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Abstract 

Various global rearrangements of permutations, such as reversals and transpositions have recently become of interest 
because of their applications in genome analysis. The study of such rearrangements leads to computational problems 
that are of interest in their own right. In this paper we introduce an operation, called block-interchange, in which two 
substrings, or blocks, swap positions in the permutation. We demonstrate a polynomial-time algorithm for calculating the 
block-interchange distance of a permutation (i.e. the minimum number of block-interchanges required to transform the 
permutation to the identity). We also determine the block-interchange diameter of the symmetric group. 
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1. Introduction 

In classical methods of string comparison, strings 
may only mutate by operations that act on individ- 
ual characters, e.g., insertions, deletions, and substitu- 
tions. Recently applications in molecular biology have 
motivated the study of larger scale mutations such as 

reversals [ 9,3], transpositions [ 21, and translocations 

[ 7,101, applied, in particular, to permutations rather 
than to general strings. Many of the resulting prob- 
lems remain open as far as polynomial-time solvabil- 
ity or NP-completeness is concerned, though Caprara 
[4] has recently proved that sorting by reversals is 
NP-hard. 

Consideration of such “global” operations on per- 
mutations leads to a number of algorithmic problems 
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that are of interest in their own right. For example, 
Aigner and West [ 1 ] have studied the problem of 
sorting a list by the repeated insertion of the leading 
element. Bounds for sorting a permutation by prefix- 
reversals have been obtained by Gates and Papadim- 

itriou [ 61. 
Global operations on permutations may be thought 

of as generators of the symmetric group (or a sub- 

group of the symmetric group). Given an arbitrary set 
of generators, the problem of finding a minimal se- 

quence that generates a permutation has been shown 
to be NP-hard by Even and Goldreich [5]. Jerrum 
[ 81 has shown that the problem is PSPACE-complete 
even when the generator set contains only two gen- 
erators. However when the generator set is fixed, the 
NP-completeness results no longer apply and in [ 81 
some polynomial-time algorithms for sorting permu- 
tations using global operations are given. 

In this paper we introduce a new, natural global 
operation - the block-interchange - which can be 
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Fig. I. An example of sorting by block-interchange. 

viewed as a generalisation of a transposition. In a 

block-interchange two non-intersecting substrings 
of any length are swapped in the permutation. In a 
transposition the substrings must be adjacent. 

Given a permutation 7r = [ ~1 7r2 . . . T,] , a block- 
interchange with parameters (i, j, k, I), where 1 < i < 
j < k < 1 < n + 1, is applied to rr by exchanging the 
blocks [ri . . . rpl] and [7~k . . . rl_11. Note that 
the special case of j = k, is a transposition. 

The minimum number of block-interchanges that 

transform 7~ into (+ is the block-interchange distance 

between the two permutations. This value will be 
the same as the block-interchange distance between 
9l.U -’ and the identity permutation. So finding 
the block-interchange distance between two permu- 
tations is equivalent to sorting a permutation using 
block-interchanges. The block-interchange distance 
of r, bid(r), is the length of the shortest sequence 
of block-interchanges that transforms r into the 
identity permutation. For example the permutation 
rr = [ 5 2 4 1 31, has block-interchange distance 2 as 
shown in Fig. 1. 

If two elements are adjacent in the permutation 7~, 
but are not adjacent in the identity permutation then 

we say they form a breakpoint, because at some stage 
in the sequence of block-interchanges that sorts rr, the 
two elements will have to be split apart. More precisely 
we define breakpoints exactly as Bafna and Pevzner 
[2] did for transpositions, i.e., we assume ~0 = 0 
and r”+l = 12 + 1, and define a breakpoint as a value 
of i such that 1 < i < n + 1 and ri - ri-1 # 1. 
Define b(r) to be the number of breakpoints in the 
permutation. Note that the identity permutation is the 
only permutation with no breakpoints, and a block- 
interchange can change b(r) by at most 4. 

