< 1 ps) is so small compared to our epoch size (> 1
ms), the penalty is negligible.

4. Slack update — The epoch executes to completion at the new
memory speed. At the end of the epoch, we again query the per-
formance counters and estimate what performance would have
been achieved had the memory subsystem operated at maxi-
mum frequency, and compare this to the achieved performance.
The difference between these is used to update the accumulated
slack and carried forward to calculate the target performance in
the next epoch.

Note that our policy queries the performance counters both at the
end of each epoch and at the end of each profiling phase. Although
we could rely solely on end-of-epoch accounting, we opt to profile
for two main reasons. First, an epoch is relatively long compared to
the length of some applications’ execution phases; a short profiling
phase often provides a more current picture of the applications’
behaviors. Second, because it may not be possible to monitor all
the needed counters at the same time, the profiling phase can be
used to measure just the power-related counters (while only the
performance-related counters would be measured the rest of the
time). In this paper, we assume that all counters are monitored at
the same time.

Frequency selection. We select a memory frequency to achieve
two objectives. First, we wish to select a frequency that maximizes
full-system energy savings. The energy-minimal frequency is not
necessarily the lowest frequency—as the system continues to con-
sume energy when the memory subsystem is slowed, lowering fre-
quency can result in a net energy loss if the program slowdown is
too high. Our models explicitly account for the system-vs.-memory
energy balance. Second, we seek to observe the bound on allowable
CPI degradation for each running program. Because multiple pro-
grams execute within a single system, the selected frequency must
satisfy the needs of the program with the greatest memory perfor-
mance requirements.

MemScale example. We illustrate the operation of MemScale in
Figure 3. Each epoch begins with a profiling phase, shown in gray.
Using the profiling output, the system estimates the performance at
the highest memory frequency (“Max Frequency”), and then sets

a target performance (“Target”) via Equation 1 above. Based on
the target, a memory speed is selected and the system transitions
to the new speed. In Epoch 1, the example shows that the actual
execution (“Actual”) is faster than the target. Hence, the additional
slack is carried forward into Epoch 2, slightly widening the gap
between Max Frequency and Target, allowing the memory speed
to be lowered. However, at the end of Epoch 2, performance falls
short of the target, and the negative slack must be made up in Epoch
3 (or later epochs, if necessary) by raising memory frequency. By
adjusting slack from epoch to epoch, MemScale tries to ensure that
the desired performance target (given by -y) is met over time.

3.3 Performance and Energy Models

Now, we describe the performance and energy models that the
control algorithm uses to make smart decisions about frequency.

Performance model. Our control algorithm relies on a perfor-
mance model to predict the relationship between CPU cycles per
instruction (CPI) of an application and the memory frequency. The
purpose of our model is to determine the runtime and power/energy
implications of changing memory performance. Given this model,
the OS can set the frequency to both maximize energy-efficiency
and stay within the predefined limit for CPI loss.

‘We model an in-order processor with one outstanding LLC miss per
core. We do so for three reasons: (1) these processors translate any
increases in memory access time due to frequency scaling directly
to execution time; (2) we expect server cores to become simpler as
the number of cores per CPU increases; and (3) the modeling of
these processors is simpler than their more sophisticated counter-
parts, making it easier to demonstrate our ideas. We approximate
the effect of greater memory traffic (e.g., resulting from prefetch-
ing or out-of-order execution) by varying the number of memory
channels and cores in Section 4.2.4.

For our processors, the runtime of a program can be defined as:

tiotat =tcpu + tMem

=Icpu - E[TPlcpu] + Iviem + E[T P Iviem] @
Here, Icpy represents the number of instructions and Imem is the
number of instructions that cause an LLC miss to main memory.
T Plcpy represents the average time that instructions spend on the
CPU, whereas T'PIvem represents the average time that a LLC-
missing instruction spends in main memory.

Since runtime is not known a priori, our system models the rate of
progress of an application in terms of CPI. The average CPI of a
program is defined as:

E[CPI] = (E[TPIcwu] + o - E[TPlyen]) - Foru ~ (3)

Where « is the fraction of instructions that miss the LLC and Fcpy
is the operating frequency of the processor. The value of o can
easily be calculated as the ratio of TLM and TIC.

While the expected time per CPU operation is insensitive to
changes in memory speed (for simplicity, we assume it is fixed),
the CPI of LLC-missing instructions varies with memory subsys-
tem frequency. To model the time per cache miss, we decompose
the expected time as:

E[TPIMem] - E[TBank] + E[TBus]
E[TBank] - E[SBank] + E[WBank} (4)
E[TBus] - E[SBus] + E[WBus]
Here, F[Spank| is the average time, excluding queueing delays,

to access a particular bank (including precharge, row access and
column read, etc). E[Spus] is the average data transfer (burst) time

Bank 1 Blocked by Request
at Bus - Channel 1

Bank 2
an Bus -

Channel 1

L
- o
- Bank 3
: 110
Bank 4

3

:

Figure 4: Memory subsystem queuing model: Banks and
channels are represented as servers. The cores issue requests
to bank servers, which proceed to the channel server upon
completion. Because of DRAM operation, requests are held
at the bank server until a request frees from the channel server
(the channel server has a queue depth of 0). In our example,
the request that finishes at bank 1 cannot proceed to the bus
until the request already there leaves. This example shows
only a single channel.

across the bus. Finally, the average waiting time to service previous
request (i.e., queueing delays due to contention for the bank and
bus) are represented by E[Wgan] and E[Wgas].

SBank can be further broken down as:

E[SBank] = E[TMC] + E[TDevice] (5)

Tmc varies as a function of MC frequency. In our MC design, each
request requires five MC clock cycles to process (in the absence of
queueing delays). Tpevice 1S @ function of DRAM device parameters
and applications’ row buffer hit/miss rates and does not vary sig-
nificantly with frequency, as we do not alter the operation or timing
of the DRAM chips’ internal DRAM arrays. During the profiling
phase, we estimate E[Tpevice] for the epoch using row buffer per-
formance counters via:
Row hit time = T}y = Tt - RHBC
Closed-bank miss time = Ti, = [Trep + Ter] - CBMC
Open-bank miss time = To, = [Tre + Trep + Tcr] - 0BMC
Powerdown exit time = T}, = Txp - EPDC
Thic + Teo + Top + Tpa
RHBC + CBMC + 0BMC

(6)

E [TDevice] -

Tecr, Twre, Trep, and Txp are characteristics of a particular mem-
ory device and are obtained from datasheets. To simplify the above
equations, we have subsumed some aspects of DRAM access tim-
ing that have smaller impacts.

