
Transforming Cabbage into Turnip: Polynomial
Algorithm for Sorting Signed Permutations by Reversals

SRIDHAR HANNENHALLI

Bioinformatics, SmithKline Beecham Pharmaceuticals, King of Prussia, Pennsylvania

AND

PAVEL A. PEVZNER

University of Southern California, Los Angeles, California

Abstract. Genomes frequently evolve by reversals r(i, j) that transform a gene order p1
. . .

p ip i11
. . . p j21p j

. . . pn into p1
. . . p ip j21

. . . p i11p j
. . . pn. Reversal distance between

permutations p and s is the minimum number of reversals to transform p into s. Analysis of genome
rearrangements in molecular biology started in the late 1930’s, when Dobzhansky and Sturtevant
published a milestone paper presenting a rearrangement scenario with 17 inversions between the
species of Drosophila. Analysis of genomes evolving by inversions leads to a combinatorial problem of
sorting by reversals studied in detail recently. We study sorting of signed permutations by reversals, a
problem that adequately models rearrangements in small genomes like chloroplast or mitochondrial
DNA. The previously suggested approximation algorithms for sorting signed permutations by
reversals compute the reversal distance between permutations with an astonishing accuracy for both
simulated and biological data. We prove a duality theorem explaining this intriguing performance and
show that there exists a “hidden” parameter that allows one to compute the reversal distance between
signed permutations in polynomial time.

Categories and Subject Descriptors: F.1.3 [Computation by Abstract Devices]: Modes of Computa-
tion; G.2.1 [Discrete Mathematics]: Combinatorics; J.3 [Life and Medical Sciences]: biology and
genetics

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Computational biology, genetics

A preliminary version of this paper appeared in Proceedings of the 27th Annual ACM Symposium on
the Theory of Computing (Las Vegas, Nev., May 29 –June 1). ACM, New York, 1995, pp. 178 –189.
This work is supported by National Science Foundation (NSF) Young Investigator Award, NSF grant
CCR 93-08567, NIH grant 1R01 HG00987, and DOE grant DE-FG02-94ER61919.
Authors’ addresses: S. Hannenhalli, Bioinformatics, SmithKline Beecham Pharmaceuticals, King of
Prussia, PA 19406-0939, e-mail: hannes00@mh.us.sbphrd.com, and P. A. Pevzner, Departments of
Mathematics and Computer Science, University of Southern California, DRB-155, Los Angeles, CA
90089-1113, e-mail: ppevzner@hto.usc.edu.
Permission to make digital / hard copy of part or all of this work for personal or classroom use is
granted without fee provided that the copies are not made or distributed for profit or commercial
advantage, the copyright notice, the title of the publication, and its date appear, and notice is given
that copying is by permission of the Association for Computing Machinery (ACM), Inc. To copy
otherwise, to republish, to post on servers, or to redistribute to lists, requires prior specific permission
and / or a fee.
© 1999 ACM 0004-5411/99/0100-0001 $5.00

Journal of the ACM, Vol. 46, No. 1, January 1999, pp. 1–27.

1. Introduction

1.1. MOTIVATION AND BIOLOGICAL BACKGROUND. In the late 1980’s, Jeffrey
Palmer and colleagues discovered a remarkable and novel pattern of evolution-
ary change in plant organelles. They compared the mitochondrial genomes of
Brassica oleracea (cabbage) and Brassica campestris (turnip), which are very
closely related (many genes are 99%–99.9% identical). To their surprise, these
molecules, which are almost identical in gene sequence, differ dramatically in
gene order (Figure 1). This discovery and many other studies in the last decade
convincingly proved that genome rearrangements is a common mode of molecu-
lar evolution in mitochondrial, chloroplast, viral and bacterial DNA (see Bafna
and Pevzner, [1995]).

Every study of genome rearrangements involves solving a combinatorial
“puzzle” to find a shortest series of reversals to transform one genome into
another. (Three such reversals “transforming” cabbage into turnip are shown in
Figure 1.) In cases of genomes consisting of small number of “conserved blocks,”
Palmer and co-authors were able to find the most parsimonious scenarios for
rearrangements. However, for genomes consisting of more than 10 blocks,
exhaustive search over all potential solutions is far beyond the possibilities of
“pen-and-pencil” methods. As a result, Palmer and Herbon [1988] and Makaroff
and Palmer [1988] overlooked the most parsimonious scenarios of rearrange-
ments in more complicated cases like turnip vs. black mustard or turnip vs. radish
(see Bafna and Pevzner [1995] for optimal solutions).

In the problem we consider, the genes are numbered 1, . . . , n and the order
of genes in two organisms is represented by permutations p 5 (p1p2

. . . pn)
and s 5 (s1s2

. . . sn). A reversal r(i, j) is the permutation

S 1 2 · · · i 2 1 i i 1 1 · · · j 2 1 j j 1 1 · · · n
1 2 · · · i 2 1 j j 2 1 · · · i 1 1 i j 1 1 · · · nD .

Clearly p z r(i, j) has the effect of reversing the order of genes p ip i11
. . . p j. In

the case of signed permutations with 1 or 2 signs associated with every element
of p, p z r(i, j) reverses both the order and signs of the elements p ip i11

. . . p j

(see below).
Given permutations p and s, the reversal distance problem is to find a series of

reversals r1, r2, . . . , r t such that p z r1 z r2
. . . r t 5 s and t is minimum. We

call t the reversal distance between p and s. Note that the reversal distance

FIG. 1. “Transformation” of cabbage into turnip. Mitochondrial DNA of cabbage and turnip are
composed of five conserved blocks of genes that are shuffled in cabbage as compared to turnip. Every
conserved block has a direction that is shown by 1 or 2 sign.

2 S. HANNENHALLI AND P. A. PEVZNER

between p and s equals the reversal distance between s21p and the identity
permutation (1 2 . . . n). Sorting p by reversals is the problem of finding the
reversal distance, d(p), between p and the identity permutation (Figure 2(a)).

1.2. PREVIOUS RESULTS. Analysis of genome rearrangements provides a mul-
titude of challenges for computer scientists; see Pevzner and Waterman [1995]
for a review of open combinatorial problems motivated by genome rearrange-
ments. A computational approach based on comparison of gene orders versus
traditional comparison of DNA sequences was pioneered by Sankoff (see Sankoff
et al. [1990; 1992] and Sankoff [1992]). Kececioglu and Sankoff [1995] first
formulated the reversal distance problem and derived the lower and upper
bounds for reversal distance. This approach led to the first approximation
algorithm for sorting by reversals, which generated the exact solutions in a
number of difficult instances. The problem was further studied by Bafna and
Pevzner [1996], who introduced the notion of breakpoint graph of a permutation
and revealed important links between the maximum cycle decomposition of this
graph and reversal distance.1

1.3. BREAKPOINT GRAPH AND CYCLE DECOMPOSITION. What makes it hard to
sort a permutation? In the very first computational studies of genome rearrange-
ments, Watterson et al. [1982], and Nadeau and Taylor [1984] introduced the
notion of breakpoint and noticed some correlations between the reversal distance
and the number of breakpoints. (In fact, Sturtevant and Dobzhansky [1936]
implicitly discussed these correlations 60 years ago!) Below, we define the notion
of breakpoint.

Let i ; j, if ui 2 j u 5 1. Extend a permutation p 5 p1p2
. . . pn by adding

p0 5 0 and pn11 5 n 1 1. We call a pair of elements (p i, p i11), 0 # i # n,
of p an adjacency if p i ; p i11, and a breakpoint if p i ò p i11. Since the identity
permutation has no breakpoints, sorting by reversals corresponds to eliminating
breakpoints. An observation that every reversal can eliminate at most 2 break-
points immediately implies that d(p) $ (b(p)/ 2), where bp) is the number of
breakpoints in p. However, the estimate of reversal distance in terms of
breakpoints is very inaccurate. Bafna and Pevzner [1996] showed that there exists
another parameter (size of a maximum cycle decomposition of the breakpoint
graph) that estimates reversal distance with much greater accuracy.

The breakpoint graph of a permutation p is an edge-colored graph G(p) with
n 1 2 vertices {p0, p1, . . . , pn, pn11} 5 {0, 1, . . . , n, n 1 1}. We join
vertices p i and p j by a black edge if (p i, p j) is a breakpoint in p (i.e., p i ò p j

and i ; j) and by a gray edge if (i, j) is a breakpoint in p21 (i.e., p i ; p j and
i ò j). See Figure 2(b).

A cycle in an edge-colored graph G is called alternating if the colors of every
two consecutive edges of this cycle are distinct. In the following, by cycles, we
mean alternating cycles. The length of a cycle C, denoted by l(C), is the number

1 See also Kececioglu and Sankoff [1994], Kececioglu and Gusfield [1994], Kececioglu and Ravi
[1995], Hannenhalli [1995], Hannenhalli and Pevzner [1995, 1996], Berman and Hannenhalli [1996],
Caprara [1997], Tarjan et al. [1997], and Bafna and Pevzner [1998] for recent progress on the
computational aspects of genome rearrangements, as well as Gates and Papadimitriou [1979], Even
and Goldreich [1981], Jerrum [1985], Aigner and West [1987], Cohen and Blum [1993], and Heydari
and Sudborough [1993] for studies of related combinatorial problems.

