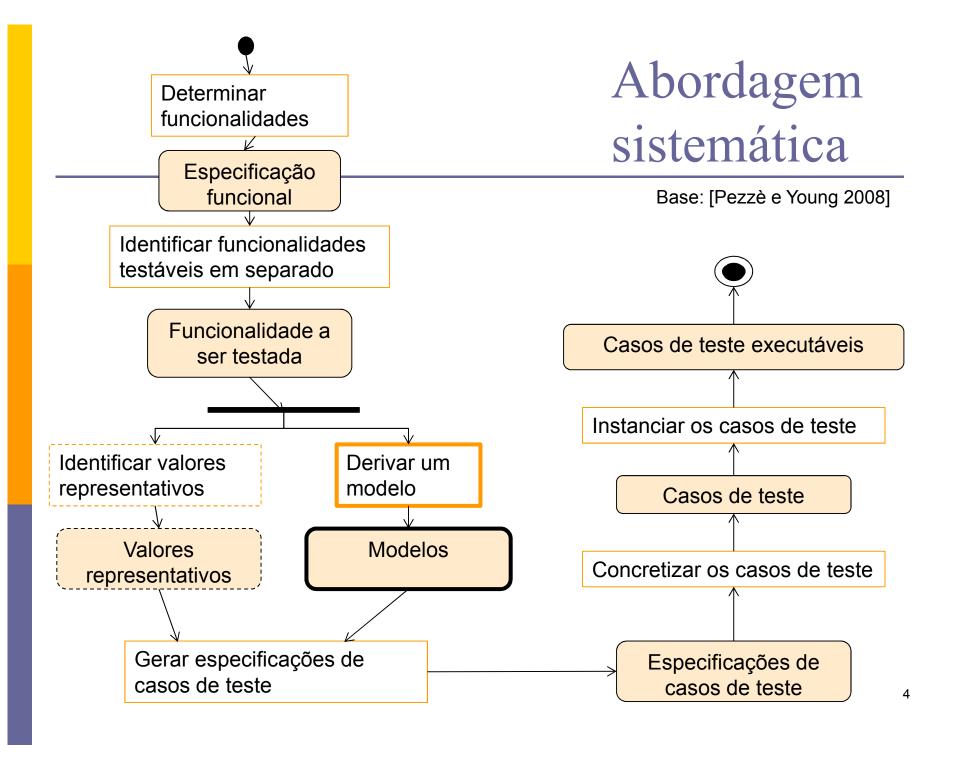
Testes caixa preta - 2

Tabela de Decisão Casos de Uso

Criação: Abr/2001


Reformulação: Abr/2013

Referências

- M. Pezzè, M. Young. **Teste e Análise de Software**. Bookman Companhia Editora, 2008, cap. 10 e 11.
- P. Ammann, J. Offutt. **Introduction to Software Testing**. Cambridge University Press, 2008, cap.4.
- R.Binder. "Testing OO Systems. Models, Patterns and Tools", Addison-Wesley, 2000, cap14

Tópicos

- Visão Geral
- Abordagens
 - Árvore de decisão
 - Tabela de decisão
 - Gramática

Algumas técnicas de testes caixa preta

Especificação: Requisitos **Projeto** Abordagens combinatórias Partição de equivalência Valores Limite Particionamento em categorias **Testes Aleatórios** Baseados em especificação estruturada Árvore de decisão Tabela de decisão Gramática

Motivação - 2

- Limitações das abordagens combinatórias:
 - Partição em classes de equivalência e Análise de Valores-Limite:
 - Não levam em conta combinações de valores → difícil testar situações em que diferentes combinações levam a diferentes saídas do sistema
 - Partição por categorias e Árvore de classificação
 - Visam as combinações de valores (com restrições)
 - □ Partem de especificações informais → não levam em conta modelos de especificação
- Como gerar casos de teste que levem em conta uma representação estruturada do sistema?