Whereas modeling Sgank and Spys is straight-forward given man-
ufacturer data sheets, modeling the wait times due to contention
E[Waank| and E[Whs,s] is more challenging. Ideally, we would like
to model the memory system as a queuing network to determine
these quantities. Figure 4 shows the queuing model correspond-
ing to our system. Queueing delays arise due to contention for a
bank and the memory bus. (Delayed requests wait at the MC; there
are typically no queues in the DRAM devices themselves). The in-
order CPUs act as users in a closed queuing network (each issuing
a single memory access at a time). Memory requests are serviced
by the various banks, each represented by a queue. The bus is mod-
eled as a server with no queue depth; when a request completes
service at a bank, it must wait at the bank (blocking further re-

quests) until it is accepted by the bus. This blocking behavior mod-
els the activate-access-precharge command sequence used to ac-
cess a DRAM bank—the bank remains blocked until the sequence
is complete.

Unfortunately, this queueing network is particularly difficult to an-
alyze. Specifically, because the system exhibits transfer blocking
behavior [2, 4] (disallowing progress at the bank due to contention
at the bus), product form solutions of networks of this size are infea-
sible. Most approaches to this problem rely on approximations that
have errors as high as 25% [2, 4]. Instead of using a typical queu-
ing model, we now describe how a simple counter-based model can
yield accurate predictions. We find that the accuracy afforded by the
counters justify their implementation cost.

Our approach is to define counters that track the number of pre-
ceding requests that each arriving request finds waiting ahead of it
for a bank/bus. We then take the expectation of this count over all
arrivals to obtain an expression for the expected wait time for each
request. We implement the necessary counters directly in hardware
as described in Section 3.1.

We first illustrate our derivation for bus time. For a single request &,

the bus time can be expressed as E[Spus|->_)_, BusServiceLeft(l, k).

The function BusServiceLeft(l, k) is defined as the fraction (be-
tween 0 and 1) of service time remaining for request [at the arrival
time of request k (it is O for requests that are complete and 1 for
requests that are queued but not yet in service). The summation
adds together the remaining service for all jobs arriving before k,
thereby yielding the total number of requests in queue at the time
request k arrives, including request k. To obtain average bus time,
we average over all requests:

n k .
BusS Left(l, k
E[Ths) = Zk:l Zzzl usServiceLeft(l, k)

- fBus . E[SBUS]

n Sl g)

The variable £ represents the average work in the queue, includ-
ing residual work from prior requests, when a new request arrives.
In our hardware design, £gus is approximated by the performance
counters CTO/CTC, which track the average number of requests
waiting for a bus channel. Our estimate of {gys is an approximation
because we use the values of CTO and CTC measured at one fre-
quency (the frequency in use during profiling) and assume the value
holds at all other frequencies. In reality, the degree of bank and
channel queueing can vary across frequencies. However, we have
found that, in practice, this approximation works well, because
deep bank/bus queues are rare for our workloads and small esti-
mation errors are corrected through the slack mechanism. Never-
theless, our approach can easily be modified to tackle deep queues,
by profiling at one more frequency and interpolating the queue size
results for the others.

Using a similar construction, we can derive an expression for the
expected bank time:

> Z;:l BankServiceLeft(j, 7)
n
= gBank : [E[SBank] + E[TBuS]]

E [Tbank] -

(®)

where Egank is approximated by BTO/BTC. Note that E[Thys] ap-
pears as a term within E[Tgank], as a request arriving at a bank re-
mains blocked till all preceding requests are able to drain over the
bus. It is precisely this construction that captures the transfer block-
ing behavior and allows us to sidestep the difficulties of queuing
analysis.

- [E[Ssank] + E[Tus]]

Noting that, under this construction, E[T'PIvem] = E[Thank] (bus
time has been folded into the expression for the bank time), we
condense our analysis to the equation:

E[TPIMem] - é-bank . (SBank + é‘bus . Sbus) (9)

Full-system energy model. Simply meeting the CPI loss target for
a given workload does not necessarily maximize energy-efficiency.
In other words, though additional performance degradation may be
allowed, it may save more energy to run faster. To determine the
best operating point, we construct a model to predict full-system
energy usage. For memory frequency fmem, we define the system
energy ratio (SER) as:

T Cm) P lem
SER(fimem) = H (10)

Ty 18 the performance estimate for an epoch at frequency fviem.
Pryen = Puvem(fvem) + PronMem, Where Pyiem (f) is calculated ac-
cording to the model for memory power in [33], and Pnonrem
accounts for all non-memory system components and is assumed
to be fixed. Tgase and Pgase are corresponding values at a nomi-
nal frequency. At the end of the profiling phase of each epoch, we
calculate SER for all memory frequencies that can meet the per-
formance constraint given by Slack, and select the frequency that
minimizes SER. As we consider only ten frequencies, it is reason-
able to exhaustively search the possibilities and choose the best. In
fact, given that this search is only performed once per epoch (5 ms
by default), its overhead is negligible.

3.4 Hardware and Software Costs

We now consider the implementation cost of MemScale. The core
features in our system are already available in commodity hard-
ware. Although real servers do not exploit this capability, exist-
ing DIMMs already support multiple frequencies and can switch
among them by transitioning to powerdown or self-refresh states
[23]. Moreover, integrated CMOS MCs can leverage existing volt-
age and frequency scaling technology. One necessary change is for
the MC to have separate voltage and frequency control from other
processor components. In the most recent Intel architecture, this
would require separating last-level cache and MC voltage control
[21]. Though processors with multiple frequency domains are com-
mon, there have historically been few voltage domains; however,
recent research has shown this is likely to change soon [17].

Whereas modifying the operating voltage of DIMMs and DRAM
circuitry may be possible, devices with this capability have not yet
been marketed commercially. There are substantial challenges in
operating a DRAM array at multiple voltages, as many circuits in
the DRAM access path require precisely tuned timing and transistor
sizing that is specific to the operating voltage. Since we observe
significant energy savings from frequency scaling alone, we restrict
our first study to a single voltage level in DIMMs. Nevertheless, we
will consider more aggressive approaches in our future work.