3Transforming Cabbage into Turnip

of black (or equivalently, gray) edges in it. A cycle C is short if l(C) 5 2 and long
if l(C) . 2. A permutation p is simple if its breakpoint graph has no long cycles.

Consider a cycle decomposition of G(p) into a maximum number c(p) of
edge-disjoint alternating cycles. For the permutation p in Figure 2(b) c(p) 5 4
since G(p) can be decomposed into three short cycles (8, 9, 7, 6, 8), (8, 5, 4, 7,
8), and (3, 5, 6, 4, 3) and one long cycle (0, 1, 10, 9, 2, 3, 0). Bafna and Pevzner
[1996] showed that every reversal changes the parameter b(p) 2 c(p) by at
most 1 and therefore the maximum cycle decomposition provides a better bound
for the reversal distance:

d~p! $ b~p! 2 c~p! . (1)

FIG. 2. (a) Optimal sorting of a permutation (3 5 8 6 4 7 9 2 1 10 11) by 5 reversals (b) Breakpoint
graph of this permutation: black edges connect adjacent vertices that are not consecutive, gray edges
connect consecutive vertices that are not adjacent. (c) Transformation of a signed permutation into
an unsigned permutation p and the breakpoint graph G(p); (d) Interleaving graph Hp with two
oriented and one unoriented component.

4 S. HANNENHALLI AND P. A. PEVZNER

However, finding a maximum cycle decomposition is a difficult problem (Kece-
cioglu and Sankoff [1995] gave a linear programming bound for the size of the
maximal cycle decomposition). Fortunately, in the biologically relevant case of
signed permutations, this problem is trivial. Genes are directed fragments of DNA
and a sequence of n genes in a genome is represented by a signed permutation on
{1, . . . , n} with 1 or 2 sign associated with every element of p. For example, a
gene order for B. oleracea presented in Figure 1 is modeled by a signed
permutation (11 25 14 23 12). In the signed case, every reversal of a fragment
changes both the order and the signs of the elements within that fragment
(Figure 1). We are interested in the minimum number of reversals d(p) required
to transform a signed permutation p into the identity signed permutation (11
12 . . . 1n).

1.4. NEW RESULTS. Bafna and Pevzner [1996] noted that the concept of
breakpoint graph extends naturally to signed permutations and devised an
approximation algorithm for sorting signed permutations by reversals with
performance ratio 1.5. For signed permutations, the bound (1) approximates the
reversal distance extremely well for both simulated [Kececioglu and Sankoff
1994] and biological data [Bafna and Pevzner, 1995; Hannenhalli et al., 1995].
Kececioglu and Sankoff [1994] observed that an average difference between the
bound (1) and the exact distance is less than 1 for random permutations. This
intriguing performance raises a question whether the bound (1) overlooked a
third parameter (in addition to the number of breakpoints and the size of a
maximum cycle decompositions) that would allow closing the gap between d(p)
and b(p) 2 c(p). Below, we answer this question by revealing the third
“hidden” parameter (number of hurdles in p) making it harder to sort a
permutation. We show that

b~p! 2 c~p! 1 h~p! # d~p! # b~p! 2 c~p! 1 h~p! 1 1, (2)

where h(p) is the number of hurdles in p. Based on this result, we devise a
polynomial algorithm for sorting signed permutations by reversals. This is the
first polynomial algorithm for a realistic model of genome rearrangements.

The paper is organized as follows: In Section 2, we extend the definition of
breakpoint graph for signed permutations and introduce the notions of oriented
and unoriented cycles. In Section 3, we introduce the notion of a hurdle and
prove the bound

d~p! $ b~p! 2 c~p! 1 h~p! .

Previous studies revealed that a complicated interleaving structure of long cycles
in the breakpoint graph poses major difficulties in analyzing genome rearrange-
ments. To get around this problem we develop a new technique called equivalent
transformations of permutations (Section 4). The technique allows one to mimic
sorting permutations with long cycles by sorting simple permutations. In Section
5, we prove important structural theorems for simple permutations and make the
first step towards proving the bound

d~p! # b~p! 2 c~p! 1 h~p! 1 1.

5Transforming Cabbage into Turnip

In Section 6, we associate a partial order with every permutation and show how
this partial order is affected by reversals. The properties of this partial order
allow us to introduce safe reversals that are the key operations for clearing the
hurdles in our algorithm. In Section 7, we further develop a characterization of
“hard-to-sort” permutations (called fortresses) that can not be sorted in b(p) 2
c(p) 1 h(p) steps and prove the duality theorem.

d~p! 5 H b~p! 2 c~p! 1 h~p! 1 1, if p is a fortress
b~p! 2 c~p! 1 h~p! , otherwise.

Finally, in Section 8, we present a polynomial algorithm for sorting by reversals
based on equivalent transformations, duality theorem and clearing the hurdles.
The applications of these results are given in Hannenhalli and Pevzner [1996]
where the duality theorem was used to settle two conjectures by Kececioglu and
Sankoff (reversals do not cut long strips and reversals do not increase the number of
breakpoints), while the algorithm for sorting signed permutations was used to
analyze evolution of extensively rearranged plant and animal organelles.

2. Breakpoint Graph of Signed Permutation

Define a transformation from a signed permutation p of order n to an unsigned
permutation p9 of order 2n as follows: To model the directions of elements in p,
replace the positive elements 1x by 2x 2 1, 2x and negative elements 2x by 2x,
2x 2 1 (Figure 2(c)). We call the unsigned permutation p9 the image of the
signed permutation p. Observe that in the breakpoint graph of the image of a
signed permutation, every vertex has degree at most 2.

Therefore, the cycle decomposition is unique, thus making the case of signed
permutations easier to handle. We observe that the identity signed permutation
of order n maps to the identity (unsigned) permutation of order 2n, and the
effect of a reversal on p can be mimicked by a reversal on p9 thus implying
d(p) $ d(p9). In the following, by sorting of the image p9 5 (p91p92 . . . p92n)
of a signed permutation p 5 (p1p2

. . . pn), we mean a sorting of p9 by
reversals r(2i 1 1, 2j), which “cut” only after even positions of p9. The effect of
a reversal r(2i 1 1, 2j) on p9 can be mimicked by a reversal r(i 1 1, j) on p,
thus implying that d(p) 5 d(p9) if the cuts between p92i21 and p92i are
forbidden (see Bafna and Pevzner [1996] for details). In the rest of the paper, all
unsigned permutations we consider are images of some signed permutations. For
convenience, we extend the term signed permutation for unsigned permutations
p 5 (p1p2

. . . p2n) such that p2i21 and p2i are consecutive numbers for 1 #
i # n.

Given an arbitrary reversal r, denote Db [Db(p, r) 5 b(pr) 2 b(p)
(increase in breakpoints), and Dc [Dc(p, r) 5 c(pr) 2 c(p) (increase in the
size of the cycle decomposition). Bafna and Pevzner [1996] proved that for every
permutation p and reversal r, D(b 2 c) [Db(p, r) 2 Dc(p, r) $ 21 (i.e.,
every reversal reduces the parameter b(p) 2 c(p) by at most 1). We call a
reversal proper if D(b 2 c) 5 21.

If (p i21, p i) and (p j, p j11) are breakpoints (black edges in G(p)), we say
that reversal r(i, j) acts on black edges (p i21, p i) and (p j, p j11). r(i, j) is a
reversal (acting) on a cycle C of G(p) if the breakpoints (p i21, p i) and (p j,

6 S. HANNENHALLI AND P. A. PEVZNER

p j11) belong to C. A gray edge g is oriented if a reversal acting on two black
edges incident to g is proper and unoriented, otherwise. For example, a gray edge
(8, 9) in Figure 2(c) is oriented (since a reversal acting on black edges (8, 14) and
(9, 15) destroys two breakpoints and one cycle) while a gray edges (4, 5) is
unoriented. To provide an intuition for the notion of an oriented edge, we state
the following lemma:

LEMMA 1. Let (pi, pj) be a gray edge incident to black edges (pk, pi) and (pj,
pl). Then (pi, pj) is oriented iff i 2 k 5 j 2 l.

PROOF. Notice that k 5 i 6 1 and l 5 j 6 1. If i 2 k 5 j 2 l, then either
k 5 i 2 1, l 5 j 2 1 or k 5 i 1 1, l 5 j 1 1 (Figure 3(a)). Clearly D(b 2 c) 5 21,
hence, the reversal acting on (pi, pj) is proper. If i 2 k Þ j 2 l, then either k 5
i 2 1, l 5 j 1 1 or k 5 i 1 1, l 5 j 2 1 (Figure 3(b)). In this case, D(b) 5 0 and
D(c) 5 0; hence, the reversal acting on (pi, pj) is not proper. e

A cycle in G(p) is oriented if it has an oriented gray edge and unoriented,
otherwise. Cycles C and F in Figure 2(c) are oriented while cycles A, B, D, and
E are unoriented. Clearly, there is no proper reversal acting on an unoriented
cycle. It is easy to see that a permutation has a proper reversal iff it has an
oriented cycle.

