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ABSTRACT

Motivation: Current DNA sequencing technology produces
reads of about 500-750 bp, with typical coverage under 10x.
New sequencing technologies are emerging that produce
shorter reads (length 80—-200 bp) but allow one to generate
significantly higher coverage (30x and higher) at low cost.
Modern assembly programs and error correction routines have
been tuned to work well with current read technology but were
not designed for assembly of short reads.

Results: We analyze the limitations of assembling reads gen-
erated by these new technologies and present a routine for
base-calling in reads prior to their assembly. We demonstrate
that while it is feasible to assemble such short reads, the res-
ulting contigs will require significant (if not prohibitive) finishing
efforts.

Availability: Available from the web at http://www.cse.ucsd.
edu/groups/bioinformatics/software.html

Contact: mchaisso@bioinf.ucsd.edu; ppevzner@cs.ucsd.edu;
htangg@cs.ucsd.edu

1 INTRODUCTION

techniques produce short reads, i.e. 80—200 bases, as opposed
to the 500—750 length reads produced by Sanger sequencing.
It is hardly believed that such short reads can be assembled
efficiently; and efforts are being made to increase the read
length. In this paper, we examine the limits of assembling
short reads and estimate the amount of additional finishing
effort that will be be required for assembly.

The assembly of short reads is applicable directly to
several new non-electrophoretic sequencing technologies
being developed, such as Pyrosequencing™ (Roreigthi,

1998; Ronaghi, 2001), mass spectrometry-based sequencing
(Bocker, 2003a), sequencing by Polonies (Métral., 2003)

and single-molecule sequencing (Braslavekyal., 2003).
These have the goal of sequencing genomes several orders
of magnitude faster than what is possible with electrophoretic
methods. The feasibility of using non-electrophoretic meth-
ods to sequence a long DNA molecule was demonstrated
recently by the 454 Life Sciences Corporation by the sequen-
cing of Adenovirus. This resulted in the first DNA sequence
entry in GenBank that was sequenced by a technique altern-
ative to Sanger sequencing (454 Life Sciences Corporation

The Sanger sequencing method has enjoyed great succd¥€ss release). The reads produced by the new sequencing
since its debut in 1977 as it is used in virtually all sequencingechniques differ in both read length and quality profiles char-
projects. The amount of sequence information has exponent@cteristic of electrophoretic sequencing. In particular the read
ated due to advances in automated sequencing technology aleigth is sacrificed for much higher throughput, resulting in
investment from the Human Genome Project. State-of-the-afigh coverage with short reads.

automated sequencers can sequence a staggering 3 mb/daylhe success of the new high-throughput whole-genome
However, despite its strong points, there are some drawbaclgéhotgun sequencing technologies will depend not only on
to Sanger sequencing. First, it is dependent on clone librathe speed of the analytical process of producing reads but
ies for sample preparation, and some genomes have regioﬁ§0 the solution of the computational problem of assembling
not amenable to cloning. Also, future genomics projects maygequence fragments into complete genomes. The common
require sequence-throughput orders of magnitude faster tha@pproach in many fragment assembly programs, such as Phrap
what is currently possible. Because of this, researchers af@wing and Green, 1998), CAP (Huang and Madan, 1999),
searching for alternative sequencing techniques that woulBCAP (Huanget al., 2003) and TIGR assembler (Sutton

bypassthe shortcomings of Sanger sequencing (Roseahi

et al., 1995), is the overlap—layout—consensus approach. The

1998; Bocker, 2003a; Drmanat al., 1989; Preparata and New genome assembler from Celera (Myetsal., 2000)
Upfal, 2000; Mitraetal., 2003; Braslavskgt al., 2003). These and the ARACHNE assembler (Batzogletal., 2002; Jaffe
techniques aim at clone-free sequencing to enable sequencifgd., 2003) mask the repeat regions in the reads in order
of regions that are notamenable to cloning and to decrease dri@ reduce the complexity of the overlap graph and allevi-
matically the time and cost of sequencing. Almost all the newate the difficulty of the layout stage. This idea has been

*To whom correspondence should be addressed.

applied successfully to assembling large eukaryotic gen-
omes with whole-genome shotgun reads, including fruitfly
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Fig. 1. Number of overlaps versus complete sequence (genome) length. Data were samplectae38ge from Adenoviru§ampyl obacter
jejuni (CJ), NM and two BACs. Overlaps were found using megablast (Zleaalg, 2000) and filtered for exact overlap alignments at least
30 nt long. Read length 750 was chosen as a reference of the assembly complexity when assembling reads with the current read length.