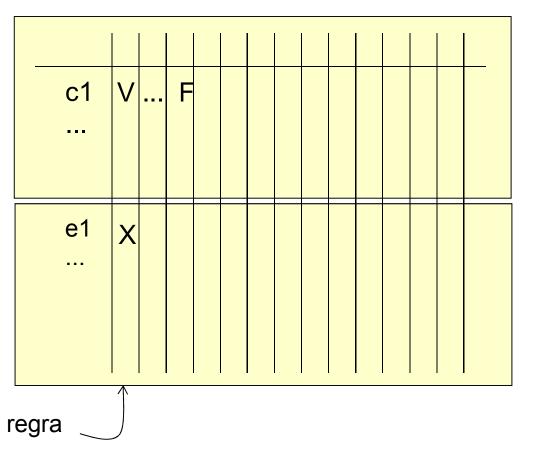
Análise causa - efeito

- Útil quando especificações são representadas como estruturas de decisão:
 - Conjuntos de condições sobre valores de entradas e as ações correspondentes do sistema
- Modelos de teste:
 - árvores de decisão
 - tabelas de decisão
 - grafo causa-efeito como modelo auxiliar

Definições


Causas:

condições de entrada (valor lógico)


• Efeitos:

ações realizadas em resposta às diferentes condições de entrada

Árvore de decisão: exemplo do mdc (a, b)

Tabela de decisão

Condições de entrada (causas)

Ações (efeitos)

Construção da tabela de decisão

	a ≠0	V	V	F	F
	b ≠0	V	F	V	F
=	mdc(a, b) = a mdc(a,b) = b mdc(a, b) exceção	✓	√	✓	

Utilidade da tabela de decisão

- A tabela de decisão:
 - Facilita a determinação de quais testes aplicar.
 - Permite que se analise a especificação para determinar:
 - Redundâncias: duas regras iguais, i.e, mesmas causas levando aos mesmos efeitos
 - Contradições: duas regras com as mesmas causas levando a efeitos diferentes
 - Omissões: não há regras para todas as combinações de causas.
 - Redundâncias e contradições não são necessariamente erros: podem indicar concorrência.
 - Omissões podem indicar situações irrelevantes ou até mesmo impossíveis

Limitação das tabelas de decisão

- Tamanho:
 - 3 causas ⇒ 2³ combinações (regras)
 - 5 causas \Rightarrow 2⁵ regras
 - **...**
 - 8 causas \Rightarrow 28 regras
 - **...**
- Será que vale a pena testar todas as regras?

Exemplo

Supor um sistema bancário que trate somente duas transações:

depósito nº da conta quantia

saque nº da conta quantia

Requisitos:

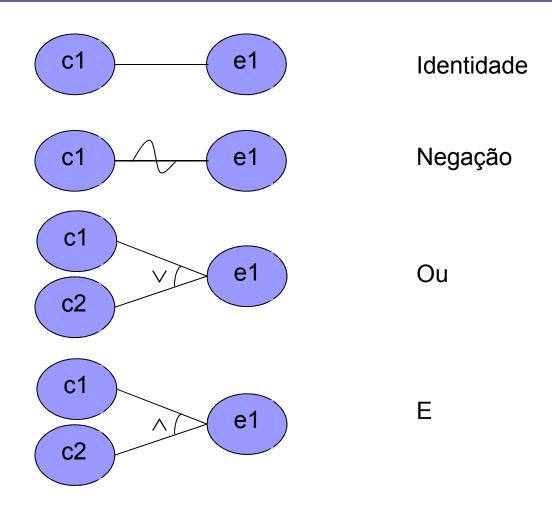
- se o comando é depósito e o nº da conta é válido então a quantia é depositada
- se o comando é saque e o nº da conta é válido e a quantia é válida (0 < quantia ≤ saldo) então a quantia sacada
- se o comando ou nº da conta ou a quantia for inválido então exibir mensagem de erro apropriada

Causas e efeitos

Causas:

- c1. Comando é depósito
- c2. Comando é saque
- c3. Nº da conta é válido

c4. Quantia é válida

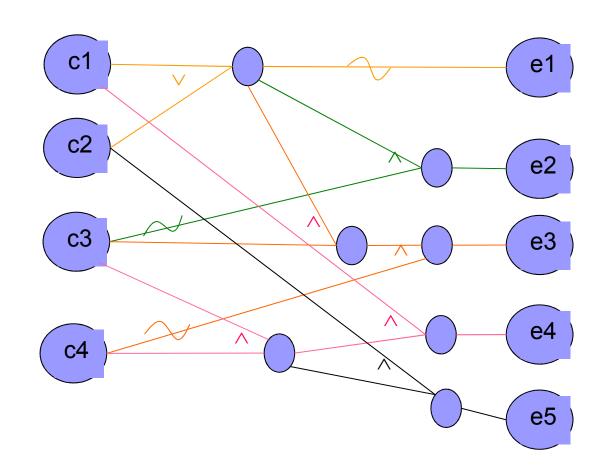

 n° de regras = 2 ⁴ = 16

será que todas interessam?