3. Interleaving Graph and Hurdles

Gray edges (p i, p j) and (pk, p t) in G(p) are interleaving if the intervals [i, j]
and [k, t] overlap but neither of them contains the other. For example, edges
(4, 5) and (18, 19) in Figure 2(c) are interleaving while edges (4, 5) and (22, 23)
or (4, 5) and (16, 17) are noninterleaving. Cycles C1 and C2 are interleaving if
there exist interleaving gray edges g1 [C1 and g2 [C2.

Let #p be the set of cycles in the breakpoint graph of a permutation p. Define

FIG. 3. (a) A proper reversals on an oriented gray edge. (b) A nonproper reversal on an unoriented
gray edge.

7Transforming Cabbage into Turnip

an interleaving graph Hp(#p, (p) of p with the edge set

(p 5 $~C1, C2!;C1 and C2 are interleaving cycles in G~p!% .

Figure 2(d) shows the interleaving graph Hp consisting of three connected
components. The vertex set of Hp is partitioned into oriented and unoriented
vertices (cycles in #p). A connected component of Hp is oriented if it has at least
one oriented vertex and unoriented otherwise. For a connected component U,
define leftmost and rightmost positions of U as

Umin 5 min
C[U

min
p i[C

i and Umax 5 max
C[U

max
p i[C

i.

Let Extent(U) be the interval [Umin, Umax]. For example, a component U
containing cycles B, C and D in Figure 2(c) has leftmost vertex p2 5 6 and
rightmost vertex p13 5 17; therefore, Extent(U) 5 [2, 13].

We say that a component U separates components U9, U0 in p if there exists a
gray edge (p i, p j) in U such that Extent(U9) , [i, j], but Extent(U0) ù [i, j] 5
À. For example, the component U in Figure 4(a) separates the components U9
and U0.

Let a be a partial order on a set P. An element x [P is called a minimal
element in a if there is no element y [P with y a x. An element x [P is the
greatest in a if y a x for every y [P.

Consider the set of unoriented components 8p in Hp and define the contain-
ment partial order on this set, that is, U a W iff Extent(U) , Extent(W) for U,
W [8p. A hurdle is defined as follows: An unoriented component U [8p that
is a minimal element in a is a hurdle, called minimal hurdle. The unoriented
component U [8p that is the greatest element in a is a hurdle, called the
greatest hurdle, if U does not separate any two minimal hurdles. Obviously, there
can be at most one greatest hurdle. We wish to emphasize that the notions of
minimal and greatest hurdles become equivalent if we circularize the linear
permutation. Let h(p) be the total number of hurdles in p. Permutation p in
Figure 2(c) has one unoriented component and h(p) 5 1. Permutation in Figure
4(b) has two minimal and one greatest hurdles (h(p) 5 3). Permutation in
Figure 4(a) has 2 minimal and no greatest hurdles (h(p) 5 2) since the greatest
unoriented component U in Figure 4(a) separates U9 and U0.

The following theorem further improves the bound (1):

FIG. 4. (a) Unoriented component U separates U9 and U0 by virtue of the edge (0, 1); (b) Hurdle U
does not separates U9 and U0.

8 S. HANNENHALLI AND P. A. PEVZNER

THEOREM 1. For arbitrary (signed) permutation p, d(p) $ b(p) 2 c(p) 1 h(p).

PROOF. Given an arbitrary reversal r, denote Dh [Dh(p, r) 5 h(pr) 2
h(p). Clearly, every reversal r acts on black edges of at most two hurdles and
therefore r “destroys” (i.e., transforms an unoriented component into an ori-
ented component) at most two minimal hurdles. Note that, if r destroys two
minimal hurdles in 8p, then r can not destroy the greatest hurdle in 8p (see the
definition of the greatest hurdle). Therefore, Dh $ 22 for every reversal r.

Bafna and Pevzner [1993] proved that D(b 2 c) [{21, 0, 1} (Figure 5). If
D(b 2 c) 5 21, then r acts on an oriented cycle and hence it does not destroy
any hurdles in p. Therefore, Dh $ 0 and D(b 2 c 1 h) [Db 2 Dc 1 Dh $
21. If D(b 2 c) 5 0, then r acts on a cycle and therefore it affects at most one
hurdle. It implies Dh $ 21 and D(b 2 c 1 h) $ 21. If D(b 2 c) 5 1, then
D(b 2 c 1 h) $ 21 since Dh $ 22 for every reversal r.

Therefore, for an arbitrary reversal r, D(b 2 c 1 h) $ 21 thus implying
d(p) $ b(p) 2 c(p) 1 h(p). e

In the following, we show that the lower bound d(p) $ b(p) 2 c(p) 1 h(p)
is very tight. As the first step towards the upper bound d(p) # b(p) 2 c(p) 1
h(p) 1 1, we develop the technique called equivalent transformations of
permutations.

4. Equivalent Transformations of Permutations

Previous studies revealed that complicated interleaving structure of long cycles in
the breakpoint graphs poses serious difficulties in analyzing sorting by reversals

FIG. 5. (A) For reversals acting on two cycles, D(b 2 c) 5 1. (B) For reversals acting on an
unoriented cycle, D(b 2 c) 5 0. (C) For reversals acting on an oriented cycle, D(b 2 c) 5 21.

9Transforming Cabbage into Turnip

[Bafna and Pevzner 1996] and by transpositions [Bafna and Pevzner 1995]. To
get around this problem, we introduce equivalent transformations of permuta-
tions based on the following idea. If a permutation p [p(0) has a long cycle,
transform it into a new permutation p(1) by “breaking” this long cycle into two
smaller cycles. Continue with p(1) in the same manner and form a sequence of
permutations p [p(0), p(1), . . . , p(k) [s ending with a simple permuta-
tion (i.e., one having no long cycles). In this section, we show that these
transformations can be arranged in such a way that every sorting of s mimics a
sorting of p with the same number of reversals. In the following sections, we
show how to optimally sort simple permutations. Optimal sorting of the simple
permutation s mimics optimal sorting of the arbitrary permutation p leading to a
polynomial algorithm for sorting by reversals.

Let b 5 (vb, wb) be a black edge and g 5 (wg, vg) be a gray edge belonging
to a cycle C 5 . . . , vb, wb, . . . , wg, vg, . . . in the breakpoint graph G(p) of a
permutation p. A (g, b)-split of G(p) is a new graph Ĝ(p) obtained from G(p)
by

—removing edges g and b,
—adding two new vertices v and w,
—adding two new black edges (vb, v) and (w, wb),
—adding two new gray edges (wg, w) and (v, vg).

Figure 6 shows a (g, b)-split transforming a cycle C in G(p) into cycles C1 and
C2 in Ĝ(p). If G(p) is a breakpoint graph of a signed permutation p, then every
(g, b)-split of G(p) corresponds to the breakpoint graph of a signed generalized
permutation p̂ such that Ĝ(p) 5 G(p̂). Below, we define generalized permuta-
tions and describe the padding procedure to find a generalized permutation p̂
corresponding to a (g, b)-split of G.

A generalized permutation p 5 (p1p2
. . . pn) is a permutation of arbitrary

distinct reals (versus permutations of integers {1, 2, . . . , n} we considered
before). In this section, by permutations, we mean generalized permutations, and
by identity generalized permutation we mean a generalized permutation p 5
(p1p2

. . . pn) with p i , p i11 for 1 # i # n 2 1. Extend a permutation p 5
(p1p2

. . . pn) by adding p0 5 min1#i#n p i 2 1 and pn11 5 max1#i#n p i 1 1.
Elements p j and pk of p are consecutive if there is no element p l such that p j ,
p l , pk for 1 # l # n. Elements p i and p i11 of p are adjacent for 0 # i # n.
The breakpoint graph of a (generalized) permutation p 5 (p1p2

. . .pn) is
defined as the graph on vertices {p0, p1, . . . , pn, pn11} with black edges
between adjacent elements that are not consecutive and gray edges between
consecutive elements that are not adjacent. Obviously the definition of the
breakpoint graph for generalized permutation is consistent with the notion of the
breakpoint graph described earlier.

FIG. 6. Example of a (g, b)-split.

10 S. HANNENHALLI AND P. A. PEVZNER

Let b 5 (p i11, p i) be a black edge and g 5 (p j, pk) be a gray edge belonging
to a cycle C 5 . . . , p i11, p i, . . . , p j, pk, . . . in the breakpoint graph G(p).
Define D 5 pk 2 p j and let v 5 p j 1 (D/3), w 5 pk 2 (D/3). A
(g, b)-padding of p 5 (p1p2

. . .pn) is a permutation on n 1 2 elements
obtained from p by inserting v and w after the ith element of p (0 # i # n):

p̂ 5 ~p1p2 · · · p ivwp i11 · · · pn! .

Note that v and w are both consecutive and adjacent in p̂ thus implying that if p
is (the image of) a signed permutation then p̂ is also (the image of) a signed
permutation. The (g, b)-split in Figure 6 corresponds to (g, b)-padding for g 5
(wg, vg) and b 5 (vb, wb). The following lemma establishes the correspondence
between (g, b)-paddings and (g, b)-splits.2

LEMMA 2. Ĝ(p) 5 G(p̂).