(Adams, 2000), human (Ventest al., 2001) and mouse to assemble even very short genomes with short reads using
(Mouse Genome Sequencing Consortium, 2002). The majdPhrag, an excellent program for assembling BACs with
difficulty in assembly is the presence of repeats that ar@ormal read lengths. Therefore scaling short read assembly
longer than the typical read length. Masking out repeatto longer and longer genomes presents a difficult compu-
in such an approach leads to a fragmentation of the ovetational problem. The recent announcement of the Adeno-
lap graph. Therefore, the shorter the read length the largarirus sequence by 454 Life Sciences Corporation did not
the number of repeats that present difficulties to assemblyeveal the computational approach behind this advance.
and a greater enhancement of loss of information of théHowever, we remark that the Human Adenovirus E has
repeat masking procedure in the ARACHNE and Celeraonly one repeated region 51 bases long, and can other-
assemblers. To demonstrate the increase in the assembly comise be modeled as a ‘random’ sequence. This 51-bp-long
plexity with the decrease in the read length, we computedepeat does not present a problem to assembly because it
the number of perfect read-end overlaps found in hypothetean be bridged by even extremely short reads; Phrap was
ical sequencing projects with varying read lengths, showrable to assemble this with no modifications to the code.
in Figure 1. While for a given genome the number of over-Moreover, one would be able to assemble the equivalent
lapping reads scaled roughly linearly with read length, theof a human genome with short reads if the human genome
number of repeat pairs increased dramatically in the largesequence followed a random distribution. Therefore, even
and more compleXNeisseria meningitidis (NM) genome. after the 454 Life Sciences Corporation announcement of
With short reads, assembling a BAC became as complicthe Adenovirus genome, sequence assembly of short reads
ated as assembling a bacterial genome with normal reads,

even when reads had no Sequencing errors. The assemblyltI5'hrap produced only a few very short (100 bp) contigs as well as a core-

the NM genome, known to have a Iarge_num_ber of repeatsy,mp when assembling a BAC with short reads. The Adenovirus genome
became a formidable problem. In practice, it was difficultwas assembled using less thantoverage.
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for more complex genomes (even BACs) remains an opeby compomers problem proposed by Bécker (2003a), the

problem. spectra are resolved into high-quality reads. The detection
In an extreme case of high enough coverage and shodf compomers through MALDI-TOF has been used for

enoughreads, the fragmentassembly problem becomes effe@NP discovery (Bbécker, 2003b) and is implemented in the

ively the same as sequencing by hybridization. In this extrem&EQUENOM MassArray platform.

case the read length is fixed (elg= 20), and there is one

rea:g starting ra:ttever)ll position in the g%norzn(la). "c;hetllzuleria@ ASSEMBLY OF ERROR-FREE READS

g?e s ei?g (;0;; P esziz:/ 2%885?:%0;& o)g eo)ll f(:lr tﬁ: :Sr; e\,\rﬁéirrors in regd data'greatly complicate the task of frggment

of regular reads by Idury and Waterman (1995). This had _sembly. It is possible to correct_many of_the errors in reads

been implemented in the EULER fragment assembly prograrﬁ“or to assembly. Howe_v_er as a first step in proof of concept

(Pevznert al., 2001) and further developed by Pevzner and or shortread assembly itis necessary to show the upper bound

Tang (2001). EULER has an advantage over assemblers bas2d fjhe fSOh:jt.'fc.m dthat can bfe Eajrlféed n assgrpbly of shbcl)rt
on an overlap-layout approach since it works meticulousl;)'ea s q modiied version o was used to assemble
with repeats and instead of masking repeats generates a repg?ii reads.

graph that reveals the underlying structure of the repeat Oojdts;]scgbled_by (Pevznert]zt;\l.,f2001; Ptevzner t?lnd Tar:g,
withinagenome. The repeat graph can direct biologists towar ) the Eulerian approach to fragment assembly resolves a

. hat all h Ut f _ sequence byfinding an Eulerian path through ade Bruijn graph
%g%ments that allow the resolution of repeats (Rog., representation ofagenome. l&t(G,_1) bethe setaf(/—1)-

tuples present in a genondg To form the de Bruijn graph, a

vertex,v, labeled(; - - - ;_1) is created for eacli{ 1)-tuple in

2 ALTERNATIVE SEQUENCING G)_1, and for each-tupler € G; adirected edggf; - - - t;—1),
TECHNOLOGIES (t2---1;)) is added. The sequence corresponds to an Eulerian