Efeitos:

- e1. Exibir "comando inválido"
- e2. Exibir "nº da conta inválido"
- e3. Exibir "quantia inválida"
- e4. Depositar a quantia
- e5. Sacar a quantia

Grafo causa-efeito: notação básica


Exemplo: grafo causa-efeito

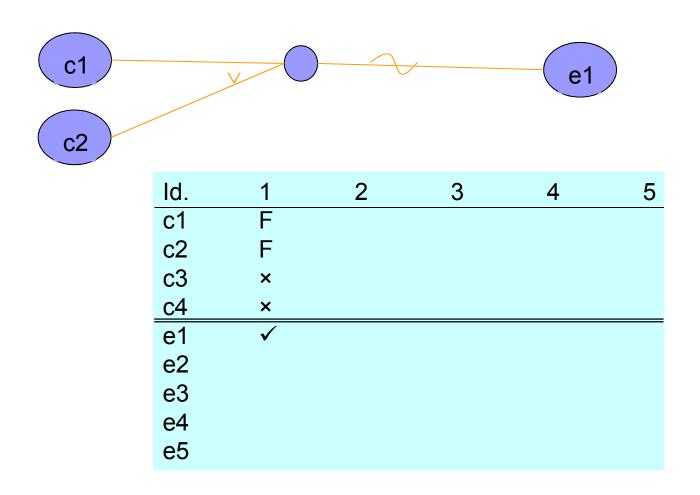
Causas:

- c1. Comando é depósito
- c2. Comando é saque
- c3. Nº da conta é válido
- c4. Quantia é válida

Efeitos:

- e1. Exibir "comando inválido"
- e2. Exibir "n° da conta inválido"
- e3. Exibir "quantia inválida"
- e4. Depositar a quantia
- e5. Sacar a quantia

Conversão em tabela de decisão

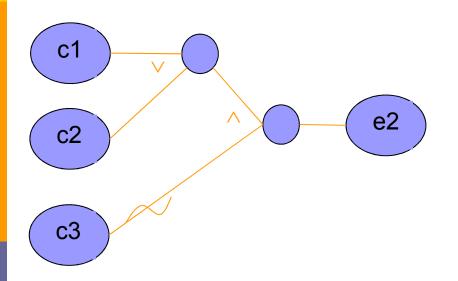

- ① Escolher um efeito como ação a ser executada, ie, marcar um
 "✓" na regra correspondente a este efeito.
- ② Rastrear no grafo quais as combinações de causas que levam a esse efeito e marcar um "V" ou "F" na posição correspondente na tabela
- ③ Para cada combinação criada, verificar se ocorrem ou não os outros efeitos

Conversão: OU

- Se e1 = $x1 \lor x2$:
 - não escolha x1 = x2 =V
- Se e1 = \neg (x1 \lor x2):
 - considere todas as combinações que façam com que x1 v
 x2 = F

x1 e x2 podem ser causas ou nós intermediários

Exemplo: tabela de decisão



Conversão: E

- Se e1 = $x1 \land x2$:
 - considere todas as combinações que façam com que x1 = x2 = V
- Se e1 = \neg (x1 \land x2):
 - considere somente uma combinação que faça com que x1 ∧ x2
 F
 - para a combinação escolhida inclua uma e somente uma combinação que leve ao resultado desejado

