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Abstract

In this paper we show that the reversal and transposition distance
of the signed permutation 7, = (-1 —2 ... —(n — 1) —n) with respect
to the identity is || + 2 for all n > 3. We conjecture that this value

is the diameter of the permutation group under these operations.



1 Introduction

One possible model to study genome evolution is to represent genomes as
permutations of genes and compute distances based on the minimum num-
ber of certain operations (rearrangements) needed to transform one permu-
tation into another. Under this model, the shorter the distance, the closer
the genomes are.

In general, genes are represented as integers from 1 to n, and a permu-

tation 7 : {1,2,...,n} — {1,2,...,n} by

(my mo ... ),

where 7; denotes (i).

Permutations can be signed, in which case each m; has a positive or
negative sign to model the orientation of genes. We will call permutation
group the set of all permutations of a given size n. The unsigned permuta-
tion group has n! elements, while the signed group has 2"n! elements.

In this note we are interested in the diameter of permutation groups,
that is, the maximum distance possible between two permutations of size n,
under several operation choices. T'wo operations that have been extensively
studied are the reversal and the transposition. A reversal is an operation

that reverses the order of the genes on a certain portion of the permuta-



tion. A transposition is an operation that “cuts” a certain portion of
the permutation and “pastes” it elsewhere in the same permutation. (Refer
to Section 2 for more formal definitions.) A transposition is also called a
block move in the literature. A block interchange operation exchanges
two portions of a permutation (Christie, 1996). Transpositions and block
interchanges never affect the signs (if present) of a permutation. For this
reason, they are studied in the unsigned case only. We could also conceive
an operation that “cuts” a portion and “pastes” it elsewhere reversed. Call
this a transversal.

Table 1 shows what is currently known about the diameter for signed and
unsigned permutations under various combinations of the above operations.
In this note we provide a lower bound for the diameter in the case of signed
permutations evolving by transpositions and reversals.

Analyzing genomes evolving due to different mutational events repre-
sents today a great challenge. Hannenhalli and others (Hannenhalli et al.,
1995) analyzed genomes evolving by different events, particularly reversals
and transpositions. Hannenhalli and Pevzner (Hannenhalli and Pevzner,
1995a) presented a polynomial time algorithm for comparing genomes evolv-
ing by reversals, translocations, fusions and fissions. Gu, Peng and Sudbor-

ough (Gu et al., 1996) gave approximation algorithms to compute the dis-

Table 1 here



Operations Size Degree Diameter
Reversals (unsigned) ¢ n! (5) n—1
Reversals (signed) 27! (5) +n n+1
Transpositions © n! (";’1) 2<d< %
Reversals, transpositions ¢ | 2"n! | ("I1) + (3) + n 2<d
Block interchange ¢ n! " 24+0(1)

¢ (Bafna and Pevzner, 1993)

b (Hannenhalli and Pevzner, 1995b; Meidanis et al., 1997a)

¢ (Bafna and Pevzner, 1995; Meidanis et al., 1997b; Christie, 1998)

4 This paper

€ (Christie, 1996)
Table 1: Results known about the diameter of permutation groups under
genome rearrangement operations. The column “Size” refers to the size of
the graph, i.e., the total number of permutations for n elements. “Degree”
is how many neighbors a permutation has. In the column “Diameter” either

the diameter is given or the known bounds, with d representing the diameter.



tance between two signed permutations, allowing three operations, reversal,
transposition and transversal.

In this work we contribute to the analysis of reversals and transpositions
acting on a single chromosome having genes with known orientation. We
show a permutation 7, that needs at least § 4+ O(1) steps to be sorted, thus
obtaining a lower bound on the diameter of the signed permutation group

under these operations.



2 Definitions

In this section we formalize the problem of computing the reversal and trans-
position distance of linear chromosomes.

We assume that the order and orientation of genes in a chromosome are
represented by a permutation 7 = (m 72 ... 7,), where each ; is a signed
integer such that 1 < |m;| <n and m; # 7; for i # j.

A reversal r(7, j) is defined by two integers i, j, such that 1 <7 < j < n,

reversing the order and sign of 7, ¢ < k < j. Thus we have
r(4,7) - (M1 ... M1 T o T g1 ... Tp) =
(M1 oo W1 T o ow Tyl T Tl -+ - Tp)
where 7, means 7w, with opposite sign.