2.1 Pyrosequencing path through this de Bruijn graph. In a sequencing project,

Pyrosequencing™ (Ronaghi al., 1998; Ronaghi, 2001) is G (and"[herefore{;;_l) is approximgted by the set btuples '
a non-electrophoretic DNA sequencing technique that uselresentinaset of reads. Repeats in a genome create tangles in
sequencing-by-synthesis. In this method, a solution of af€ dé Bruiin graph (Pevzner and Tang, 2001). The equivalent
amplified sequence and the corresponding primer is mixel{@nsformation approach proposed by Pevzsel. (2001)

with four enzymes: polymerase, ATP sulfurylase, luciferase!S€S réads and mate-pair information if available to define
and apyrase. Sequencing is carried out by adding iterativel9aths through the read-generated de B“_J'Jn grallph an(_j'thus
solutions of alternating nucleotides (A,C,T.G,A.C,T.G. resolves many tangles. Tangles that remain require additional
When a nucleotide is incorporated into the template strand b{jiShing experiments to be resolved.

the polymerase, PPi is released and converted subsequentlyn this study we assembled simulated reads from several

into ATP by the ATP sulfurylase. This drives a light emit- (€St viral genomes, BACs and bacterial genomes: Adenov-

ting luciferin oxidation that can be detected by a light sensori'US (Adeno), BAC 85H09, BAC 47A01, CJ and NMThe
nomes were sampled for 8Goverage, and ignoring end

Unincorporated nucleotides are degraded by apyrase. THE )
light intensities measured upon the addition of nucleotide$Tects, all test cases had full coverage. The contigs res-
are combined into a pyrogram from which the sequence CaHltlng from assembly for various read lengths are listed in

be read. Pyrosequencing has been used effectively to sequent@!€ 1. The number of contigs drops at a decreasing rate
short primer extensions for SNP detection (Fakhrai-&at, with increasing read length. BAC 47A01 contains many low-

2002). It remains to be seen what the error rates are dfomplexity regions that were difficult to assemble with the
Pyrosequencing; however, it is feasible that they are highe§hortest read length. Also, the number of contigs may be arti-

than those of electrophoretic methods ficially large since many of the contigs generated for short
reads are short and most of the genome is contained in a few

2.2 Sequencing by matrix-assisted laser long contigs. For example, the largest nine contigs give 95%
desorption—ionization time of flight coverage using reads averaging 70 bases for BAC 85H09; the
(MALDI-TOF) largest 10 contigs for BAC 47A01. In CJ, 21 contigs pro-

. . duced over 95% coverage when assembling reads averaging
A recent development irde novo DNA sequencing b . .
velop I v guencing by length of 70, while 11 contigs covered at least 95% of the

MALDI-TOF mass spectrometry has been described by h bled with 750 b ds. Th |
Bdcker (2003a). In this technology, sequences of up to 200 genome when assembled wi ase reads. the complex
gture of the NM genome was reflected in the smaller size of

are digested partially by base-specific endonucleases, and th
resulting fragments are analyzed through mass spectrometry.

Each peak in the mass spectra corresponds to & number Qca) accession: (Adeno) AF394196, (85H09) AC084390, (47A01)
nucleotides called compomers. By solving the sequencingC123854, (CJ) CJ11168X1, (NM) NMA1Z2491.
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Table 1. Assemblies of sample genomes using read lengths averaging 70, 100, 150, 200 anci730,lzdises

Genome 70 bp 100 bp 150 bp 200 bp 750 bp
[length (kb)]
rep asm  >1K(%) rep asm  >1K(%) rep asm >1K(%) rep asm >1K(%) rep asm >1K(%)

Adeno (35) 1 1 1(100) 1 1 1(100) 1 1 1(100) 1 1 1(100) 1 1  1(100)
85H09 (177) 16 25 10(98.9) 10 20  7(98.9) 10 12  5(99.5) 7 12  5(99.6) 1 1  1(100)
47A01 (206) 69 59 13(982) 25 28  6(98.9) 29 13  5(99.0) 13 13  4(993) 1 1  1(100)
CJ (1662) 73 72 37(995) 63 58 34(99.6) 54 48 29(99.5) 45 48  22(99.5) 22 27  22(99.9)

NM (2184) 1803 1864 309 (93.4) 1299 1247 299(94.6) 563 296 215(96.2) 266 296 114(97.8) 92 59  48(99.7)

Paths consisting entirely of nodes of degree 2 are collapsed into one edge, representing the theoretical limit of resolution using the specifjigd Femdehch read length, the
following are reportedrep, the number of edges in the repeat graph (de Bruijn graph) constructed from the test genome using tuples of size equal to the averagerHad length
asm, the total number of contigs generated from assembling simulated reads 1&if#h), the number of contigs 1 kb and the percentage of the genome the contigs cover.