Our design also may require enhancements to hardware perfor-
mance counters in some processors. Most processors already ex-
pose a set of counters to observe processing, caching and memory-
related performance behaviors (e.g., row buffer hits/misses, row
pre-charges). In fact, the latest Intel architecture already exposes
a number of MC counters for queues [26]. However, the exist-
ing counters may not conform precisely to the specifications re-
quired for our models. As discussed above, the time overhead of
our OS-level policy is negligible, since it is only incurred at the
multi-millisecond granularity.

Table 1: Workload descriptions.

Name RPKI | WPKI Applications (x4 each)

ILP1 0.37 0.06 vortex gce sixtrack mesa

ILP2 0.16 0.01 perlbmk crafty gzip eon

ILP3 0.27 0.01 sixtrack mesa perlbmk crafty

ILP4 0.24 0.06 vortex mesa perlbmk crafty
MID1 1.72 0.01 ammp gap wupwise vpr
MID2 2.61 0.09 astar parser twolf facerec
MID3 2.41 0.16 apsi bzip2 ammp gap
MID4 2.11 0.07 wupwise vpr astar parser
MEM1 17.03 3.03 swim applu art lucas
MEM2 8.62 0.25 fma3d mgrid galgel equake
MEM3 15.6 3.71 swim applu galgel equake
MEM4 8.96 0.33 art lucas mgrid fma3d

4. Evaluation
4.1 Methodology

Simulator and workloads. Since the few hardware mechanisms
we propose are not yet available, our evaluation is based on sim-
ulations. To reduce simulation times, our simulations are done in
two steps. In the first step, we use M5 [7] to collect memory access
(LLC misses and writebacks) traces from a variety of workloads
running on a 16-core server.

Table 1 lists the main characteristics of our 12 workloads. The
workloads are formed by combining applications from the SPEC
2000 and SPEC 2006 suites. As in [45], we classify the work-
loads into three categories: memory-intensive workloads (MEM),
computation-intensive workloads (ILP), and balanced workloads
(MID). We use the same workload mixes as the prior study [45]
with two exceptions: two workloads they classify as balanced be-
have like memory-intensive workloads in our environment. For this
reason, we replaced those two workloads with our MID3 and MID4
workloads. The rightmost column of Table 1 lists the composition
of each workload.

We analyze the best 100M-instruction simulation point for each
application (selected using Simpoints 3.0 [38]). The workload ter-
minates when the slowest application has executed 100M instruc-
tions. We report the LLC misses per kilo instruction (RPKI) and
LLC writebacks per kilo instruction (WPKI) observed during trace
generation in Table 1.

In the second step, we replay the traces using our own detailed
memory system simulator. This simulator models all aspects of the
OS, memory controller, and memory devices that are relevant to
our study, including behavior profiling, memory channel and bank
contention, memory device power and timing, and row buffer man-
agement. The memory controller exploits bank interleaving and
uses closed-page row buffer management, where a bank is kept
open after an access only if another access for the same bank is al-
ready pending. Closed-page management is known to lead to lower
energy consumption and better performance for multi-core CPUs
[40]. Memory read requests (cache misses) are served on an FCFS
basis. Reads are given priority over writebacks until the writeback
queue is half-full. More sophisticated memory scheduling is not
necessary for these single-issue multiprogrammed workloads, as
opportunities to increase bank hit rate via scheduling are rare, and
such improvements are orthogonal to our study.

Regarding energy management, the simulator implements our
mechanisms and policy in great detail. For comparison, we also
simulate scenarios in which the memory controller immediately
transitions a rank to fast-exit powerdown or slow-exit powerdown
upon closing all banks of the rank. We also simulate a scenario in
which a fixed frequency for the entire memory subsystem (memory
controller, channels, DIMMs, and DRAM devices) is selected stati-

Table 2: Main system settings.

Feature Value
CPU cores 16 in-order, single thread, 4GHz
6 IntALU, 2 IntMul, 4FpALU, 2FpMulDiv
L1 1/D cache (per core) 64KB, 2-way, 1 CPU cycle hit
L2 cache (shared) 16MB, 4-way, 10 CPU cycle hit, 1 miss/core
Cache block size 64 bytes
Memory configuration 4 DDR3 channels, 8 2GB DIMMs with ECC
tRCD, tRP, tCL 15ns, 15ns, 15ns
tFAW 20 cycles
tRTP 5 cycles
Time tRAS 28 cycles
tRRD 4 cycles
Exit fast pd (tXP) 6ns
Exit slow pd (tXPDLL) 24ns
Refresh period 64ms
Row buffer read, write 250 mA, 250 mA
Activation-precharge 120 mA
Active standby 67 mA
Current Active powerdown 45 mA
Precharge standby 70 mA
Precharge powerdown 45 mA
Refresh 240 mA
VDD 1.575V

cally. As a final baseline for comparison, our simulator implements
the Decoupled DIMMs approach to conserving memory system
energy [45].

Parameter settings. Table 2 lists our main parameter settings. Re-
call that one of the reasons we study in-order cores is to expose
any performance degradations resulting from frequency scaling di-
rectly to running time. We compensate for their lower bus utiliza-
tion by simulating a large number of cores. Our baseline memory
subsystem has 4 DDR3 channels, each of which is populated with
two registered, dual-ranked DIMMs with 18 DRAM chips each.
Each DIMM also has a PLL device. Each DRAM chip has 8 banks.
We study the impact of the most important aspect of the memory
subsystem configuration (the number of memory channels) in Sec-
tion 4.2.4. This study also allows us to approximate the effect of
the greater memory traffic.

The timing and power parameters of the DRAM chips, register,
PLL, and memory controller are also shown in Table 2 [33]. These
data are for devices running at 800 MHz. We also consider frequen-
cies of 733, 667, 600, 533, 467, 400, 333, 267, and 200 MHz.