A transposition t(4, j, k) is defined by three integers 4, j, and k such that
1<i<j<mn+1,and k ¢ [i,j], in the following way. It “cuts” the portion
between positions ¢+ and j — 1, including the extremes, and “pastes” it just
before position k. Thus, if ¢ < j < k, we can write

t(i, g k) - (1 cos Mol Ty o T T e M1 T -.. Tp) =
(M1 ees Ml T oo M1 T oov Tj—1 T .. Tp)

Given two permutations m and o, we want to compute a shortest series

of reversals and transpositions that transforms 7 into o, that is, we want



to find o1, 09,...,04, where p; is a reversal or a transposition, such that
Oy Ou—1"*----02+01 7™ =0 and v is minimum. We call u the reversal
and transposition distance between 7 and ¢ and denote it by d(m, o).
Without loss of generality we can fix 0. All our developments will be done
with o being the identity permutation, which is ¢ =, = (+1 ... +n). In
this case we denote d(,t,) simply by d(7).

In the following an operation can be a reversal or a transposition.

A powerful tool for studying the reversal and transposition distance is the
reality and desire diagram of two permutations. In the literature (Bafna and
Pevzner, 1995; Hannenhalli and Pevzner, 1995b; Hannenhalli and Pevzner,
1996) this is called the breakpoint graph of two permutations, but we prefer
to call it a diagram because its graph structure alone does not capture all
the important information: the order of nodes is relevant too.

We first extend a permutation 7 by adding 79 = 40 and 7,11 = +(n+1).
The extended permutation will still be denoted by 7. We construct this
diagram writing the original permutation m in the following way. Replace
each integer 7 by a pair of points —¢ and +4, in this order. For instance +4 is
replaced by —4 and +4; —7 is replaced by +7 and —7. Add two extra points,
one called 40 at the beginning of the sequence, and one called —(n+1) at the

end of the sequence. Now draw reality edges between +0 and —m;, between



+m;—1 and —m;, and between +m, and —(n+ 1). Finally, draw desire edges
between +0 and —1, between +(i —1) and —4, and between +n and —(n+1)
(see Figure 1). Again, in the literature, reality edges are called black edges
and desire edges are called gray edges. We prefer the denominations reality
and desire because they are more informative: reality edges refer to the
current permutation, that is, where we are, and desire edges refer to the
target permutation, that is, where we want to be. We denote G(w) the
diagram of the permutation 7 (with respect to the identity).

Observe that the diagram is composed of a number of cycles, with each
cycle alternating between reality and desire edges. The length of a cycle is
the number of reality edges in it (which is the same as the number of desire
edges in it). The decomposition of G() into cycles is unique and we denote
by ¢(m) the number of cycles in G(r).

The cycles of G(7) are denoted by a bracket notation as follows. We
number the reality edges of G(m,) from 1 to n + 1 by assigning label i to
the reality edge (m;, m;—1), with 1 <4 < n + 1. Besides, we will assign to
the label ¢ from cycle ¢ an orientation +i¢ or —i, defined with respect to the
orientation of the greatest (in absolute value) label [ from ¢, which is +I by
convention. So, taking these labels and their orientations, in the order they

appear in around the cycle, the unique cycle of the diagram in Figure 1 (c)

Figure 1 here
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(7D

0O +1 -1 +2 -2 +3 -3 +4 -4 +5 -5 6

(b)

(7SS

0O +1 -1 +2 -2 +3 -3 +4 -4 +5 -5 +6 -6 7

(T T T

0 +1-1 +2 -2 +3 -3 +(n-1) -(n-1) +n -n (n+l)

Figure 1: (a) The diagram for 7 = (-1 —2 =3 —4 —5). (b) The di-
agram for 7 = (-1 —2 =3 —4 —5 —6). (c) The general diagram for

7= (-1-2... —(n—1) —n), for all n.
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is
[+(n+1),+(n-1),...,+42,-1,-3,...,—n]

for n odd or

[+(n+1),+(n—-1),...,43,+1,-2,...,—n]

for n even.

The diagram has exactly n + 1 reality edges and the same number of
desire edges. The idea is that reality edges indicate the situation as it is
now, and desire edges indicate the situation sought. When reality equals
desire in all edges, we have m = 1, and d(w) = 0. Therefore, our goal is to
apply reversals and transpositions so that reality becomes desire.

Note that the diagram G(ty,) is the only one having n + 1 cycles. So,
the sequence of reversals and transpositions transforming 7 into ¢, must
take the number of cycles from ¢(7) to n + 1. For a permutation 7, and an
operation g, denote by Ac(w, ) the difference ¢(g - 7) — ¢(w). This is the

gain in the number of cycles due to operation p applied to .