contigs; 95% coverage required 344 contigs assembled fromituples into solid ones. This method performs well on the
70 bp reads (20% of all contigs generated); however, only 28ead lengths and error profiles of modern sequencing projects.
contigs were required for this coverage when assembled frorigh coverage, repeats and high error rates make it difficult
750 base reads. to determine whicli-tuples should belong ifi. Fluctuations
in coverage by shotgun sampling require a low threstéld
so that valid regions are not considered weak. Unfortunately,
4 ASSEMBLY OF READS WITH ERRORS with a large number of reads and high error rates, this will also
As mentioned by Pevzner and Tang (2001) the EULERInclude many false positives. Increasihgill decrease the
assembly method works well on error-free reads; howevefalse positive rate, but in reads with high error rates this makes
sequencing errors in reads can complicate the de Bruijn graph, difficult to determine which changes are appropriate for
making it difficult to determine the true sequence. This can beransforming the read into &-string. We present a dynamic
alleviated by detecting and fixing errors prior to sequencing.programming solution that allows for choosing a sm#ll
Rather than using alignment and base-calling during avhile eliminating many false positives since it considers mul-

post-processing (consensus) step of fragment assembly, erigsle possible modifications to a string before selecting the
correction is performed prior to assembly by solving the errofgptimal ones.

correction problem (Pevzneral., 2001). In this problem, let
G; be the set of-tuples in a genomé. A read that has errors
will contain /-tuples not inG; and is transformed so that it 5 DYNAMIC PROGRAMMING SOLUTION
only containg-tuples inG;. The transformation used is the TOTHE SAP
spectral alignment problem (SAP) (Pevzeesrl., 2001). In  In the context of resequencing by hybridization, Peleal.
the SAP, one is given a collection bfuples,T, and a string.  (2002) studied a problem similar to the SAP where a dynamic
A string is called & -string if all its/-tuples belong t@. Let ~ programming solution was presented, although it was not
7T be the collection of alll’-strings. The SAP is to find*  formulated as the SAP. This approach finds the highest prob-
such that the edit distaneKs, s*) is minimal for alls* € 7. ability path through a de Bruijn graph constructed from probe
Error correction is performed by settingto G; and apply- matches in an universal array. While the approach taken by
ing spectral alignment to each read.danovo sequencing, Pe’eret al. (2002) is similar to ours, it cannot be applied dir-
G, is not known, and an approximation is made by choosingectly here. First, the scoring scheme is probabilistic rather than
athresholdv and then labeling anituple present more than discrete, although this may be updated easily to fit the edit dis-
M times throughout all reads as ‘solid’, and ‘weak’ otherwise.tance score presented here. More importantly, the search for
A read is solid if all tuples in it are solid. An example of the optimal path transitions fron gossibilities is considered at
distribution ofl-tuple multiplicities for sample reads from the each iteration. This is computationally tractable for universal
CJ genome is given in Figure 2. For this genome, we can usarrays, wheré can range from 6 to 9; however, in the case of
a threshold = 10 that will eliminate, false positives, erro- error correction, such small valuesiofan lead to saturation
neous!-tuples that should not be i6;, and minimize false of the T-spectrum so that nearly all 4tuples are solid. In
negatives and-tuples inG; that do not have the multiplicity this approach the values bfrange from 15 to 20, and so it
to be solid. is important to only search through a small subset of the 4
An approximation to the solution for the SAP is used cur-possibilities. Here we describe a complete solution to SAP
rently in the EULER assembler. In the approximation, alland give a heuristic that solves the SAP in most cases without
unambiguous changes are made that can transform wealearching this complete search space.
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Fig. 2. Number of erroneous and corréduples found in simulated reads from the CJ genome versus multiplicity. The genome was sampled
at 30x coverage with average read length 100. Reads were corrupted with a 2% error rate uniformly distributed between mutations and
insertions/deletions. Most erronedusiples are present in low multiplicities.

In our solution we use the notatiah = azg,...,a;_1 t0O
denote the — 1 tuple from the first — 1 characters ii-tuple
a =ay,...,q. The concatenation of the charackewith a is
denotedX o a. For example, it = ACGT andX = G, then
Xoa = GACG. For astring and an-tuplea from spectrum
T, we define scoreé( a) to be the minimum edit distance for
the prefix ofs of lengthi and all 7-strings ending iru [if
a ¢ T, score(, a) is infinity]. This may be computed using
the following recurrence relation:

1 ifa#s

. —>
scorgi —1,Xo d) + {o otherwise

scoral, &) = M & scordi — 1,a)+ 1

scordi,Xo @) +1

The initial condition is scor®,a) = 0. Denote the length
of strings as|s|. The minimum of scor@s|,a) foralla € T
corresponds to the minimum cadBtstring fors. This recur-

is used in a recurrence relation (0 for vertices correspond-
ing to sj5). The minimum scord -string corresponds to a
shortest path from any vertex with in-degree of 0 to any ver-
tex with out-degree of 0. All edges have non-negative weight,
and so there are no negative cycles, and the shortest path
may be computed using any shortest path algorithm such
as Bellman—Ford (Cormaet al., 1990). An example of the
graph representation of the recurrence relation is shown in
Figure 3.