If g and b are nonincident edges of a long cycle C in G(p), then the
(g, b)-padding breaks C into two smaller cycles in G(p̂). Therefore, paddings
may be used to transform an arbitrary permutation p into a simple permutation.
Note that b(p̂) 5 b(p) 1 1 and c(p̂) 5 c(p) 1 1. Below, we prove that, for
every permutation with a long cycle, there exists a padding on nonincident edges
of this cycle such that h(p̂) 5 h(p), thus indicating that padding provides a way
to eliminate long cycles in a permutation without changing the parameter
b(p) 2 c(p) 1 h(p). First, we need a series of technical lemmas.

LEMMA 3. Let a (g, b)-padding on a cycle C in G(p) delete the gray edge g and
add two new gray edges g1 and g2. If g is oriented, then either g1 or g2 is oriented in
G(p̂). If C is unoriented, then both g1 and g2 are unoriented in G(p̂).

The case when g is oriented is illustrated in Figure 7.

LEMMA 4. Let a (g, b)-padding break a cycle C in G(p) into cycles C1 and C2
in G(p̂). Then C is oriented iff either C1 or C2 is oriented.

PROOF. Note that a (g, b)-padding preserves orientation of gray edges in
G(p̂), which are “inherited” from G(p) (Lemma 1). If C is oriented, then it has
an oriented gray edge. If this edge is different from g, then it remains oriented in
a (g, b)-padding of p and therefore a cycle (C1 or C2) containing this edge is
oriented. If g 5 (wg, vg) is the only oriented gray edge in C, then (g, b)-padding

2 Of course, a (g, b)-padding of a permutation p 5 (p1p2
. . . pn) on {1, 2, . . . , n} can be

modeled as a permutation p̂ 5 (p̂1p̂2
. . . p̂ ivwp̂ i11

. . . p̂n) on {1, 2, . . . , n 1 2} where v 5 p j 1
1, w 5 pk 1 1, p̂ i 5 p i 1 2 if p i . min{p j, pk} and p̂ i 5 p i otherwise. The generalized
permutations were introduced to make the following “mimicking” procedure more intuitive.

FIG. 7. A (g, b)-padding deletes an oriented edge g and adds an oriented edge g1 and unoriented
edge g2.

11Transforming Cabbage into Turnip

adds two new gray edges ((wg, w) and (v, vg)) to G(p̂), one of which is oriented
(Lemma 3). Therefore, a cycle (C1 or C2) containing this edge is oriented.

If C is an unoriented cycle, then all edges of C1 and C2 “inherited” from C
remain unoriented. Lemma 3 implies that new edges ((wg, w) and (v, vg)) in C1
and C2 are also unoriented. e

The following lemma shows that paddings preserve interleaving of gray edges:

LEMMA 5. Let g9 and g0 be two gray edges of G(p) different from g. Then g9
and g0 are interleaving in p iff g9 and g0 are interleaving in a (g, b)-padding of p.

This lemma immediately implies the following:

LEMMA 6. Let a (g, b)-padding breaks a cycle C in G(p) into cycles C1 and C2
in G(p̂). Then every cycle D interleaving with C in G(p) interleaves with either C1 or
C2 in G(p̂).

PROOF. Let d [D and c [C be interleaving gray edges in G(p). If c is
different from g, then Lemma 5 implies that d and c are interleaving in G(p̂)
and therefore D interleaves with either C1 or C2. If c 5 g, then it is easy to see
that one of the new gray edges in G(p̂) interleaves with d and therefore D
interleaves with either C1 or C2 in G(p̂). e

LEMMA 7. For every gray edge g , there exists a gray edge f interleaving with g in
G(p).

PROOF. Let g 5 (p i, p j). Gray edges and adjacencies in the breakpoint
graph form a path from vertex 0 to n 1 1 that visits all vertices in G(p). In
particular, this path visits the interval i 1 1, . . . , j 2 1 between the endpoints
of g and thus contains a gray edge f connecting a vertex from this interval with
the “outside” of this interval (i.e., the set {0, 1, . . . , i 2 1, j 1 1, . . . , n 1
1}). e

LEMMA 8. Let C be a cycle in G(p) and g [y C be a gray edge in G(p). Then g
interleaves with an even number of gray edges in C.

PROOF. Let g 5 (p i, p j). The gray edges of cycle C enter and leave the
interval i 1 1, . . . , j 2 1 the same number of times (to leave a room, one first
needs to enter it). e

A (g, b)-padding f transforming p into p̂ (i.e., p̂ 5 p z f) is safe if it acts on
nonincident edges of a long cycle and h(p) 5 h(p̂). Clearly, every safe padding
breaks a long cycle into two smaller cycles.

THEOREM 2. If C is a long cycle in G(p), then there exists a safe (g, b)-padding
acting on C.

PROOF. If C has a pair of interleaving gray edges g1, g2 [C, then removing
these edges transforms C into two paths. Since C is a long cycle at least one of
these paths contains a gray-edge g. Pick a black-edge b from the other path and
consider the (g, b)-padding transforming p into p̂ (clearly, g and b are noninci-
dent edges). This (g, b)-padding breaks C into cycles C1 and C2 in G(p̂) with g1
and g2 belonging to different cycles C1 and C2. By Lemma 5, g1 and g2 are
interleaving, thus implying that C1 and C2 are interleaving. Also this (g, b)-
padding does not “break” the component K in Hp containing the cycle C since by

12 S. HANNENHALLI AND P. A. PEVZNER

Lemma 6 all cycles from K belong to the component of Hp containing C1 and
C2. Moreover, according to Lemma 4 the orientation of this component in Hp

and Hp̂ is the same. Therefore, the chosen (g, b)-padding preserves the set of
hurdles and h(p) 5 h(p̂).

If all gray edges of C are mutually noninterleaving, then C is an unoriented
cycle (refer to Figure 3). Lemmas 7 and 8 imply that there exists a gray edge e [
C9 interleaving with at least two gray edges g1, g2 [C. Removing g1 and g2
transforms C into two paths and since C is a long cycle at least one of these paths
contains a gray edge g. Pick a black-edge b from the other path and consider the
(g, b)-padding of p. This padding breaks C into cycles C1 and C2 in G(p̂) with
g1 and g2 belonging to different cycles C1 and C2. By Lemma 5, both C1 and C2
interleave with C9 in p̂. Therefore, this (g, b)-padding does not break the
component K in Hp containing C and C9. Moreover, according to Lemma 4,
both C1 and C2 are unoriented thus implying that the orientation of this
component in Hp and Hp̂ is the same. Therefore, the chosen (g, b)-padding
preserves the set of hurdles and hence, h(p) 5 h(p̂). e

A permutation p is equivalent to a permutation s (p V s) if there exists a
series of permutations p [p(0), p(1), . . . , p(k) [s such that p(i 1 1) 5
p(i) z f(i) for a safe (g, b)-padding f(i) acting on p i (0 # i # k 2 1).

THEOREM 3. For every permutation, there exists an equivalent simple permuta-
tion.

PROOF. Define the complexity of a permutation p as ¥C[#p
(l(C) 2 2)

where #p is the set of cycles in G(p) and l(C) is the length of a cycle C. The
complexity of a simple permutation is 0. Note that every padding on nonincident
edges of a long cycle C breaks C into cycles C1 and C2 with l(C) 5 l(C1) 1
l(C2) 2 1. Therefore,

~l~C! 2 2! 5 ~l~C1! 2 2! 1 ~l~C2! 2 2! 1 1,

implying that a padding on nonincident edges of a cycle reduces the complexity
of permutations. This observation and Theorem 2 imply that every permutation
with long cycles can be transformed into a permutation without long cycles by a
series of paddings preserving b(p) 2 c(p) 1 h(p). e

Let p̂ be a (g, b)-padding of p and r be a reversal acting on two black edges of
p̂. Then r can be mimicked on p by ignoring the padded elements. We need a
generalization of this observation.

A sequence of permutations p [p(0), p(1), . . . , p(k) [s is called a
generalized sorting of p if s is the identity (generalized) permutation and p(i 1
1) is obtained from p(i) either by a reversal or by a padding. Note that reversals
and paddings in generalized sorting of p may interleave. Interleaving of reversals
and paddings in generalized sorting is necessary to mimic sorting of the
(genuine) permutation since a reversal may merge two short cycles into a long
one.

LEMMA 9. Every generalized sorting of p mimics a (genuine) sorting of p with
the same number of reversals.

13Transforming Cabbage into Turnip

PROOF. Ignore padded elements. e

In the following, we show how to find a generalized sorting of a permutation p
by a series of paddings and reversals containing d(p) reversals. Lemma 9 implies
that this generalized sorting of p mimics an optimal (genuine) sorting of p.

5. Safe Reversals in Oriented Components

Recall that for an arbitrary reversal, D(b 2 c 1 h) $ 21 (see proof of
Theorem 1). A reversal r is safe if D(b 2 c 1 h) 5 21. In the following, we
prove the existence of a safe reversal acting on a cycle in an oriented component
by analyzing actions of reversals on simple permutations. In this section, by
cycles, we mean short cycles and by permutations we mean simple permutations.