Theorem 1 Ac(w,p) € {-2,-1,0,1,2}

Proof: We note first that ¢ can be a reversal or a transposition.
Each reversal acts on two reality edges belonging to at most two cycles,

creating or destroying at most one cycle. Hannenhalli and Pevzner (Han-
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nenhalli and Pevzner, 1995b) have shown that, for a reversal, Ac(m,g) €
{-1,0,1}.

Each transposition acts on three reality edges belonging to at most three
cycles. Figure 2 shows all possible actions of a transposition on a signed
permutation. As we can see, there are cases where the number of cycles stays
the same, or increases by one or two. So, for a transposition, Ac(w, ) €
{-2,-1,0,1,+2}. |

For z € {-2,-1,0,1,2}, define an z-move on 7 as an operation g such
that Ac(m, ) = z. Notice that, in Figure 2, there is only one pattern
corresponding to a 2-move (or —2-move), three patterns corresponding to a
1-move (or —1-move), and the others corresponding to 0-moves.

The entire distance problem can be seen as finding shortest paths in a
directed graph where a vertex corresponds to a permutation 7, and there is
an edge (7, o) from 7 to o when there is an operation (reversal or transposi-
tion) p such that o = g-7. We are interested in shortest directed paths from
T t0 tn, where the length of a path is just its number of edges. However,
we can assign weights to the edges in a way that will help us investigate the
problem. In the sequel we will define the weight of an edge and of a path,

on that graph.

Definition 1.1 Given the permutations m and o, such that ¢ = p -« for

12
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Figure 2: This figure shows all possible actions of a transposition on a signed
permutation. Only affected cycles are shown. A dashed line indicates a
path formed by one or more desire and reality edges. Since the inverse of a

transposition is a transposition, the transformations are reversible.
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some operation o, we define the weight of the edge (mw,0) as

w(m, o) = 2+ c(r) — (o).

Notice that w(m, o) > 0 for all edges (Theorem 1). The weight w(m, o)
can be also written as 2— Ac(m, p), where g is the operation that transforms
7 into o. Since 2 is the highest value that Ac(m, g) can take, and we know
that high values of Ac(m, ) will get us closer to our goal, we can think of

the weight as a measure of “waste” in each operation we do.

Definition 1.2 Given a path p = mymima ... Tx_17k, we define the weight

of p as

Note that w(p) > 0 for all paths. We can now relate the length of a
path with the weight of the same path, with important consequences on the

distance. Let |p| denote the length of a path p.

Theorem 2 Let p = mgmime ... T,_17k be a path. We have

w(p) = 2|p| + (7o) — ¢(mg)-

The proof is just an induction on k. An important corollary is the

following.
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Corollary 2.1 For any permutation w and any shortest path p from w to

tn, we have

The proof is immediate from the theorem, using w9 = 7 and 7, = ¢y
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3 The reversal and transposition diameter

Taking Sy, as the set of all signed permutations with size n, define D(n) =
max,cg, d(m,t,) as the reversal and transposition diameter of signed
permutations. In this section we present a lower bound on this number,
based on the distances of particular permutations for each integer n.

This particular permutation is 7, = (-1 -2 ... —(n — 1) —n). We will
compute its reversal and transpositions distance, which will give a lower
bound for the diameter D(n). We start by showing an upper bound for

d(my), for all n > 3.

Theorem 3 We have d(my,) < [%| +2 for n > 3.

Proof: First we apply the reversal (1, n) on 7, obtaining 7 = r(1,n)-m, =
(+n +(n —1) ... 42 +1), a permutation with positive signs only.

After that we recall a result from Meidanis, Walter and Dias (Meidanis
et al., 1997b), independently shown by Christie (Christie, 1998), proving
that the transposition distance dy(w) is [ 5| + 1, for n > 2.

The total number of operations is then |2 | +2, which is an upper bound
on the distance d(m,,) for n > 3. O

Our strategy to show that this upper bound is a lower bound as well will

be to prove that every path p from 7, to ¢, satisfies w(p) > 3. Then, by
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force of Corollary 2.1 and Lemma 3.1, we will have the desired result (see
Theorem 6).

The general form of the diagram generated by this permutation is given
in Figure 1 (c¢). The number of cycles is always 1, and we state this as our

next lemma.

Lemma 3.1 We have c¢(w,) =1 for all n.