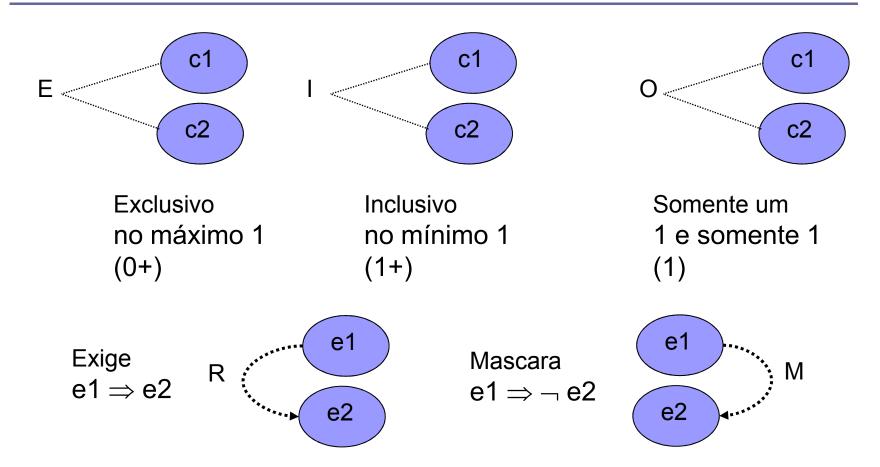
x1 e x2 podem ser causas ou nós intermediários

Exemplo: tabela de decisão

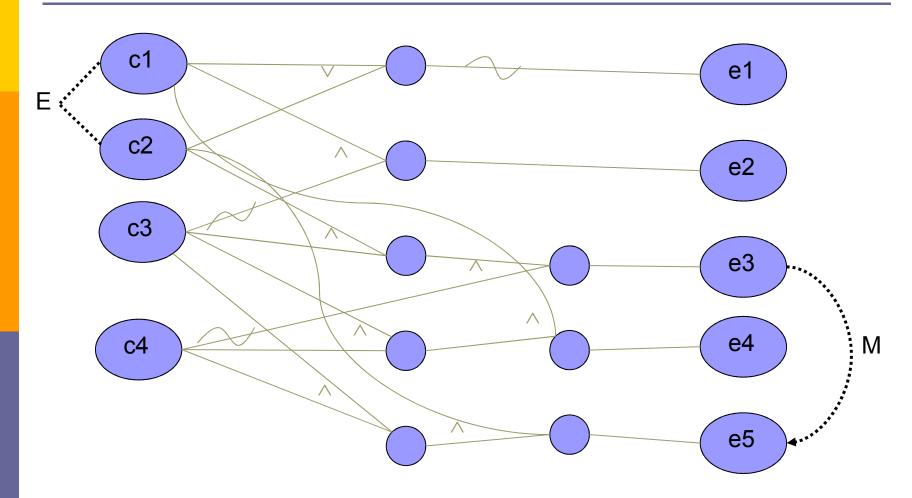
ld.	1	2	3	4	5	6
7						
c1	F	V	F			
c2	F	F	V			
<u>c3</u>	×	F	F			
c4	×	×	×			
e1	\checkmark					
e2		\checkmark	\checkmark			
e3						
e4						
e5						

Exemplo: tabela de decisão

ld.	1	2	3	4	5	6	7
c1	F	V	F	V	F	V	F
c2	F	F	V	F	V	F	V
c3	×	F	F	V	V	V	V
<u>c4</u>	×	×	×	F	<u> </u>	V	V
e1	\checkmark						
e2		\checkmark	\checkmark				
e3						✓	✓
e4 e5					٧		√


Geração de testes

- Tabela de decisão
 critério: exercitar cada regra pelo menos 1
 vez
- Árvore de decisão critério: exercitar cada caminho da raiz até a folha pelo menos 1 vez
- Eliminar os casos de teste que não fazem sentido ou que são redundantes.


Exemplo: casos de teste

- Regra 1: comando ∉ {depósito, saque}, ∀ nº conta, ∀ quantia
- Regra 2: comando = depósito, nº de conta inválido, ∀ quantia
- Regra 3: comando = saque, nº de conta inválido, ∀ quantia ...