The timing parameters at frequencies other than 800 MHz were
computed in the obvious way, according to the aspects of perfor-
mance that are affected by scaling (Section 2). The current param-
eters at other frequencies were scaled according to Micron’s power
calculator [33]. The transitions between frequencies are assumed
to take 512 memory cycles plus 28 ns. This assumes that frequency
can only be changed after going into fast-exit pre-charge power-
down state and locking the DLLs, as specified in [23]. The power
consumptions of some components also vary with the utilization.
Specifically, the powers of registers and memory controller scale
with their respective utilization linearly from idle to peak power;
the PLL power does not scale with utilization. The register power
ranges from 0.25W to 0.5W as a function of utilization, whereas the
memory controller power ranges from 7.5W to 15W [16, 21]. This
maximum memory controller power was taken from [3]. We study
the impact of the power proportionality of the register and the mem-
ory controller in Section 4.2.4. We assume that the voltage of the
memory controller varies over the same range as the cores (0.65V-
1.2V), as its frequency changes. Some year-2010 Xeons have an
even wider range (e.g., core voltages in the 7500 series range from
0.675V to 1.35V). In current Xeons, the uncore voltage range is
narrower than that of the cores. However, the uncore domain cur-

80% M Full System Energy Memory System Energy

70%

& 60% ff-r gt

w

B 50% g e

5 /0 7SR SN O O O S

& 30% +tw

@

2 20% +

w
10% +—B B BB R R R R e
0% -

SIS EFE TS e+

Figure 5: Energy savings. Memory and full-system energies are
significantly reduced, particularly for the ILP workloads.

rently includes SRAM, which is typically more difficult to voltage-
scale than logic. The power of the memory controller scales with
both voltage and frequency. The PLL and register powers scale lin-
early with channel frequency.

We do not model power consumption in the non-memory system
components in detail. Rather, we assume that the average power
consumption of the DIMMs accounts for 40% of the total system
power, and compute a fixed average power estimate (the remaining
60%) for all other components. This ratio has been identified as the
current contribution of DIMMs to entire server power consumption
[5, 6, 42]. We study the impact of this ratio in Section 4.2.4.

For the static-frequency baseline, we select the frequency (467
MHz) that achieves the highest energy savings on average, without
violating the performance target for any workload. Similarly, our
implementation of Decoupled DIMMs assumes that the memory
channels run at 800 MHz, whereas the DRAM devices operate at
the static frequency (400 MHz) that achieves the highest energy
savings on average, without violating the performance target for
any workload. In addition, we optimistically neglect any power
overhead for the synchronization buffer required by Decoupled
DIMMs.

4.2 Results

In this subsection, we present the quantitative evaluation of our
performance-aware energy management policy.

4.2.1 Energy and Performance

We start by studying the impact of our policy on the energy and
performance of our workloads, assuming a maximum allowable
performance degradation of 10%.

Figure 5 shows the memory and system energy savings we achieve
for each workload, compared to a baseline system that keeps the
memory subsystem at its highest voltage and frequency. The mem-
ory energy savings range from 17% to 71%, whereas the system
energy savings range from 6% to 31%. As one would expect, the
ILP workloads achieve the highest gains (system energy savings of
at least 30%). These workloads can keep the voltage and frequency
of the memory system at their lowest possible value all the time.
The savings achieved by the MID workloads are lower but still sig-
nificant (system energy savings of at least 15%). The MEM work-
loads achieve the smallest energy savings (system energy savings
of at least 6%), since their greater memory channel traffic reduces
the opportunities for significant voltage and frequency scaling.

Figure 6 shows that these energy savings can be achieved with-
out violating the maximum allowable performance degradation for

B Multiprogram Average Worst Program in Mix

12%
CPI Degradation Bound

10%

8% B
6%
4%

CPI Increase (%)

2%

0%

’\/'\/”)V'\/ SRR ¢ O
NISIECISNIN @\Q@“@&\&\\‘

Figure 6: CPI overhead. Both average and worst-case CPI over-
heads fall well within the target degradation bound.

any application in the workloads. The figure shows the average and
maximum percent CPI losses across the applications in each of
our workloads, again compared to the vanilla baseline. The results
demonstrate that our policy indeed limits the maximum CPI in-
crease to the acceptable range; no application is ever slowed down
more than 9.2%. The results also demonstrate that, when we av-
erage the performance degradations of all the applications in each
workload, this average is never higher than 7.2%. Again, as one
would expect, the degradations are smallest for the ILP workloads,
followed by the MID workloads, and then the MEM workloads.

One might think that the policy could produce even higher energy
savings, if it could keep voltage and frequency low longer and ap-
proximate the maximum allowable degradation more closely. This
would increase the memory energy savings. However, remember
that increasing running time also involves consuming more system
energy. Thus, our policy degrades performance only up to the point
that this translates into overall system energy savings.

These energy and performance results are very positive. The ILP
workloads can achieve up to 31% system energy savings for only
a maximum performance degradation of 3.2%. The MID results
also exhibit substantial benefits. Even the challenging MEM work-
loads achieve up to 9% system energy savings within the allow-
able performance degradation. Overall, we observe that MemScale
produces average system energy savings of 18.3% for an average
performance degradation of only 4.2%.

4.2.2 Dynamic Behavior

To understand the results above more deeply, let us consider an
example workload and the dynamic behavior of our policy. Figure 7
plots (a) the memory subsystem frequency selected by our policy
for workload MID3, (b) the CPI of each application in the workload
(averaged over the 4 instances of the application), and (c) the
resulting scaled channel utilization, as a function of execution time.

The figure shows a few interesting frequency transitions. After the
start of the workload, our policy quickly reduces the frequency to
the minimum value and keeps it there until it detects the massive
phase change of application apsi. As Figure 7(b) illustrates, the
phase change occurred during the 46 ms quantum. Because our
policy is OS-driven, the system only detected the phase change
and increased the frequency at the next quantum boundary (around
51 ms). Despite this short reaction delay, our policy still keeps the
performance degradation for apsi (8.2%) well under the allowable
limit. As Figure 7(c) depicts, the two frequencies selected by our
policy for the two phases of the workload keep the scaled channel
utilization around 25%.

Bus Freq (MHz)
[*2)
o
o
-

apsi

_ / - = == bzip2
[-%
o

100%
80%
60%
40%
20%

Channel Utilization

o
X

Time (ms)

Figure 7: Timeline of MID3 workload. MemScale adjusts
memory system frequency rapidly in response to the phase
change in apsi.

Bus Freq (MHz)

CPI

(<]
™~
)
{
\
|
|
|
|
|
|
|
1
|
|
|
|
I
\
[

Time (ms)

Figure 8: Timeline of MEM4 workload. MemScale approx-
imates a “virtual frequency” by oscillating between two
neighboring frequencies.