Denote the set of all cycles interleaving with a cycle C in G(p) as V(C) (i.e.,
V(C) is the set of vertices adjacent to C in Hp). Define the sets of edges in the
subgraph of Hp induced by V(C)

E~C! 5 $~C1, C2!;C1, C2 [V~C! and C1 interleaves with C2 in p%

and its complement

E# ~C! 5 $~C1, C2!;C1, C2 [V~C! and C1 does not interleave with C2 in p% .

A reversal r acting on an oriented (short) cycle C “destroys” C (i.e., removes the
edges of C from G(p)) and transforms every other cycle in G(p) into a
corresponding cycle on the same vertices in G(pr). As a result r transforms the
interleaving graph Hp(#p, (p) of p into the interleaving graph Hpr(#p\C, (pr)
of pr. This transformation results in complementing the subgraph induced by
V(C) as described by the following lemma (Figure 8). We denote (# p 5
(p\{(C, D);D [V(C)}.

LEMMA 10. Let r be a reversal acting on an oriented (short) cycle C. Then

—(pr 5 ((# p\E(C)) ø E# (C), that is r removes edges E(C) and adds edges E# (C)
to transform Hp into Hpr.

—r changes the orientation of a cycle D [#p iff D [V(C).

Lemma 10 immediately implies the following:

LEMMA 11. Let r be a reversal acting on a cycle C and A, B be nonadjacent
vertices in Hpr. Then (A, B) is an edge in Hp iff A, B [V(C).

Let K be an oriented component of Hp and let 5(K) be a set of reversals
acting on oriented cycles from K. Assume that a reversal r [5(K) “breaks” K
into a number of connected components K1(r), K2(r), . . . in Hpr and the first
m of these components are unoriented. If m . 0, then r may be unsafe since
some of the components K1(r), . . . , Km(r) may form new hurdles in pr thus
increasing h(pr) as compared to h(p). In the following, we show that there is a
flexibility in choosing a reversal from the set 5(K) allowing one to substitute a
safe reversal s for an unsafe reversal r.

14 S. HANNENHALLI AND P. A. PEVZNER

LEMMA 12. Let r and s be the reversals acting on two interleaving oriented
cycles C and C9 in G(p), respectively. If C9 belongs to an unoriented component
K1(r) in Hpr then

—every two vertices outside K1(r) which are adjacent in Hpr are also adjacent in
Hps.

—orientation of vertices outside K1(r) does not change in Hps as compared to Hpr.

PROOF. Let D, E be two vertices outside K1(r) connected by an edge in Hpr.
If one of these vertices, say D, does not belong to V(C) in Hp, then Lemma 11
implies (i) (C9, D) is not an edge in Hp and (ii) (D, E) is an edge in Hp.
Therefore, by Lemma 10, reversal s preserves the edge (D, E) in Hps. If both
vertices D and E belong to V(C), then Lemma 10 implies that (D, E) is not an
edge in Hp. Since vertex C9 and vertices D, E are in different components of
Hpr, Lemma 11 implies that (C9, D) and (C9, E) are edges in Hp. Therefore, by
Lemma 10, (D, E) is an edge in Hps. In both cases, s preserves the edge (D, E)
in Hps and the first part of the lemma holds.

Lemma 11 implies that for every vertex D outside K1(r), D [V(C) iff D [
V(C9). This observation and Lemma 10 imply that the orientation of vertices
outside K1(r) does not change in Hps as compared to Hpr. e

LEMMA 13. Every unoriented component in the interleaving graph (of a simple
permutation) contains at least 2 vertices.

PROOF. By Lemma 7, every gray edge in G(p) has an interleaving gray edge.
Therefore every unoriented (short) cycle in G(p) has an interleaving cycle. e

FIG. 8. Reversal on a cycle C (i) deletes vertex C from the interleaving graph; (ii) changes the
orientation of vertices in V(C); (iii) complements the subgraph induced by V(C).

15Transforming Cabbage into Turnip

THEOREM 4. For every oriented component K in Hp there exists a (safe) reversal
r [5(K) such that all components K1(r), K2(r), . . . are oriented in Hpr.

PROOF. Assume that a reversal r [5(K) “breaks” K into a number of
connected components K1(r), K2(r), . . . in Hpr and the first m of these
components are unoriented. Denote the overall number of vertices in these
unoriented components as index (r) 5 ¥ i51

m uKi(r) u where uKi(r) u is the number
of vertices in Ki(r). Let r be a reversal such that

index~r! 5 min
s[5~K!

index~s! .

This reversal acts on a cycle C and breaks K into a number of components. If all
these components are oriented (i.e., index(r) 5 0), the theorem holds. Otherwise,
index(r) . 0 and let K1(r), . . . , Km(r) (m $ 1) be unoriented components in
Hpr. Below, we find another reversal s [5(K) with index(s) , index(r), a
contradiction.

Let V1 be the set of vertices of the component K1(r) in Hpr. Note that K1(r)
contains at least one vertex from V(C) and consider the (nonempty) set V 5
V1 ù V(C) of vertices from component K1(r) adjacent to C in Hp. Since K1(r)
is an unoriented component in pr all cycles from V are oriented in p and all
cycles from V1\V are unoriented in p (Lemma 10). Let C9 be an (oriented) cycle
in V and let s be the reversal acting on C9 in G(p). Lemma 12 implies that for
i $ 2 all edges of the component Ki(r) in Hpr are preserved in Hps and the
orientation of vertices in Ki(r) does not change in Hps as compared to Hpr.
Therefore all unoriented components Km11(r), Km12(r), . . . of pr “survive” in
ps and

index~s! # index~r! .

Below, we prove that there exists a reversal s acting on a cycle from V such that
index(s) , index(r), a contradiction.

If V1 Þ V, then there exists an edge between an (oriented) cycle C9 [V and
an (unoriented) cycle C0 [V1\V in (p. Lemma 10 implies that a reversal s
acting on C9 in p orients the cycle C0 in G(sp). This observation and Lemma 12
imply that s reduces index(s) by at least 1 as compared to index(r), a contradic-
tion (refer to Figure 9(a)).

If V1 5 V (all cycles of K1 interleave with C), then there exist at least two
vertices in V(C) (Lemma 13). Moreover, there exist (oriented) cycles C9, C0 [
V1 such that (C9, C0) are not interleaving in p (otherwise, Lemma 10 would
imply that K1(r) is a graph with no edges, a contradiction to connectivity of
K1(r)). Define s as a reversal acting on C9. Lemma 10 implies that s preserves
the orientation of C0 thus reducing index(s) by at least 1 as compared to
index(r), a contradiction (refer to Figure 9(b)).

The above discussion implies that there exists a reversal r [5(K) such that
index(r) 5 0, that is, r does not create new unoriented components. Therefore,
Db(p, r) 5 22, Dc(p, r) 5 21 and Dh(p, r) 5 0 implying that r is safe. e

6. Clearing the Hurdles

If p has an oriented component, then Theorem 4 implies that there exists a safe
reversal in p. In this section, we search for a safe reversal in the absence of any

16 S. HANNENHALLI AND P. A. PEVZNER

oriented component. Let a be a partial order on a set P. We say x is covered by
y in P if x a y and there is no element z [P for which x a z a y. The cover
graph V of a is an (undirected) graph with vertex set P and edge set {(x, y);x,
y [P and x is covered by y}.

Let 8p be the set of unoriented components in Hp and let Extent(U) 5 [Umin,
Umax] be the interval between the leftmost and rightmost positions in an
unoriented component U [8p (see Section 3). Define U# min 5 minU[8p

Umin,
U# max 5 maxU[8p

Umax and let [U# min, U# max] be the interval between the
leftmost and rightmost positions among all the unoriented components of p. Let
U# be an (artificial) component associated with the interval [U# min, U# max].

Define 8# p as the set of u8pu 1 1 elements consisting of u8pu elements {U;U [
8p} combined with an additional element U# . Let a[ap be the containment
partial order on 8# p defined by the rule U a W iff Extent(U) , Extent(W) for U,
W [8# p. If there exists the greatest unoriented component U in p (i.e.,
Extent(U) 5 [U# min, U# max]), we assume that there exist two elements (“real”

FIG. 9. Proof of Theorem 4. A reversal on a cycle C9 has a smaller index than a reversal on a cycle
C.

17Transforming Cabbage into Turnip

component U and “artificial” component U#), corresponding to the greatest
interval and that U ap U# . Let Vp be the tree representing the cover graph of the
partial order ap on hk# p (Figure 10(a)). Every vertex in Vp but U# is associated
with an unoriented component in 8p. In the case, p has the greatest hurdle we
assume that the leaf U# is associated with this greatest hurdle (i.e., in this case,
there are two vertices corresponding to the greatest hurdle, leaf U# and its
neighbor, the greatest hurdle U [8p). Every leaf in Vp, corresponding to a
minimal element in ap, is a hurdle. In the case U# is a leaf in Vp, it is not
necessarily a hurdle (e.g., U# is a leaf in Vp but not a hurdle for a permutation p
shown in Figure 4(a)). Therefore, the number of leaves in Vp coincides with the
number of hurdles h(p), except for the cases when3

—there exists only one unoriented component in p (in this case, Vp consists of
two copies of this component and has two leaves while h(p) 5 1)

—there exists the greatest element in 8p, which is not a hurdle, that is, this
element separates other hurdles (in this case the number of leaves equals
h(p) 1 1).