Restrições

Exemplo: uso de restrição

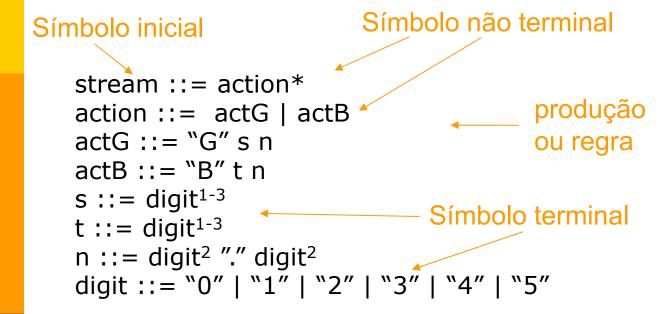
Exercício 1

Considere uma função com duas variáveis de entrada: Cliente e Qtd, e uma variável de saída, Desconto. Cliente pode ser do tipo A, B ou C e Qtd pode variar de 1 a 1000. A função calcula Desconto de acordo com as seguintes regras:

- Clientes do tipo A não recebem desconto se nº de itens comprados for inferior a 10; recebem 5% desconto para compras entre 10 e 99 itens; 10% de desconto acima de 100 itens.
- Clientes do tipo B recebem 5% de desconto para compras abaixo de 10 itens; 15% de desconto entre 10 e 99 itens; 25% de desconto acima de 100 itens.
- Clientes do tipo C não recebem desconto se nº de itens comprados for inferior a 10; 20% de desconto entre 10 e 99 itens; 25% de desconto acima de 100 itens.

Exercício 2

Considere a tela de login em um sistema mostrada ao lado. O usuário deve fornecer:


- login: código alfanumérico de 8 caracteres. Se o código é inválido ou não é reconhecido pelo sistema, este solicita ao usuário que o forneça novamente, até que um código válido seja fornecido.
- senha: código alfanumérico de 5 caracteres. Se a senha é incorreta, o usuário tem uma chance a mais para fornece-la. Se ambas as tentativas falharem, o usuário deve recomeçar todo o processo.

Testes de sintaxe

- Uso de gramáticas para geração de testes
- Gramáticas são adequadas para representar:
 - Entradas de tamanho variável e não limitado
 - Estruturas recursivas
 - Condições-limite
- Exemplos:
 - Entradas textuais complexas
 - Árvores
 - ex.: documentos XML e HTML são árvores descritas textualmente
 - Estrutura de programas
 - Também podem ser consideradas como árvores descritas textualmente
 - Útil para testar compiladores

Exemplo de gramática

Cadeias válidas

G 17 03.01 B 13 15.20 G 1 04.23 B 123 45.34

•: zero ou mais repetições m-n: no mínimo m e no máximo n repetições n: exatamente n repetições

Testes de Sintaxe - critérios

- Casos de teste = cadeias geradas a partir da gramática
- Alguns critérios:
 - Cobertura de produções: um caso de teste deve exercitar pelo menos uma produção
 - Cobertura de terminais: um caso de teste deve conter pelo menos um terminal
 - Condições-limite: casos de teste devem exercitar cada produção recursiva:
 - Número mínimo de vezes
 - Número mínimo + 1
 - Número máximo 1
 - Número máximo de vezes

Exemplo de derivação de testes

Cobertura de produções

```
stream → action²

→ action action

→ actB action

→ G s n action

→ G digit¹⁻³ digit² "." digit² action

→ G digitdigitdigit digitdigit.digitdigit action

→ G 143 21.01 action
```

Ainda a geração de testes de sintaxe

Cobertura probabilística

- Pode-se associar probabilidades às produções, para indicar qual produção selecionar a cada passo
- Prioriza produções mais utilizadas

Geração de dados inválidos:

- Obtidos simplesmente aplicando-se mutações às produções ou aos terminais
- Objetivo: determinar se o programa reage adequadamente a entradas inválidas
- **■** Ex.:
 - Mutação de produção: B 123 45.34 → 15 123 45.34
 - Mutação de terminal: B 123 45.34 → B 123 01.34

Ferramentas para testes caixa preta

- O site abaixo contém várias ferramentas open source:
 - http://www.opensourcetesting.org/functional.php
 - □ Último acesso: set/2010