Figure 8 shows another interesting dynamic behavior, this time for
workload MEM4 on an 8-core system. Note that our policy alter-
nates between two frequencies throughout most of the execution.
(Recall that frequency transitions are fast and we only initiate tran-
sitions on quantum boundaries.) The reason for this behavior is that
the space of usable frequencies is not continuous; the ideal fre-
quency is really between the two usable frequencies. In essence,
our policy defines a “virtual frequency” by alternating between the
two frequencies.

M Full System Energy Memory System Energy

50%
45%
40%
35%
30% e e el
25%
20%
15% ...
10% ...
5% oMl L
0%

Energy Savings (%)

'\ 0
& R
<’ ((&5\8 x (('as‘
N2
peN
PO
RC

R0 O g KX e
& gV o g (&

Figure 9: Energy savings. MemScale provides greater full-
system and memory system energy savings than alternatives.

4.2.3 Comparison with Other Policies

In this subsection, we compare our MemScale policy (“Mem-
Scale”) to six alternatives. The first alternative (“Fast-PD”) rep-
resents today’s aggressive memory controllers, which immediately
transition a rank to fast-exit precharge powerdown state when-
ever the last open bank of the rank is closed. The second alterna-
tive (“Slow-PD”) is even more aggressive in that it transitions the
rank to slow-exit precharge powerdown state. The third alternative
(“Decoupled”) is the decoupled DIMM approach to energy conser-
vation, which combines low-frequency memory devices with high-
frequency channels. The fourth alternative (“Static”) represents the
scenario in which the frequency for the memory controller, chan-
nels, DIMMs, and DRAM devices is selected statically before the
workloads are started. The fifth and sixth alternatives are actually
variations of our policy. The fifth (“MemScale (MemEnergy)”)
considers only the memory energy (rather than the overall system
energy) in making decisions. The sixth (“MemScale + Fast-PD”) is
our full policy combined with fast-exit powerdown.

Figure 9 shows the average energy savings achieved by all alterna-
tives, across the MID workloads. For these same workloads, Fig-
ure 10 breaks down the average system power of each alternative
between its DRAM, PLL/register, memory controller, and rest-of-
the-system (everything but the memory subsystem) components.
Figure 11 shows the average and maximum performance degrada-
tions for all the alternatives, again across the same workloads. All
results are computed with respect to the baseline, which keeps the
memory subsystem at its highest frequency at all times.

These results demonstrate that Fast-PD achieves small energy sav-
ings at small performance degradations. The energy savings come
from reductions in the power consumption of the DRAM chips.
For the MEM and ILP workloads, Fast-PD achieved system energy
savings between 0.3% (MEM2) and 7.4% (ILP3). Being more ag-
gressive with Slow-PD actually hurts performance so much that the
workloads consume more system energy than the baseline system.
In fact, the performance of one of the applications actually degrades
by 15%. Both of these results match expectations.

In contrast, Decoupled does better than Fast-PD or Slow-PD. It
achieves higher energy savings at moderate performance degrada-
tions for the MID workloads. The energy savings come from re-
ductions in the power consumed by the DRAM devices. Decou-
pled also does well for the ILP workloads, achieving a maximum
energy savings of 11%. However, it actually increases the energy

B DRAM

PLL/Reg. mMC

B Rest of system

Energy
(Normalized to Base)

RS SRR A P P N |
%ase\\ @ S\O\NOQCO\)Q X & (\e‘%*@s‘
\e\@e SC")\Q
‘(\S(:b @a((\
R

Figure 10: System energy breakdown. MemScale reduces
DRAM, PLL/Reg, and MC energy more than alternatives.

consumption for one of the MEM workloads (MEM3) by 0.8%.
This result is due to a significant performance degradation for this
workload.

Static conserves more memory and system energy than Decoupled
(for roughly the same performance degradations), despite the fact
that the frequency of the DRAM devices is lower under Decou-
pled than Static (400 vs 467 MHz). This arises because Static de-
creases the energy consumption of the memory controller and the
PLL/register devices. Decoupled does not address these sources of
energy consumption. DRAM device energy is indeed lower under
Decoupled, as one would expect. Static also does well for the ILP
and MEM workloads, achieving average system energy savings of
19.1% and 7.8%, respectively, always within the allowed perfor-
mance degradation.

MemScale easily outperforms Decoupled. We achieve almost 3x
higher energy savings, while keeping degradation within the al-
lowed range. The reason for this result is that MemScale can dy-
namically adjust frequencies and achieve energy gains in the mem-
ory controller and PLL/register as well.

MemScale is also superior to Static in both memory and system en-
ergy savings, but leads to slightly (2%) higher performance degra-
dations. Specifically, MemScale’s average system energy savings is
30.2% for the ILP workloads and 16.9% for the MID workloads,
whereas Static achieves only 19.1% and 14.5% savings, respec-
tively. (Their savings for the MEM workloads are comparable.) Our
greater energy savings come from MemScale’s ability to dynami-
cally adjust frequency to the exact conditions of each workload.
Under the unrealistic assumption that the user would (1) manually
select the best frequency for each workload, and (2) somehow in-
struct the server to reboot to the new frequency before running the
workload, Static and MemScale would differ little for the work-
loads that do not exhibit dynamic phase changes. For those that do,
MemScale would still surpass Static through dynamically adjusting
the frequency, as seen in the MID3 workload, for example.

As we suggested before, when our policy is set to consider mem-
ory energy and not system energy (MemScale (MemEnergy)), the
system conserves more memory energy but at the cost of system
energy and performance. Moreover, note that MemScale (MemEn-
ergy) exceeds the performance target by just 0.8% for two appli-
cations, each in a different workload. The reason is that MemScale
sometimes mispredicts the queue lengths of the highest memory
frequency. These mispredictions affect MemScale’s computation of
the performance slack.

H Multiprogram Average Worst Program in Mix

14%

12%
10%
8%
6% A I .
4% Fo il R -

2%+ I --------------------------------
o ML, : : :

\’QO \NRO

—_

CPl Increase (%

e S&’A’i\c @‘acﬁ\e (%\\\

& oo oeco\& e((\g\e ex@(’
\(,,\\‘h ((\c,&\
2
e‘(\‘:& e

Figure 11: CPI overhead. MemScale’s CPI increases are under
10%. MemScale (MemEnergy) slightly exceeds the bound.