3 Although an addition of an “artificial” component U# might seem unnecessary, we will find below
that such an addition greatly facilitates the analysis of technical details.

FIG. 10. (a) A cover graph Vp of a permutation p with “real” unoriented components K, L, M, N,
P, U and an “artificial” component U# ; (b) A reversal r merging hurdles L and M in p transforms
unoriented components L, K, P and M into an oriented component which “disappears from Vpr.
This reversal transforms unoriented cycles (32, 33, 36, 37, 32) and (10, 11, 14, 15, 10) in p into an oriented
cycle (15, 14, 11, 10, 32, 33, 36, 37, 15) in pr. LCA(L, M) 5 LCA(L, M) 5 U and PATH(A, F) 5 {L, K,
U, P, M}.

18 S. HANNENHALLI AND P. A. PEVZNER

LEMMA 14. (HURDLE CUTTING). Every reversal r on a cycle in a hurdle K cuts
off the leaf K from the cover graph of p, that is, Vpr 5 Vp\K.

PROOF. If r acts on an unoriented cycle of a component K in p, then K
remains “unbroken” in pr. Also Lemma 7 implies that every reversal on an
(unoriented) cycle of an (unoriented) component K orients at least one cycle in
K. Therefore, r transforms K into an oriented component in pr and deletes the
leaf K from the cover graph. e

A hurdle K [8p protects a nonhurdle U [8p if deleting K from 8p

transforms U from a nonhurdle into a hurdle (i.e., U is a hurdle in 8p\K). A
hurdle in p is a superhurdle if it protects a nonhurdle U [8p and a simple
hurdle, otherwise. Components M, N, and U in Figure 10(a) are simple hurdles
while component L is a superhurdle (deleting L transforms a nonhurdle K into a
hurdle). In Figure 11(a), all three hurdles are superhurdles while in Figure 11(b)
there are two superhurdles and one simple hurdle (note that the cover graphs in
Figure 11(a) and Figure 11(b) are the same!). The following lemma immediately
follows from the definition of a simple hurdle.

LEMMA 15. A reversal acting on a cycle of a simple hurdle is safe.

PROOF. Lemma 14 implies that for every reversal r acting on a cycle of a
simple hurdle, b(p) 5 b(pr), c(p) 5 c(pr) and h(pr) 5 h(p) 2 1 implying
that r is safe. e

FIG. 11. Permutation in (a) is a 3-fortress while permutation in (b) with the same cover graph is not
a fortress (hurdle U is not a superhurdle since deleting U leaves a greatest component that separates
hurdles L and M).

19Transforming Cabbage into Turnip

Unfortunately, a reversal acting on a cycle of a superhurdle is unsafe since it
transforms a nonhurdle into a hurdle implying D(b 2 c 1 h) 5 0. Below, we
define a new operation (hurdles merging) allowing one to search for safe
reversals even in the absence of simple hurdles.

If L and M are two hurdles in p, define PATH(L, M) as the set of
(unoriented) components on the (unique) path from the leaf L to the leaf M in
the cover graph Vp. If both L and M are minimal elements in a, define
LCA(L, M) as an (unoriented) component that is the least common ancestor of
L and M and define LCA(L, M) as the least common ancestor of L and M that
does not separate L and M. Obviously, LCA(L, M) is either LCA(L, M) or its
parent. If L corresponds to the greatest hurdle U, there are two elements U and
U# in 8# p corresponding to the same (greatest) interval [Umin, Umax] 5 [U# min,
U# max]. In this case, define LCA(L, M) 5 LCA(L, M) 5 U. Let G(V, E) be a
graph, w [V and W , V. A contraction of W into w in G is defined as a new
graph with vertex set V\(W\w) and edge set {(p(x), p(y));(x, y) [E}, where
p(v) 5 w if v [W and p(v) 5 v, otherwise. Note that, if w [W, then a
contraction reduces the number of vertices in G by uW u 2 1, while, if w [y W,
the number of vertices is reduced by uW u.

Let L and M be two hurdles in p and Vp be the cover graph of p. We define
Vp(L, M) as the graph obtained from Vp by the contraction of PATH(L, M)
into LCA(L, M) (loops in Vp(L, M) are ignored). Note that in the case
LCA(L, M) 5 LCA(L, M), Vp(L, M) corresponds to deleting the elements of
the set PATH(L, M)\LCA(L, M) from the partial order ap while in the case
LCA(L, M) Þ LCA(L, M), Vp(L, M) corresponds to deleting the entire set
PATH(L, M) from ap.

LEMMA 16. (HURDLES MERGING). Let p be a permutation with cover graph Vp

and let r be a reversal acting on black edges of (different) hurdles L and M in p.
Then, r acts on Vp as the contraction of PATH(L, M) into LCA(L, M), that is,
Vpr 5 Vp(L, M).

PROOF. The reversal r acts on black edges of the cycles C1 [L and C2 [M
in G(p) and transforms C1 and C2 into an oriented cycle C in G(pr) (Figure
10). It is easy to verify that every cycle interleaving with C1 or C2 in G(p)
interleaves with C in G(pr). It implies that r transforms hurdles L and M in p
into parts of an oriented component in pr and, therefore, L and M “disappear”
from Vpr.

Moreover, every (unoriented) component from PATH(L, M)\LCA(L, M) has
at least one cycle interleaving with C in G(pr). It implies that every such
component in p becomes a part of an oriented component in pr and therefore
“disappears” from Vpr. Every component from 8p\PATH(L, M) remains unori-
ented in pr. Component LCA(L, M) remains unoriented iff LCA(L, M) 5
LCA(L, M). Every component that is covered by a vertex from PATH(L, M) in
ap will be covered by LCA(L, M) in apr. e

We write U , W for hurdles U and W if the rightmost position of U is smaller
than the rightmost position of W, that is, Umax , Wmax. Order the hurdles of p
in the increasing order of their rightmost positions

U~1! , · · · , U~l ! ; L , · · · , U~m! ; M , · · · , U~h~p!!

20 S. HANNENHALLI AND P. A. PEVZNER

and define the sets of hurdles

BETWEEN~L, M! 5 $U~i!;l , i , m% and OUTSIDE~L, M!

5 $U~i!;i [y @l, m#% .

Notice that any hurdle from BETWEEN(L, M) must lie sandwiched between L
and M.

LEMMA 17. Let r be a reversal merging hurdles L and M in p. If both sets of
hurdles BETWEEN(L, M) and OUTSIDE(L, M) are nonempty, then r is safe.

PROOF. Let U9 [BETWEEN(L, M) and U0 [OUTSIDE(L, M). Lemma
16 implies that the reversal r deletes the hurdles L and M from Vp. There is also
a “danger” that r adds a new hurdle K in pr by transforming K from a nonhurdle
in p into a hurdle in pr. If it is the case, K does not separate L and M in p
(otherwise, by Lemma 16, K would be deleted from pr). Without loss of
generality, we assume that L , U9 , M.

If K is a minimal hurdle in pr, then either L ap K or M ap K (otherwise, K
would be a hurdle in p). Since K does not separate L and M in p, it implies that
L ap K and M ap K. Since U9 is sandwiched between L and M, it implies that
U9 ap K. Thus, U9 apr K, a contradiction to minimality of K in pr.

If K is the greatest hurdle in pr, then either L, M Îp K or L, M ap K (if,
otherwise, L Îp K and M ap K, then, according to Lemma 16, K would be
deleted from pr). If L, M Îp K, then L , U9 ap K , M, that is, K is
sandwiched between L and M. Therefore, U0 lies outside K in p and U0 Îpr K,
a contradiction. If L, M ap K, then, since K is a nonhurdle in p, K separates L,
M from another hurdle N. Therefore, K separates U9 from N. Since both N and
U9 “survive” in pr, it implies that K separates N and U9 in pr, a contradiction.

Therefore, r deletes the hurdles L and M from Vp and does not add a new
hurdle in pr, thus implying that Dh 5 22. Since b(pr) 5 b(p) and c(pr) 5
c(p) 2 1, D(b 2 c 1 h) 5 21 and the reversal r is safe. e

LEMMA 18. If h(p) . 3, then there exists a safe reversal merging two hurdles in
p.

PROOF. Order h(p) hurdles of p in the increasing order of their rightmost
positions and let L and M be the first and 1 1 (h(p)/ 2)-th hurdles in this
order. Since h(p) . 3, both sets BETWEEN(L, M) and OUTSIDE(L, M) are
nonempty and by Lemma 17, the reversal r merging L and M is safe. e

LEMMA 19. If h(p) 5 2, then there exists a safe reversal merging two hurdles in
p. If h(p) 5 1, then there exists a safe reversal cutting the only hurdle in p.

PROOF. If h(p) 5 2, then Vp is either a path graph or contains the greatest
component separating two hurdles in p. In both cases, merging the hurdles in p
is a safe reversal (Lemma 16). If h(p) 5 1, then Lemma 14 provides a safe
reversal cutting the only hurdle in p. e

The previous lemmas show that hurdles merging provides a way to find safe
reversals even in the absence of simple hurdles. On the negative note, hurdles
merging does not provide a way to transform a superhurdle into a simple hurdle.