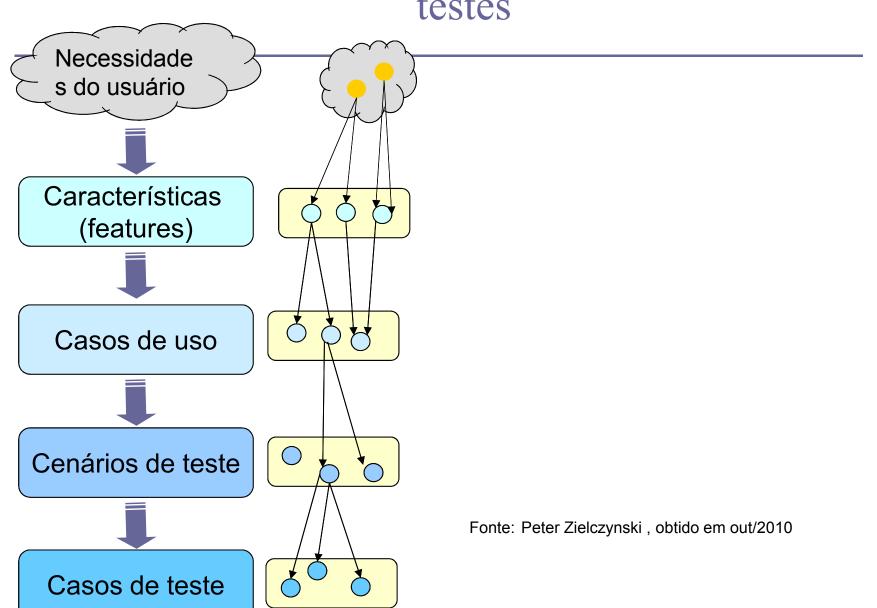
Exercício - 3

- UF em teste: Busca por elementos na base de dados de um site.
- A chave de busca é uma cadeia de caracteres que pode ser:
 - Uma cadeia simples, i.e., uma seqüência simples de caracteres
 - Uma cadeia composta:
 - Uma cadeia terminada com "*", usado como coringa ou
 - Uma string composta de sub-cadeias entre chaves e separadas por ",", usadas para indicar alternativas
 - Uma combinação de cadeias, i.e, cadeias combinadas com operadores booleanos AND, OR, NOT, que podem estar entre parênteses para alterar a prioridade dos operadores

- Exemplos de chaves de busca:
 - □ Laptop → a UF busca por essa cadeia
 - □ {DVD*, CD*} → busca por cadeias começando por DVD ou CD
 - NOT (A2010) AND A20* → busca por cadeias começando por A20, exceto a sub-cadeia A2010
- Escreva a gramática que representa uma chave de busca
- Derive casos de teste que cubram todas as produções

Algumas técnicas de testes caixa preta

Especificação: Requisitos **Projeto** Abordagens combinatórias Partição de equivalência Valores Limite Particionamento em categorias **Testes Aleatórios** Baseados especificação estruturada Arvore de decisão Tabela de decisão Gramática

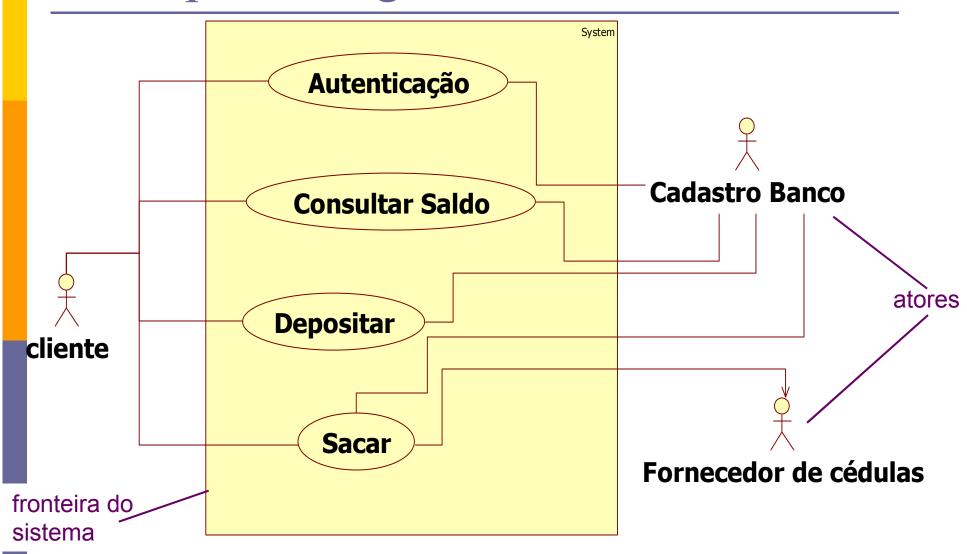

Casos de uso

Testes a partir de casos de uso

Motivação:

- Casos de uso permitem representar o sistema do ponto de vista de seus usuários
- Casos de uso podem ser usados em vários níveis de abstração, podendo representar:
 - requisitos funcionais (ou não funcionais) de um sistema ou incremento
 - interfaces de componentes ou objetos
 - interfaces com usuários
- Casos de uso são descritos por fluxos (normais, alternativos e de exceção) → diferentes cenários → cenários ≈ casos de teste
- Facilidade de manter rastreabilidade entre os testes e os requisitos

Relação entre requisitos, casos de uso e casos de testes


Matriz de rastreabilidade dos testes

	CT1	CT2	СТЗ	 CT1500
caso uso 1	✓	✓		
caso uso 2		\checkmark	\checkmark	
caso uso 3	✓		✓	✓
caso uso 99	✓	\checkmark		✓

Características

- Casos de uso representam o diálogo entre um sistema e atores externos
- Uma instância de um caso de uso define valores de entrada e saída específicos
- Um caso de uso é composto de operações iniciadas por um estímulo externo
 - uma operação = cenário de uso do sistema

Exemplo - Diagrama de Caso de Uso

De onde derivar os casos de teste?

- Diagramas de casos de uso
- Descrição dos casos de uso
 - inclui outros diagramas, como os de interação

mas ...

- ... a maioria das metodologias OO não exigem que os casos de uso possuam informações necessárias para os testes:
 - Quais as entradas? Qual o domínio de cada entrada?
 - Quais as saídas? Qual o domínio de cada saída?
 - Em que condições os fluxos normais, alternativos e de exceção são usados?
 - Qual a seqüência de execução dos casos de uso?

Testes baseados em casos de uso estendidos

[Binder00, 14.2]

- □ Baseiam-se em casos de uso estendidos = caso de uso + variáveis operacionais
- Procedimento:
 - Identificar as variáveis operacionais
 - ② Definir os domínios das variáveis operacionais
 - 3 Estabelecer as relações operacionais
 - Derivar os casos de teste

Identificar as variáveis operacionais:

Fatores que variam de um cenário para outro e determinam as diferentes respostas do sistema:

- entradas e saídas explícitas (na interface do caso de uso)
- condições ambientais que afetem o comportamento dos atores
- abstrações do estado do sistema em teste

Exemplo: caixa eletrônico

Caso de uso	Ator	Cenários	
Estabelecer sessão	cliente	(1) Senha inválida; corrige senha; mostra menu	
		(2) senha OK; sem conexão com banco; mostra:	
		"Tente mais tarde"	
Sacar	cliente	(1) Pede R\$50; conta aberta; saldo de R\$1000;	
		fornece os R\$50	
Suprir dinheiro	operador	(1) abrir o caixa; inserir R\$15000; fechar o caixa	

- ② Definir domínios das variáveis operacionais:
 - estabelecer valores válidos e inválidos para cada variável
 - para o caso de uso Autenticação:

Variáveis	Domínio		
nº do cartão (NC)	entre 0000 e 9999		
senha (S)	entre 0000 e 9999		
conexão com o banco(CB)	{no ar, fora do ar}		
status da conta (SC)	{aberta, fechada}		

- Stabelecer as relações operacionais:
 - estabelecer combinações de valores das variáveis que levem a diferentes respostas do sistema ⇒ tabela de decisão

variante de um caso de uso

para o exemplo dado:

msg.: conta fechada

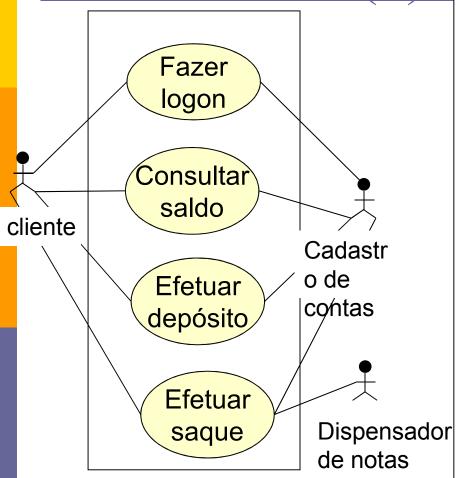
 $NC \in [0000 ... 9999]$ F V V S ∈ [0000 ... 9999] — F V CP = no ar — F SC = aberto — — — F SC = aberto — — — \checkmark msg.: cartão inválido \checkmark \checkmark \checkmark \checkmark msg.: senha inválida msg.: selecione transação msg.: tente mais tarde