We need auxiliary results to support our claims. One that appears with
frequency is a sufficient condition for the lack of 2-moves. Recall the format

of the cycles in the diagram of m,,:

c=[+n+1),+(n-1),...,42,-1,-3,...,—n],

for n odd and

c=[+n+1),+(n—-1),...,43,+1,-2,...,—n]

for n even. Notice that regardless of the parity of n these cycles are formed
by two decreasing subsequences. We call bimonotonous the cycles formed
by two decreasing subsequences, the first made of positive elements, and
the second formed by negative elements. Such cycles cannot be broken by

a transposition, as the following results show.
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Lemma 3.2 A permutation m admits a 2-move if and only if there are three
labels i, j and k with i < j < k, belonging to the same cycle in G(x), and
appearing in that cycle either in the order k,i,j (or i,j,k or j,k,i) with

orientation +, or in the order k,j,i (or j,i,k or i,k,j) with orientation —.

Proof: Theorem 1 shows that there is just one pattern corresponding to a
2-move. In this pattern (see Figure 2), we can verify that, taking the three
labels (belonging to the same cycle) 4, j and k such that i < j < k, and
assigning to label k the orientation +k, we force the orientations of 7 and
j to be respectively +¢ and +7, implying that these three labels appear in
the cycle with the order k,i,j (or 4,7,k or j,k,i), and all three with the
same orientation. Analogously, if we assign to k the orientation —k, the
orientations of 4 and j become —i and —j, implying the order k, 7,7 (or
Jyi,k or i,k,j), with 4, 7 and k with the same orientation.

The proof on the other side is immediate. We apply (%, j, k) on 7, with
i,j and k following the conditions of the lemma, and obtain the desired

result. O

Theorem 4 Let w be a permutation for which all cycles in its reality and

desire diagram are bimonotonous. Then w(w,om) > 1 for all operations p.

Proof: Of course, w(m, o) = 0 is equivalent to saying that o is a 2-move on

18



m. A 2-move has to be a transposition, and acting on three reality edges of
the same cycle. However, by the bimonotonicity of the cycles of 7, we cannot
choose three labels following the conditions of Lemma 3.2, considering just
one of these two subsequences. Another way to get these labels would be to
choose them from both subsequences. But then they will not have the same
orientation, so also in this case we cannot have the conditions of Lemma, 3.2.
a

We are now ready for our main theorem.

Theorem 5 Let p = 0¢oy . ..oy be any path from m, = og to L, = 0. Then

we have, for n > 3:

1. w(opgoy) >1

2. if w(ogo1) =1, then w(o102) > 1

3. if w(ogo102) =2, then w(og...ox) > 1

Proof: The first claim is true because the weight is always greater than
or equal to zero, and it is zero only if the operation is a 2-move. However,
0¢ = mp, has only one cycle, and this cycle is bimonotonous. Our claim then
follows from Theorem 4.

For the second claim, observe that w(cgo1) = 1 exactly when the opera-

tion p that acted on oy = 7, was a 1-move. Both reversals and transpositions
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can be 1-moves in the signed case, so we need to analyze these two cases.
Let us deal with reversals first. It is well known that a reversal breaks a
cycle (that is, is a 1-move) if and only if the two reality edges where it acts
have opposite orientations. Since (%, j) acts on reality edges 7 and j+ 1, this
means that r(i,7) is a 1-move if and only if ¢ and 7 have the same parity.
The diagram of the permutation r(i, j) - m, in this case has two cycles. The
exact pattern of the resulting cycles depends on the relative parity of 4, 7,
and n, but in all cases they are bimonotonous. For instance, if 7, j, and n

are all odd, these cycles are

et = [+5,+(G—-2),...,+(i+2),+i,+(i — 2),...,+3,+1,
—9,—4,...,—(i—1)],

cec = [+(n+1),+(n—-1),....,+(G +1),+(G —1),+({F —3),--., +(@ + 1),
—(j+2),-(+4),...,—nl.

It is apparent that these two cycles are bimonotonous. The other cases
can be verified analogously. Therefore w(oj02) > 1 if p is a reversal.

The case where p is a transposition ¢(i, j,k) also requires an analysis
based on the parity of 7, j, k, and n. From Lemma 3.2 we know that this
operation is a 1-move if and only if 4 and k& have the same parity, and j has

the opposite parity from ¢ and k. For instance, in the case of i, k, and n all
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odd and j even, we have a diagram G(i(7, j, k) - m,) formed by two cycles,

which are
cg = [+kEk=-1),+k-3),...,+5,+(G = 2),...,+(E + 1)]
c2 = [+(n+1)a+(n_1)5---7+(k+1)a+(i+k_j_1)7

+@E+k—7—-3),...,+(@E+2),+i,+(G —2),...,+3,+1,
—2, 4., —(1—1),—(G+k—7+1),

k= 4+3)y,—k—(k+2),...,—n].