21Transforming Cabbage into Turnip

LEMMA 20. Let r be a reversal in p merging two hurdles L and M. Then every
superhurdle in p (different from L and M) remains a superhurdle in pr.

PROOF. Let U be a superhurdle in p (different from L and M) protecting a
nonhurdle U9. Clearly if U9 is a minimal hurdle in 8p\U, then U remains a
superhurdle in pr. If U9 is the greatest hurdle in 8p\U, then U9 does not
separate any hurdles in 8p\U. Therefore, U9 does not belong to PATH(L, M)
and hence “survives” in pr (Lemma 16). It implies that U9 remains protected by
U in pr. e

7. Fortresses

Lemmas 18 and 19 imply that unless Vp is a homeomorph of the 3-star (a graph
with three edges incident on the same vertex) there exists a safe reversal in p. On
the other hand, if at least one hurdle in p is simple, then Lemma 15 implies that
there exists a safe reversal in p. Therefore, the only case in which a safe reversal
might not exist is when Vp is a homeomorph of 3-star with three superhurdles,
called a 3-fortress (Figure 11(a)).

LEMMA 21. If r is a reversal destroying a 3-fortress p (i.e. pr is not a 3-fortress),
then r is unsafe.

PROOF. Every reversal on a permutation p can reduce h(p) by at most 2 and
the only operation that can reduce the number of hurdles by 2 is merging of
hurdles. On the other hand, Lemma 16 implies that merging of hurdles in a
3-fortress can reduce h(p) by at most 1. Therefore, Dh $ 21. Note that, for
every reversal that does not act on edges of the same cycle, D(b 2 c) 5 1 (Db 5
0, Dc 5 21 if r acts on breakpoints of different cycles, Db 5 1, Dc 5 0 if r acts
on a breakpoint and an adjacency and Db 5 2, Dc 5 1 if r acts on two
adjacencies) and therefore every reversal that does not act on edges of the same
cycle in a 3-fortress is unsafe.

If r acts on a cycle in an unoriented component of a 3-fortress, then it does not
reduce the number of hurdles. Since D(b 2 c) 5 0 for a reversal on an
unoriented cycle, r is unsafe.

If r acts on a cycle in an oriented component of a 3-fortress, then it does not
destroy any unoriented components in p and, does not reduce the number of
hurdles. If r increases the number of hurdles, then Dh $ 1 and D(b 2 c) $ 21
imply that r is unsafe. If the number of hurdles in pr remains the same, then
every superhurdle in p remains a superhurdle in pr, thus implying that pr is a
3-fortress, a contradiction. e

LEMMA 22. If p is a 3-fortress, then d(p) 5 b(p) 2 c(p) 1 h(p) 1 1.

PROOF. Lemma 21 implies that every sorting of 3-fortress contains at least
one unsafe reversal. Therefore, d(p) $ b(p) 2 c(p) 1 h(p) 1 1.

If p has oriented cycles, all oriented components in p can be destroyed by safe
paddings (Theorem 2) and safe reversals in oriented components (Theorem 4)
without affecting unoriented components.

If p is a 3-fortress without oriented cycles, then an (unsafe) reversal r merging
arbitrary hurdles in p leads to a permutation pr with two hurdles (Lemma 16).
Once again, oriented cycles appearing in pr after such merging can be destroyed

22 S. HANNENHALLI AND P. A. PEVZNER

by safe paddings and safe reversals in oriented components (Theorems 2 and 4)
leading to a permutation s with h(s) 5 2. Theorems 2 and 4 and Lemma 19
imply that s can be sorted by safe paddings and safe reversals. Hence, there
exists a generalized sorting of p such that all paddings and all reversals but one
in this sorting are safe. Therefore, this generalized sorting contains b(p) 2 c(p)
1 h(p) 1 1 reversals. Lemma 9 implies that the generalized sorting of p mimics
an optimal (genuine) sorting of p by d(p) 5 b(p) 2 c(p) 1 h(p) 1 1
reversals. e

In the following, we try to avoid creating 3-fortresses in the course of sorting
by reversals. If we are successful in this task, the permutation p can be sorted in
b(p) 2 c(p) 1 h(p) reversals. Otherwise, we show how to sort p in b(p) 2
c(p) 1 h(p) 1 1 reversals and prove that such permutations can not be sorted
with fewer number of reversals. Permutation p is called a fortress if it has an odd
number of hurdles and all these hurdles are superhurdles.

LEMMA 23. If r is a reversal destroying a fortress p with h(p)-superhurdles (i.e.,
pr is not a fortress with h(p) superhurdles), then either r is unsafe or pr is a fortress
with h(p) 2 2 superhurdles.

PROOF. Every reversal acting on a permutation can reduce the number of
hurdles by at most 2 and the only operation that can reduce the number of
hurdles by 2 is a merging of hurdles. Arguments similar to the proof of Lemma
21 demonstrate that, if r does not merge hurdles, then r is unsafe. If a safe
reversal r does merge (super)hurdles L and M in p, then Lemma 16 implies that
every such reversal reduces the number of hurdles by 2, and in the case h(p) .
3, does not create new hurdles. Also, Lemma 20 implies that every superhurdle
in p but L and M remains a superhurdle in pr, thus implying that pr is a fortress
with h(p) 2 2 superhurdles. e

LEMMA 24. If p is a fortress, then d(p) $ b(p) 2 c(p) 1 h(p) 1 1.

PROOF. Lemma 23 implies that every sorting of p either contains an unsafe
reversal or gradually decreases the number of superhurdles in p by transforming
a fortress with h (super)hurdles into a fortress with h 2 2 (super)hurdles.
Therefore, if sorting of p uses only safe reversals, then it will eventually lead to a
3-fortress. Therefore, by Lemma 21, every sorting of a fortress contains at least
one unsafe reversal and hence d(p) $ b(p) 2 c(p) 1 h(p) 1 1. e

Finally, we formulate the duality theorem for sorting signed permutations by
reversals.

THEOREM 5. For every permutation p,

d~p! 5 H b~p! 2 c~p! 1 h~p! 1 1, if p is a fortress
b~p! 2 c~p! 1 h~p! , otherwise.

PROOF. If p has an even number of hurdles then safe paddings (Theorems 2),
safe reversals in oriented components (Theorem 4) and safe hurdles mergings
(Lemmas 18 and 19) lead to a generalized sorting of p by b(p) 2 c(p) 1 h(p)
reversals.

23Transforming Cabbage into Turnip

If p has an odd number of hurdles at least one of which is simple, then there
exists a safe reversal cutting this simple hurdle (Lemma 15). This safe reversal
leads to a permutation with an even number of hurdles. Therefore, similar to the
previous case, there exists a generalized sorting of p using only safe paddings and
b(p) 2 c(p) 1 h(p) safe reversals.

Therefore, if p is not a fortress, there exists a generalized sorting of p by b(p)
2 c(p) 1 h(p). Lemma 9 implies that this generalized sorting mimics optimal
(genuine) sorting of p.

If p is a fortress, there exists a sequence of safe paddings (Theorem 2), safe
reversals in oriented components (Theorem 4), and safe hurdles merging (Lem-
ma 18) leading to a 3-fortress that can be sorted by a series of reversals having
exactly one unsafe reversal. Therefore, there exists a generalized sorting of p
using b(p) 2 c(p) 1 h(p) 1 1 reversals. Lemma 24 implies that this
generalized sorting mimics optimal (genuine) sorting of p with d(p) 5 b(p) 2
c(p) 1 h(p) 1 1 reversals. e

8. Polynomial Algorithm

Lemmas 9, 18, 15, and 19, and Theorems 2, 4, and 5 motivate the algorithm
Reversal_Sort, which optimally sorts signed permutations.

Algorithm Reversal_Sort(p)
1. while p is not sorted
2. if p has a long cycle
3. select a safe (g , b)-padding r of p (Theorem 2)
4. else if p has an oriented component
5. select a safe reversal r in this component (Theorem 4)
6. else if p has an even number of hurdles
7. select a safe reversal r merging two hurdles in p (Lemmas 18 and 19)
8. else if p has at least one simple hurdle
9. select a safe reversal r cutting this hurdle in p (Lemmas 15 and 19)

10. else if p is a fortress with more than three superhurdles
11. select a safe reversal r merging two (super)hurdles in p (Lemma 18)
12. else /* p is a 3-fortress */
13. select an (un)safe reversal r merging two arbitrary (super)hurdles in p
14. p 4 p z r
15. endwhile
16. mimic (genuine) sorting of p using the computed generalized sorting of p (Lemma 9)

THEOREM 6. Reversal_Sort(p) optimally sorts a permutations p 5 (p1p2
. . .

pn) in O(n4) time.

PROOF. Theorem 5 implies that Reversal_Sort provides generalized sorting of
p by a series of reversals and paddings containing d(p) reversals. Lemma 9
implies that this generalized sorting mimics an optimal (genuine) sorting of p by
d(p) reversals.