- Derivar os casos de teste:
 - Critério: cada variante deve ser exercitada pelo menos uma vez
 - Requisitos de testes: conjunto de variantes
 - Conjunto de testes adequado: pelo menos 1 caso de teste para cada variante
 - para o exemplo dado:
 - ... completar

- Condições de entrada:
 - casos de uso estendido estão disponíveis
 - o sistema ou componente é minimamente operacional, i.e.,
 já passou por testes que demonstraram que pode ser usado
- Condições de saída dos testes:
 - todos os casos de uso selecionados foram testados pelo menos uma vez
 - para cada caso de uso selecionado, cada variante foi exercitada pelo menos uma vez
 - matriz de rastreabilidade dos testes

Considerações sobre a abordagem

- Estabelece critério para geração de testes a partir de casos de uso
- O que fazer quando há relação de precedência entre os casos de uso?
 - A técnica baseada nos casos de uso estendidos não deixa explícito o que fazer nesse caso
- O que fazer quando fluxos internos a um caso de uso são complexos?
 - A técnica não dá diretrizes explícitas quanto a esse ponto também.
 - Recomenda desenvolver diagramas de estado representando o comportamento.


Exercício 1: Derivar casos de teste para o caso de uso a seguir.

- Breve descrição:
 - Usuário entra com username e senha e aperta Logon
 - Usuário também pode marcar a caixa ao lado de Remember me! Nesse caso, é necessário habilitar um cookie no seu sistema.
 - Ao entrar no sistema, cria-se uma sessão no servidor para controlar suas atividades durante o uso da aplicação web

Exercício 2 (1)

Baseado em [Rubira2006]

- Elabore o diagrama de atividades representando as seqüências válidas de casos de uso desse sistema.
- Elabores os procedimentos e os casos de teste para o caso de uso Efetuar saque, descrito resumidamente a seguir e no próximo slide:
- Descrição: O cliente, já autenticado, escolhe a opção Efetuar Saque, informa a quantia desejada e, caso o saldo da conta seja suficiente e o caixa tenha o dinheiro necessário, a quantia é liberada.
- Pré-condições: (i) o cliente deve ter efetuado o caso de uso Efetuar logon para entrar no sistema; (ii) a conta deve estar ativa; (iii) a quantia deve ser maior do que zero e não pode ser superior ao saldo e nem ao total de dinheiro disponível no caixa.
- Pós-condições: (i) a quantia é debitada do saldo da conta e do total disponível no caixa; (ii) a quantia é fornecida ao cliente.

Exercício 2 (2)

Baseado em [Rubira2006]

Fluxo básico:

- 1. O cliente escolhe no menu principal do terminal a opção Efetuar Saque.
- 2. O sistema verifica se o login foi efetuado.
- 3. O sistema verifica se a conta está ativa, através do Cadastro de Contas.
- 4. O sistema solicita que o cliente informe a quantia desejada.
- 5. O cliente informa a quantia desejada.
- 6. O sistema verifica se o saldo da conta é suficiente para realizar a transação e, em caso afirmativo, se há dinheiro em quantidade suficiente no caixa.
- 7. O sistema subtrai o valor solicitado do saldo da conta do cliente e do valor disponível no caixa e libera a quantia solicitada, através do Dispensador de notas.

Fluxo alternativo 1:

- No passo 2 do Fluxo Básico, se o login não tiver sido efetuado, o sistema informa isso ao cliente.
- Fluxo alternativo 2:
 - No passo 3 do Fluxo Básico, se a conta não estiver ativa, o sistema avisa isso ao cliente e informa que o saque não pode ser realizado.