In this paper we will show that there is a 
polynomial-time algorithm for the evaluation of 
bid(r). This will be achieved by first demonstrating 
that for all permutations, except the identity permuta- 
tion, a block-interchange exists that removes at least 

two breakpoints. Then it will be proved using a graph 
model for the permutations that an algorithm which 
repeatedly applies such block-interchanges sorts w 
using the fewest number of block-interchanges. We 
then study the permutations of n elements which 
require the most block-interchanges in order to sort 
them and show that the block-interchange diameter 
of the symmetric group S,, is [n/2]. 

2. Minimal block-interchanges 

Lemma 1. It is always possible to find a block- 
interchange that removes at least two breakpoints 
from a given permutation, T, unless IT is the identity 

permutation. 

Proof. Since rr is not the identity permutation, there 
must be at least two elements in 7r that appear in the 
wrong order i.e. there must be an x and a y such that 

x<ybutr=[...y . ..x . ..I. 
Now choose x to be the smallest such value and 

choose y to be the largest value in r to the left of this x. 
Then x - 1 must be to the left of y in 7r since otherwise 

this would contradict the choice of X. Similarly y + 1 
must be to the right of x in 7~. Note that in fact x is 
the smallest value such that 7rX # X. Hence r has the 
form 

7r=[l...x-l...y...x...y+l...]. 

The block-interchange with parameters 

(Y’(x - 1) + 1,9+(y) -t 1, 

7r-‘(X),?r-*(y + 1)) 

transforms 7r into d 

?r’=[l . ..X-lx...yy+l . ..I. 

Notice that before this transformation there were 
breakpoints at each place where the block-interchange 
cut 7~. After the block-interchange there are at least 
two fewer breakpoints in the permutation. Hence the 
lemma. q 

We will call the block-interchange described in the 
above lemma the minimal block-interchange. Since 
we can remove at most four breakpoints with any 
block-interchange and a minimal block-interchange 
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Fig. 2. The black edges that change when a block-interchange (which is not a transposition) is applied. 
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Fig. 3. The black edges that change when a block-interchange (which is a transposition) is applied. 

167 

removes at least two breakpoints, then an algo- 

rithm that repeatedly applies the minimal block- 
interchanges gives us a 2-approximation algorithm 

for block-interchange distance. However when we 
examine these block-interchanges on a graph model 
we discover that this algorithm returns the exact 

solution. 

3. The graph model 

The graph model we use is that of a cycle graph 
as introduced by Bafna and Pevzner [2] when deal- 
ing with transpositions. The cycle graph, G(r), of a 

permutation r is a directed edge-coloured graph with 

vertex set (0, 1, . . . , n + 1) and edge set defined as 
follows. A grey edge connects vertex i to vertex i + 1 
for 0 < i < n. A black edge connects vertex ri to 
vertex 7ri-1 for 1 < i 6 n + 1. 

Since every incoming edge of a vertex can be 
uniquely paired with an outgoing edge of the other 
colour, we can easily completely decompose the 
graph into alternating cycles, and furthermore this 
decomposition is unique. The identity permutation is 
the only permutation that has n + 1 alternating cy- 
cles in its graph. The number of alternating cycles in 
G( 7r) is denoted by c( 7r). 

A block-interchange changes only black edges in 

the graph. Three or four black edges are removed from 
the graph and replaced by new black edges as shown 

in Figs. 2 and 3. 

Lemma 2. When a minimal block-interchange is ap- 
plied c(v) increases by two. 

Proof. A minimal block-interchange may change 3 
or 4 black edges of G( 7r). If it changes 3 edges then 
those edges must be part of one cycle. If it changes 
4 edges then those edges must be part of either one 
or two cycles. The three possible cases are shown in 
Figs. 4, 5, and 6. In each of these cases c(r) in- 

creases by two. Note that in the figures black edges 

are represented by thick edges, grey edges are repre- 
sented by thin edges, and paths which start and tin- 
ish with a grey edge are represented by dotted thin 
edges. •i 

Lemma 3. It is impossible to increase c(v) by more 
than two with a single block-interchange. 