Interestingly, note that adding Fast-PD to MemScale does not
meaningfully improve its results; the average system energy sav-
ings stay roughly the same (lower DRAM chip power but higher
rest-of-the-system power), whereas the performance degradations
worsen slightly.

4.2.4 Sensitivity Analysis

In this section, we investigate the effect of our main simulation and
policy parameters: the maximum allowable performance degrada-
tion, the configuration of the channels and DIMMs, the fraction
of the memory power with respect to the whole server power, the
power proportionality of the memory controller and DIMMs’ reg-
isters, the length of the OS quantum, and the length of the profiling
period. We again perform these studies using the MID workloads.

Maximum performance degradation. This parameter is impor-
tant in that higher allowable degradations could enable greater
energy savings. To understand the impact of this parameter, Fig-
ure 12 illustrates the energy savings (bars on the left) and maximum
achieved degradations (bars on the right), for maximum allowable
degradations of 1%, 5%, 10%, and 15%. Recall that our default
maximum allowable degradation is 10%. All other parameters re-
main at their defaults. It is interesting to observe that 1% and 5%
degradations indeed produce lower energy savings. However, al-
lowing 15% degradation does not improve our savings: beyond a
certain point, lengthening the execution to conserve more memory
energy actually increases overall energy. At that point, our policy
stops lowering frequency.

Amount of memory traffic. As far as MemScale is concerned, the
number of channels is the most important aspect of the memory
subsystem configuration. The number of channels directly affects
how heavily utilized each channel is and, thus, our opportunities
to lower frequency without excessively degrading performance. In
fact, decreasing the number of channels approximates the effect of
greater memory traffic that could result from prefetching or out-
of-order execution. Figure 13 depicts the energy savings (left) and
maximum achieved performance degradation (right) for 2, 3, and
4 channels. Recall that our default results assumed 4 channels.
The figure shows that increases in the number of channels indeed
increase the benefits of MemScale by non-trivial amounts, without
affecting our ability to limit performance losses. Interestingly, the
figure also shows that doubling the channel traffic (from 4 to 2
channels) still leads to system energy savings of roughly 14%.

20%
W 1% bound
M 5% bound
15% e R 10% bound "
m 15% bound
10% -+
5% ot N B B
0%

System Energy Reduction ~ Worst-case CPI Increase

Figure 12: Impact of CPI bound. Increasing the bound beyond
10% does not yield further energy savings.

25% H30% Mem

40% Mem
20% m50% Mem
LTV T——

10%

5%

0%

System Energy Reduction Worst-case CPI Increase
Figure 14: Impact of fraction of memory power. Increasing
the fraction increases energy savings.

Another approach for studying the effect of greater memory traffic
is to increase the number of cores, while keeping the LLC size
the same. Thus, we performed experiments with 32 cores and 4
memory channels. For the MID workloads, the larger number of
cores causes 2x-4x increases in traffic. These increases translate
into system energy savings ranging from 7.6% to 10.4%, without
any violations of the performance bound.

Fraction of memory system power with respect to server power.
Because MemScale seeks to reduce whole-system energy con-
sumption by reducing the memory subsystem energy, the contri-
bution of the memory subsystem to the overall power consump-
tion of the server becomes a crucial parameter. Intuitively, the
larger this fraction, the larger our percentage energy savings. Fur-
thermore, recall that the non-memory-subsystem power consump-
tion affects our energy management policy. Intuitively, the lower
the non-memory-subsystem contribution, the lower the frequencies
that our policy can select. Figure 14 quantifies the impact of 30%,
40%, and 50% fractions of memory power on the system energy
savings. Recall that our baseline assumes a fraction of 40%.

The figure shows that the fraction of memory power has a sig-
nificant effect on the system energy savings. Increasing the frac-
tion from 30% to 50% (or, equivalently, reducing the rest-of-the-
system contribution from 70% to 50%) more than doubles the sav-
ings (11% vs 24%). The maximum CPI degradation increases by a
few percent as well, but stays within the allowed range.

25%

M 4 channels

20% 3 channels

M 2 channels
15%

10%

5%

0%

System Energy Reduction ~ Worst-case CPI Increase

Figure 13: Impact of number of channels. MemScale provides
greater savings when there are more, less-utilized channels.

25% H 0% Idle Power
50% Idle Power
0,
20% M 100% Idle Power
L7 T—
03 T —
5% e I ----------------------
0% ¥

System Energy Reduction Worst-case CPI Increase
Figure 15: Impact of power proportionality of MC and regis-
ters. Decreasing proportionality increases energy savings.

Power proportionality of the memory controller and DIMMs’
registers. Since the memory controller and DIMM register de-
signs are vendor- and model-dependent, we studied a wide range of
power proportionality possibilities for these components. Specif-
ically, we varied their idle power consumption from 0% (perfect
proportionality) to 100% (no proportionality) of their peak power
consumption. Recall that our default assumption is 50% idle power
for these components. For this analysis (and our other results), we
assume that their power consumption changes linearly with utiliza-
tion between idle and peak loads. Figure 15 depicts the results.

The figure shows that the power proportionality of these compo-
nents has a significant impact on the system energy savings. In-
terestingly, decreasing proportionality actually increases our sav-
ings significantly to 23%. As the memory subsystem’s idle power
increases (decreasing proportionality), the scope of MemScale to
reduce register and memory controller power grows. Importantly,
MemScale achieves these benefits without violating the allowed
performance degradation.

Length of the OS quantum (epoch) and profiling period. We
studied the effect of (1) the epoch length by considering quanta
of 1, 5, and 10ms; and (2) the length of the profiling period by
considering periods of 0.1, 0.3, and 0.5ms. The first study sought
to assess our ability to stay within the performance requirement,
even when our decisions could not be changed for long periods
of time. Similarly, the goal of the second study was to assess the
need for long profiling periods before making decisions. Overall,

these studies revealed that MemScale is essentially insensitive to
reasonable values of these parameters.

5. Related Work

To the best of our knowledge, this paper is the first to propose
active low-power modes for main memory. It is also the first to
create such modes for the memory controller. Finally, it is the first
to propose operating system policies to leverage these modes to
conserve energy without excessive performance degradation. We
discuss various classes of related works next.