We sketch an O(n4) implementation of Reversal_Sort(p) (the description of
data structures is omitted). Note that every iteration of while loop in Reversal_
Sort reduces the amount complexity(p) 1 3d(p) by at least 1 thus implying that
the number of iterations of Reversal_Sort is bounded by 4n. The most “expen-
sive” iteration is a search for a safe reversal in an oriented component. Since for
simple permutations it can be implemented in O(n3) time, the overall running
time of Reversal_Sort is O(n4). e

24 S. HANNENHALLI AND P. A. PEVZNER

A more careful analysis of Reversal_Sort (omitted here) leads to further
reduction of running time. Below, we describe a simpler version of Reversal_Sort,
which does not use paddings and runs in O(n5) time.

Define

f~p! 5 H 1, if p is a fortress
0, otherwise.

A reversal r is valid, if D(b 2 c 1 h 1 f) 5 21. Proofs of Theorem 1 and
Lemma 24 imply that there is a reversal with D(b 2 c 1 h 1 f) $ 21. This
observation and Theorem 5 imply the following:

THEOREM 7. For every permutation p there exists a valid reversal in p. Every
sequence of valid reversals sorting p is optimal.

Theorem 7 motivates the following simple version of Reversal_Sort, which is
very fast in practice:

Algorithm Reversal_Sort_Simple(p)
1. while p is not sorted
2. select a valid reversal r in p (Theorem 7)
3. p 4 p z r
4. endwhile

Step 1 can be executed at most n times for a permutation of size n. There are
n p (n 2 1) reversals to search among. Computing (b 2 c 1 h 1 f) for any
permutation can be done in O(n2) time. Hence, the worst-case time complexity
of the above algorithm is O(n5).

Reversal_Sort_Simple was implemented and tested on biological data. The
results of these tests are described in Hannenhalli and Pevzner [1996], in
particular, we found optimal evolutionary scenarios for extensively rearranged
genomes, which were considered as too hard to analyze in the previous studies.
Experiments with Reversal_Sort_Simple on simulated data explained the mystery
of astonishing performance of previously suggested approximation algorithms for
sorting signed permutations by reversals. A simple explanation for this perfor-
mance is that the bound (1) is extremely tight since h(p) is small for “random”
permutations and zero for most of the biological data.

ACKNOWLEDGMENTS. We are indebted to Vineet Bafna, Piotr Berman, Webb
Miller, and Anatoly Rubinov for many helpful discussions and suggestions. We
are also grateful to Eric Boudreau for sending us unpublished experimental data
on gene orders of Chlamydomonas gelatinosa and Chlamydomonas reinhardtii for
testing Reversal_Sort_Simple. Both referees provided many valuable comments.

REFERENCES

AIGNER, M., AND WEST, D. B. 1987. Sorting by insertion of leading element. J. Combin. Theory 45,
306 –309.

BAFNA, V., AND PEVZNER, P. 1995. Sorting by reversals: Genome rearrangements in plant or-
ganelles and evolutionary history of X chromosome. Mol. Biol. Evol. 12, 239 –246.

BAFNA, V., AND PEVZNER, P. 1996. Genome rearrangements and sorting by reversals. SIAM
J. Comput. 25, 272–289.

BAFNA, V., AND PEVZNER, P. 1998. Sorting by transpositions. SIAM J. Disc. Math. 11, 224 –240.

25Transforming Cabbage into Turnip

BERMAN, P., AND HANNENHALLI, S. 1996. Fast sorting by reversals. In Combinatorial Pattern
Matching, Proceedings of the 6th Annual Symposium (CPM’96). Lecture Notes in Computer Science.
Springer-Verlag, Berlin, Germany, pp. 168 –185.

CAPRARA, A. 1997. Sorting by reversals is difficult. In Proceedings of the 1st Annual International
Conference on Computational Molecular Biology (RECOMB97). pp. 75– 83.

COHEN, D., AND BLUM, M. 1993. Improved bounds for sorting pancakes under a conjecture,
Manuscript.

EVEN, S., AND GOLDREICH, O. 1981. The minimum-length generator sequence problem is NP-
hard. J. Algorithms 2, 311–313.

GATES, W. H., AND PAPADIMITRIOU, C. H. 1979. Bounds for sorting by prefix reversals. Disc. Math.
27, 47–57.

HANNENHALLI, S. 1995. Polynomial algorithm for computing translocation distance between ge-
nomes. In Combinatorial Pattern Matching, Proceedings of the 6th Annual Symposium (CPM’95).
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, pp. 162–176.

HANNENHALLI, S., CHAPPEY, C., KOONIN, E., AND PEVZNER, P. 1995. Genome sequence compari-
son and scenarios for gene rearrangements: A test case. Genomics, 30, 299 –311.

HANNENHALLI, S., AND PEVZNER, P. 1995. Transforming men into mice (polynomial algorithm for
genomic distance problem). In Proceedings of the 36th Annual IEEE Symposium on Foundations of
Computer Science. IEEE Computer Society Press, Los Alamitos, Calif., pp. 581–592.

HANNENHALLI, S., AND PEVZNER, P. 1996. To cut . . . or not to cut (applications of comparative
physical maps in molecular evolution). In Proceedings of the 7th Annual ACM–SIAM Symposium on
Discrete Algorithms (Atlanta, Ga., Jan. 28 –30). ACM, New York, pp. 304 –313.

HEYDARI, M., AND SUDBOROUGH, I. H. 1993. On sorting by prefix reversals and the diameter of
pancake networks, Manuscript.

JERRUM, M. 1985. The complexity of finding minimum-length generator sequences. Theoret.
Comput. Sci. 36, 265–289.

KECECIOGLU, J., AND GUSFIELD, D. 1994. Reconstructing a history of recombinations from a set of
sequences. In Proceedings of the 5th Annual ACM–SIAM Symposium on Discrete Algorithms, ACM,
New York, pp. 471– 480.

KECECIOGLU, J., AND RAVI, R. 1995. Of mice and men: Algorithms for evolutionary distances
between genomes with translocation. In Proceedings of the 6th Annual ACM–SIAM Symposium on
Discrete Algorithms (San Francisco, Calif., Jan. 22–24). ACM, New York, pp. 604 – 613.

KECECIOGLU, J., AND SANKOFF, D. 1995. Exact and approximation algorithms for the inversion
distance between two permutations. Algorithmica 13, 180 –210.

KECECIOGLU, J., AND SANKOFF, D. 1994. Efficient bounds for oriented chromosome inversion
distance. In Combinatorial Pattern Matching, Proceedings of the 5th Annual Symposium (CPM’94).
Lecture Notes in Computer Science, vol. 807. Springer-Verlag, Berlin, Germany, pp. 307–325.

MAKAROFF, C. A., AND PALMER, J. D. 1988. Mitochondrial DNA rearrangements and transcrip-
tional alterations in the male sterile cytoplasm of Ogura radish. Mol. Cell. Biol. 8, 1474 –1480.

NADEAU, J. H., AND TAYLOR, B. A. 1984. Lengths of chromosomal segments conserved since
divergence of man and mouse. Proc. Natl. Acad. Sci. USA 81, 814 – 818.

PALMER, J. D., AND HERBON, L. A. 1988. Plant mitochondrial DNA evolves rapidly in structure,
but slowly in sequence. J. Mol. Evolut. 27, 87–97.

PEVZNER, P. A., AND WATERMAN, M. S. 1995. Open combinatorial problems in computational
molecular biology. In Proceedings of the 3rd Israel Symposium on Theory of Computing and Systems.
IEEE Computer Society Press, Los Alamitos, Calif., pp. 158 –163.

SANKOFF, D. 1992. Edit distance for genome comparison based on non-local operations. In
Combinatorial Pattern Matching, Proceedings of the 3rd Annual Symposium (CPM’92). Lecture Notes
in Computer Science, vol. 644. Springer-Verlag, Berlin, Germany, pp. 121–135.

SANKOFF, D., CEDERGREN, R., AND ABEL, Y. 1990. Genomic divergence through gene rearrange-
ment. In Molecular Evolution: Computer Analysis of Protein and Nucleic Acid Sequences, Chap. 26.
Academic Press, Orlando, Fla., pp. 428 – 438.

SANKOFF, D., LEDUC, G., ANTOINE, N., PAQUIN, B., LANG, B. F., AND CEDERGREN, R. 1992. Gene
order comparisons for phylogenetic inference: Evolution of the mitochondrial genome. Proc. Natl.
Acad. Sci. USA 89, 6575– 6579.

STURTEVANT, A. H., AND DOBZHANSKY, T. 1936. Inversions in the third chromosome of wild races
of drosophila pseudoobscura, and their use in the study of the history of the species. Proc. Nat.
Acad. Sci. 22, 448 – 450.

26 S. HANNENHALLI AND P. A. PEVZNER

TARJAN, R., KAPLAN, H., AND SHAMIR, R. 1997. Faster and simpler algorithm for sorting by
reversals. In Proceedings of the 8th Annual ACM–SIAM Symposium on Discrete Algorithms. ACM,
New York, pp. 614 – 623.

WATTERSON, G. A., EWENS, W. J., HALL, T. E., AND MORGAN, A. 1982. The chromosome inversion
problem. J. Theoret. Biol. 99, 1–7.

RECEIVED FEBRUARY 1995; REVISED JULY 1998; ACCEPTED SEPTEMBER 1998

Journal of the ACM, Vol. 46, No. 2, March 1999.

27Transforming Cabbage into Turnip

	acm.org
	mc019900001p