Proof. A block-interchange changes at most four 
black edges in the graph, so the only way that we 
could increase C(T) by more than two with a sin- 
gle block-interchange would be if one big cycle was 
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Fig. 4. How a minimal block-interchange changes G( 9). 

Fig. 5. How a minimal block-interchange changes G(T). 
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Fig. 6. How a minimal block-interchange changes G(T). 

broken into four cycles, but this is impossible. A 
block-interchange that changes black edges from four 
different cycles results in two cycles. By symme- 
try, a block-interchange that results in four cycles 
must have acted on black edges from two cycles (an 
example of this is shown in Fig. 5). So C(W) can 
be increased by at most two with a single block- 
interchange. 0 

initialise visited and T-‘; 
cycles := 0; 
for i := 0 to n do begin 

if not visited[i] then begin 
cycles := cycles + 1; 
j := i; 

while not visited[j] do begin 
visited[ j] := true; 

j := j + 1; {follow grey edge} 
j := r[r-l(j) - 11; {follow black edge} 
end 

end 
end; 

return (n + 1 - cycles) 12; 

fig. 7. An algorithm to calculate bid(r). 

while T is not sorted do begin 
locate the smallest x such that vx # x 
find largest value y between x - 1 and W-‘(X) 
perform the block-interchange 

(X,~-‘(Y),lr-‘(X),I-‘(~+ 1)) 
end 

Fig. 8. An algorithm to perform an optimal sequence of block 
interchanges. 

4. Block-interchange distance 

These three lemmas lead to our main result. 

Theorem 4. The block-interchange distance bid( 7r) 
of a permutation r is 

bid(m) = i((n + 1) - C(T)), 

where c(r) is the number of alternating cycles in the 
cycle graph of r. 

Proof. By Lemma 2, bid(w) < ~(c(I) -c(~)),and 

byLemma3,bid(r) > J(c(l)-c(P>),wherelisthe 

identity permutation. So bid(r) = i( (n+ 1) -C(T) ), 

since c(z) = n + 1. Cl 

An algorithm which calculates the block-inter- 

change distance is shown in Fig. 7. The algorithm 
performs a depth-first search of G(T), counting the 
number of cycles, and hence runs in linear time. 

An algorithm which performs a sequence of block- 
interchanges achieving the minimum is shown in 
Fig. 8. This algorithm has O(n*) complexity since 
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Table 1 
The number of permutations of size n that achieve BID 

n 1234 5 6 7 8 9 10 
no. 1 1 5 8 84 180 3044 8064 193248 604800 

all the steps inside the while loop can be executed 
in linear time, and the loop itself is executed [n/2] 
times at most. 

5. Block-interchange diameter 

The block-interchange diameter, BID(n), of the 
symmetric group S,, is the maximum value of 

bid(r) taken over all n-element permutations. When 
?T is the reverse permutation of length n, i.e, 7r = 
[nn-1 . . . I], then c(r) is given by the formula 

{ 

2 if n is odd, 
c(?r) = 

1 otherwise, 

i.e. c(r) is as small as possible (since c(r) E n + 
1 (mod2) ). Hence BZD( n) will be achieved by the 

reverse permutation and is Ln/2]. 
There are many other permutations which achieve 

this upper bound, e.g., the permutation [ 246 8 13 5 71 
contains only one cycle in its cycle graph, and the 
family of permutations like it have the same value for 
c(r) as the reverse permutation. Table 1 shows how 
many permutations achieve the BID for small values 
of n. 

6. Conclusion 

Polynomial algorithms are not known (yet) for the 
problem of sorting permutations by transpositions and 
sorting by reversals has been shown to be NP-hard. 
By contrast we have derived a polynomial-time algo- 
rithm for sorting by block-interchanges and have also 
evaluated the block-interchange diameter of S,. 
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