Processor DVFS. Our work is most closely related to processor
DVEFS. While there is a large body of work on this topic, these
techniques have only been applied to the CPU, e.g. [17, 19, 34].

Lowering DRAM frequency. The memory-related approach that
is most closely related to ours is to run the DRAM devices at
a lower frequency than the memory channel, using Decoupled
DIMMs [45]. Like MemScale, this technique reduces DRAM
power. However, our work differs from Decoupled DIMMs in three
main ways. First, a Decoupled DIMM requires a power-hungry
synchronization buffer to bridge the gap between the DRAM and
channel speeds. Second, we allow dynamic adjustment of frequen-
cies by the operating system to match the needs of workloads on-
line; the frequencies of the memory channels and DRAM devices
were set statically in Decoupled DIMMs. Third, MemScale not
only reduces DRAM power, but also memory bus, non-DRAM
DIMM, and MC powers as well.

Rank subsetting and DRAM reorganization. Recently, there
have been several proposals to improve the efficiency of the mem-
ory system by reducing the number of chips or bits accessed at a
time [1, 43, 44]. Udipi et al. proposes to do so by re-architecting
the DRAM devices [43]. Unfortunately, although highly benefi-
cial, such re-architecting is likely to incur significant costs and may
affect yield as well.

In contrast, other proposals reduce the number of chips in a rank by
modifying DIMMs but not the DRAM chips [1, 44]. For example,
Multicore DIMMs [1] allow the creation of Virtual Memory De-
vices (VMDs) comprising a small number of DRAM chips. This
approach divides a physical channel into as many logical buses as
there are VMDs. In addition, it requires a demux register in each
rank, which routes signals to the correct VMD.

MemScale is orthogonal to and can easily be combined with these
approaches; we target background, register/PLL, and MC power
consumptions, whereas they target dynamic power. In addition, our
work leverages existing commodity DIMM and DRAM parts and
proposes extending existing hardware mechanisms to dynamically
scaling MCs, channels, DIMMs, and DRAM devices.

DRAM idle low-power states. DRAM technologies often expose
a small number of idle low-power states that greatly reduce DRAM
power, but preclude access until the DRAM returns to the active
state. Because servers do not typically exhibit enough memory
idleness, researchers have proposed many approaches to create
idleness and conserve energy using these states [10, 11, 13, 20, 24,
27, 36]. Unfortunately, these techniques are very difficult to exploit
when the granularity of power management is a rank of DRAM
chips, as in DDR* technology.

Leveraging ensembles for energy savings. A few proposals have
used ensemble-level techniques [28, 31, 41] to amortize the impact
of memory energy. At this point, it is not clear if these techniques
apply to all workloads. Nevertheless, our approach is orthogonal to
ensembles and could be applied to them as well.

Managing peak power and temperature. Recent research has
proposed techniques to limit the peak power consumption and/or
manage temperature [11, 14, 18, 29, 30]. Among them, memory
throttling has been receiving significant attention. Throttling limits
power consumption by limiting the number of requests to memory
in each time period. MemScale differs from throttling in two main
regards. First, our goal is to conserve energy, not to limit peak
power or prevent thermal overload. Second, we reduce the speed
of the memory subsystem, instead of delaying memory accesses.

6. Conclusion

In this paper, we proposed the MemScale approach to managing
memory energy under performance constraints. MemScale creates
and leverages active low-power modes that result from dynamically
scaling the frequency of memory channels and DRAM devices, and
dynamically scaling the voltage and frequency of the memory con-
troller. We also proposed a small set of mechanisms and an op-
erating system policy to determine the best power mode at each
point in time. Our evaluation demonstrated that MemScale con-
serves significant memory and system energy, while staying within
pre-set performance limits. Our results also showed that MemScale
is superior to four competing energy management techniques. We
conclude that MemScale’s potential benefits far outweigh its small
hardware costs.

Our future work will consider selecting different frequencies for
different channels, OS-level scheduling to increase the potential
benefits of MemScale, coordinating CPU and memory DVFS,
combining MemScale with rank-subsetting techniques, and volt-
age scaling parts of DIMMs as well.

Acknowledgements

We would like to thank Eugene Gorbatov and our shepherd Onur
Mutlu for comments on many aspects of this work.

References

[1] J. H. Ahn, N. P. Jouppi, C. Kozyrakis, J. Leverich, and R. S. Schreiber.
Future scaling of processor-memory interfaces. SC '09 - Super Com-
puting, 2009.

[2] 1. Akyildiz. On the exact and approximate throughput analysis of
closed queuing networks with blocking. IEEE Transactions on Soft-
ware Engineering, 14(1):62-70, 1988.

[3] AMD. ACP —The Truth About Power Consumption Starts Here, 2009.
http://www.amd.com/us/Documents/43761C_ACP_WP_EE.pdf.

[4] S. Balsamo, V. D. N. Persone, and R. Onvural. Analysis of Queuing
Networks with Blocking. 2001.

[5] L. A. Barroso and U. Holzle. The Datacenter as a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Synthesis
Lectures on Computer Architecture, Jan. 2009.

[6] L. A. Barroso and U. Holzle. The Case for Energy-Proportional
Computing. [EEE Computer, 40(12):33-37, December 2007.

[7] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, a.G. Saidi, and S. Reinhardt.
The M5 Simulator: Modeling Networked Systems. I[EEE Micro,
26(4):52-60, July 2006.

[8] R. Crisp. Direct Rambus Technology: The New Main Memory Stan-
dard. IEEE Micro, 1997.

[9] R. Das, O. Mutlu, T. Moscibroda, and C. R. Das. Aérgia : Exploiting
Packet Latency Slack in On-Chip Networks. ISCA '10: International
Symposium on Computer Architecture, 2010.

[10] V. Delaluz, M. Kandemir, N. Vijaykrishnan, A. Sivasubramaniam,
and M. J. Irwin. Hardware and Software Techniques for Controlling
DRAM Power Modes. IEEE Transactions on Computers, 50(11),
2001.

[11] B. Diniz, D. Guedes, W. M. Jr, and R. Bianchini. Limiting the Power
Consumption of Main Memory. ISCA ’07: International Symposium
on Computer Architecture, 2007.

[12] EPA. Report to Congress on Server and Data Center Energy Efficiency
Public Law 109-431, 2007.