The first cycle is monotonous and therefore does not admit a 2-move. The
second cycle is bimonotonous, and, by Theorem 4, does not admit a 2-move
either. The other cases can be verified analogously.

Let us now turn to the third claim. Again we divide the proof into
two cases: either there is a negative element in o9 or all elements there are
positive. If there is at least one negative element, then w(oy...o0f) > 1
because otherwise only transpositions would be applied until we reach ¢,
but ¢, does not have negative elements and transpositions do not change
signs.

We concentrate then in the case where o9 has all elements positive.
Since og = 7, has all elements negative, there are only four possible ways

of reaching an all-positive permutation in two steps:
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1. o2 =r(1,i) - r(i+1,n) - 0o, for some i between 1 and n — 1, including

extremes.

2. og=r(i+1,n)-r(1,i) - 09, for some ¢ between 1 and n — 1, including

extremes.

3. o9 =1t(i,4,k) -r(1,n) - 09, for some triple 7, j, k with 1 <i < j <k <

n+ 1.

4. o9 =r(1,n) - t(i, J, k) - 0g, for some triple i, j, k with 1 <i < j <k <

n+ 1.

The first two cases are actually the same, since r(1,i) and r(i + 1,n)
commute. In fact, we will show that all cases can be reduced to the third
one. The key to this fact is to notice that any transposition can be written

as the product of three reversals:

t(i,5,k) =r(i,k—1)-r(i,j —1)-r(j,k —1). (1)

This can be easily verified from the definitions. If we uset =1 and k =n+1

in this equation, we get:

t(1,5,n+1)=r(1,n)-r(1,j —1)-7r(4,n),

showing that Cases 1 and 2 are indeed particular instances of Case 4 (recall
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that 7(1,n)2 = I). On the other hand,
T(lan) ’ t(la.]ak) : T(lan) = t(k,ajlail)a

where i =n+2—14, 7 =n+2—7, and ¥’ = n + 2 — k, which shows that
Case 4 can be reduced to Case 3.

Let us then concentrate on Case 3. Notice that in this case oy is the per-
mutation (+n +(n —1) ... +2 +1). A consequence of the work by Meida-
nis, Walter, and Dias (Meidanis et al., 1997b) and that of Christie (Christie,
1998), which computed the transposition distance of such permutations, is
that w(oy...1,) > 2 for any path consisting of transpositions only. Now
if w(og...0r) = 0, this would refer to a path using transpositions only,
and therefore we can conclude that w(oi02) = 2 and that w(ogo1) = 0,
a contradiction since the first step 7(1,n) was a reversal. It follows that

w(og...0k) > 1 as claimed. O
Theorem 6 We have d(m,) > [%] +2 for n > 3.

Proof: Theorem 5 guarantees that w(p) > 3 for any path from , to ¢,.
Plugging this into the formula of Corollary 2.1 we conclude that

n+3
2 )

d(my) >

which implies d(my,) > |5 ] + 2 since d(7y,) is an integer. O
The next theorem comes directly from Theorems 6 and 3.
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Theorem 7 Given the permutations ©, and tn, for all n, then we have

2] +1 ifn=1,2
d(m) =3¢
5] +2 ifn>3
Proof: For n =1 it is obvious that d(m,) = 1 since 7, # ¢, and a reversal
will do. For n = 2 a minimum series of operations transforming m, into ¢,

consists of two operations. For n > 3, the result follows from Theorems 3

and 6. O
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4 Conclusions

In this work we extend the analysis of transpositions done by Bafna and
Pevzner (1995) to signed permutations, and compute the the reversal and
transposition distance of the signed permutation (=1 -2 ... —(n — 1) —n)
with respect to the identity (+1 +2 ... +n — 1 +n). The proof is based
on the number of cycles that can be created, on the first two steps, in the
diagrams generated on any sequence of operations transforming 7, on .
Obviously this result gives a lower bound for the diameter. We conjecture
that this is also an upper bound. We remark that the exact value of the
transposition diameter is still unknown (see Table 1).

An interesting point to be studied later is the diameter of signed per-
mutations under reversals, transpositions, and transversals. A transversal
acts by moving a block of genes to another place on the permutation, but
with the genes reversed. This operation is biologically as natural as the
transposition.

Another line of study is to consider different weights for transpositions
and reversals. With equal weights, as done here, the minimum path consists
predominantly of transpositions. It would be interesting to use weights
suggested by what has been observed in practice. Apparently, transpositions

should weigh about twice as much as reversals.
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