[13] X. Fan, C. Ellis, and A. Lebeck. Memory Controller Policies for
DRAM Power Management. In Proceedings of the International
Symposium on Low-Power Electronics and Design, August 2001.

[14] W. Felter, K. Rajamani, T. Keller, and C. Rusu. A Performance-
Conserving Approach for Reducing Peak Power Consumption in
Server Systems. ICS '05: International Conference on Supercomput-
ing, 2005.

[15] Google. Going Green at Google, 2010.
[16] E. Gorbatov, 2010. Personal communication.

[17] M. S. Gupta, G.-Y. Wei, and D. Brooks. System level analysis of fast,
per-core DVFS using on-chip switching regulators. HPCA ’08: High
Performance Computer Architecture, 2008.

[18] H. Hanson and K. Rajamani. What Computer Architects Need to
Know About Memory Throttling. WEED ’10: Workshop on Energy-
Efficient Design, 2010.

[19] S. Herbert and D. Marculescu. Analysis of Dynamic Volt-
age/Frequency Scaling in Chip-Multiprocessors. ISLPED ’07: Inter-
national Symposium on Low Power Electronics and Design, 2007.

[20] H. Huang, P. Pillai, and K. G. Shin. Design and Implementation of
Power-Aware Virtual Memory. In Proceedings of the USENIX Annual
Technical Conference, June 2003.

[21] Intel. Intel Xeon Processor 5600 Series, 2010.

[22] B.Jacob, S. W. Ng, and D. T. Wang. Memory Systems: Cache, DRAM,
Disk. Morgan Kaufmann Publishers, 2007.

[23] JEDEC. DDR3 SDRAM Standard, 2009.

[24] A. R. Lebeck, X. Fan, H. Zeng, and C. Ellis. Power Aware Page
Allocation. ASPLOS ’00: Architectural Support for Programming
Languages and Operating Systems, 2000.

[25] C. Lefurgy, K. Rajamani, F. Rawson, W. Felter, M. Kistler, and T. W.

Keller. Energy Management for Commercial Servers. [EEE Com-
puter, 36(12), December 2003.

[26] D.Levinthal. Performance Analysis Guide for Intel Core i7 Processor
and Intel Xeon 5500 processors, 2009.

[27] X. Li, Z. Li, E. M. David, P. Zhou, Y. Zhou, S. V. Adve, and S. Ku-
mar. Performance-directed energy management for main memory and
disks. In Proceedings of the 11th International Conference on Archi-
tectural Support for Programming Languages and Operating Systems,
October 2004.

[28] K. Lim, J. Chang, T. Mudge, P. Ranganathan, S. K. Reinhardt, and
T. F. Wenisch. Disaggregated Memory for Expansion and Sharing
in Blade Servers. ISCA ’09: International Symposium on Computer
Architecture, 2009.

[29] J. Lin, H. Zheng, Z. Zhu, H. David, and Z. Zhang. Thermal Modeling
and Management of DRAM Memory Systems. ISCA ’07: Interna-
tional Symposium on Computer Architecture, 2007.

[30] J. Lin, H. Zheng, Z. Zhu, E. Gorbatov, H. David, and Z. Zhang.
Software Thermal Management of DRAM Memory for Multicore
Systems. SIGMETRICS, pages 337-348, 2008.

[31] D. Meisner, B. T. Gold, and T. F. Wenisch. PowerNap: Eliminating
Server Idle Power. ASPLOS '09: Architectural Support for Program-
ming Languages and Operating Systems, Feb. 2009.

[32] Micron. 1Gb: x4, x8, x16 DDR3 SDRAM, 2006.

[33] Micron. Calculating Memory System Power for DDR3, July 2007.

[34] A. Miyoshi, C. Lefurgy, E. V. Hensbergen, R. Rajamony, and R. Ra-
jkumar. Critical Power Slope : Understanding the Runtime Effects of
Frequency Scaling. ICS '02: International Conference on Supercom-
puting, 2002.

[35] J. Moore, J. S. Chase, and P. Ranganathan. Weatherman: Automated,
Online and Predictive Thermal Mapping and Management for Data

Centers. ICAC '06: International Conference on Autonomic Comput-
ing, 2006.

[36] V. Pandey, W. Jiang, Y. Zhou, and R. Bianchini. DMA-Aware Mem-
ory Energy Management. HPCA '06: High-Performance Computer
Architecture, 2006.

[37] S. Pelley, D. Meisner, P. Zandevakili, T. F. Wenisch, and J. Under-
wood. Power Routing : Dynamic Power Provisioning in the Data Cen-
ter. ASPLOS ’10: Architectural Support for Programming Languages
and Operating Systems, 2010.

[38] E. Perelman, G. Hamerly, M. V. Biesbrouck, T. Sherwood, and
B. Calder. Using SimPoint for Accurate and Efficient Simulation Erez
Perelman. SIGMETRICS, 2003.

[39] L. Ramos and R. Bianchini. C-Oracle: Predictive thermal management
for data centers. HPCA ’08: High Performance Computer Architec-
ture, Feb. 2008.

[40] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, Rajeev Balasubra-
monian, and A. Davis. Micro-Pages : Increasing DRAM Efficiency
with Locality-Aware Data Placement. ASPLOS ’'10: Architectural
Support for Programming Languages and Operating Systems, 2010.

[41] N. Tolia, Z. Wang, M. Marwah, C. Bash, P. Ranganathan, and X. Zhu.
Delivering Energy Proportionality with Non Energy-Proportional Sys-
tems Optimizing the Ensemble. HotPower, 2008.

[42] D. Tsirogiannis, S. Harizopoulos, and M. A. Shah. Analyzing the
energy efficiency of a database server. SIGMOD, 2010.

[43] A. N. Udipi, N. Muralimanohar, N. Chatterjee, Rajeev Balasubramo-
nian, A. Davis, and N. P. Jouppi. Rethinking DRAM Design and Orga-
nization for Energy-Constrained Multi-Cores. ISCA ’10: International
Symposium on Computer Architecture, 2010.

[44] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu. Mini-
rank: Adaptive DRAM architecture for improving memory power
efficiency. MICRO '08: Symposium on Microarchitecture, Nov. 2008.

[45] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu. Decoupled DIMM : Building
High-Bandwidth Memory System Using Low-Speed DRAM Devices.
ISCA ’09: International Symposium on Computer Architecture, 2009.