We applied heuristic approximations to the SAP in order to
improve performance in fixing errors in projects using short
reads. When performing spectral alignment for reads with a
known genome, the spectrum is setd@. SinceG; is not
known in ade novo sequencing project, it is approximated by
theseG M, alli-tuples with multiplicity not less thai within
all reads. Although the size @}/ is smaller than the total
possible 4/-tuples, it is desirable to reduce the search space

sion relation may be represented as a graph where each vertix T-strings even further. If a stringcontains a substring

corresponds to a prefix lengtand ari-tuplea. Edges connect

that is aT'-string, we only consider -strings containing.

vertices referenced by a recurrence relation. The in-degree dfhe scoring function for this is scoté, i,1), the minimum
a vertex is equal to the number of non-infinite vertices refer-edit distance for string to all T-strings containing:. Since

enced to compute its score (for= 0 the score is 0), and

this is easily computed if is a prefix ofs, we can solve the

the out-degree is equal to the number of times the verte AP for a substring of such that is a prefix ofs. In our
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Fig. 3. Example of a graphical solution to the SAP. Dashed edges have a score of 0 and solid edges 1. Left, vertices used to compute the scor
of vertex CG. Center, vertices that reference CG. Right, a positive cycle. The complete cycle will not be used in a shortest path.

implementation we set to be the first solid substring inof ~ are trimmed. After error correction is applied to the set of
length/ +§ (in our applicatiors is about(—lsl). Furthermore, the reads,Gf” will change. The spectrurﬂlM may be updated
search space may be reduced when there is some intuition ahd used iteratively to correct reads that were unfixable in
the maximum number of errors expected in a read. If no more previous iteration. Reads that remain unfixable in the last
than A errors are expected in a read, paths of score greatdteration are discarded.

thanA may be ignored. In order to test our error correction algorithm, simulated

In a high-coverage project, a read covering a high-readsfrom sequenced genomeswere corrupted with errors and
multiplicity repeat may contain errors that are not correctedsubsequently treated with error correction. Two different error
using the spectrurG}”. Rather than changin@}” forrepeat models were used, uniform error distribution, and homopoly-
regions, we note that the nucleotide alphabet is small, antheric errors. In the former, errors are distributed uniformly
the multiplicity of consecutivé-tuples generally does not among positions in aread at a specified rate. Errors are distrib-
decrease rapidly. An example is the case of an independented randomly between insertions, deletions and mutations,
identical distribution of nucleotides immediately after a repeatwith rates ranging over 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5 and
region. To account for this, we let scé(a, i,a) be the min-  5%. In Pyrosequencing, there may be difficulty in sequencing
imum edit distance from to all T-strings ending iz that  homopolymeric regions (Ronaghi, 2001)-5—6 nt, and the
containu and do not contain adjacehtuples with a ratio of  latter error model attempts to simulate this. Homopolymeric
multiplicities less than. Since this is arare case, we generally regions longer than 6 nt were either increased or decreased in
setr to 0.01. length randomly, with a bias toward a decrease.

A read with minimum score less thaxnis replaced by the The results of running error correction on simulated reads
corresponding minimum scofg-string. If it is not possible at various error rates are presented in Table 2. An additional
to transform a read into &-string in underA changes, itis ‘fictitious’ genome was created to show the operation of error
considered unfixable, and no changes to the read are madmrrection on random genomes. The fictitious genome is a
Likewise, it is ambiguous if there are multiple paths with 50 kb randomly generated sequence, with 28 exact repeats
the same cost, and such reads are also considered unfixablanging from 80 to 1000 bases. Exact repeats were used rather
Finally, it is difficult to determine if changes made near thethan inexact ones, so that théuple multiplicities of repeats
ends of reads are correct, and so reads with erroneous edgesre greatly enhanced over random regions. Errors in such
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Table 2. The result of running error correction on erroneous 200 bp reads

Simulated Fictitious 85H09 47A01
error rate

i r c % i r c % i r c %
0.5 10.2 54 37 99.2 302 354 277 99.5 35.3 907 717 99.6
1.0 30.7 46 17 99.2 603 948 754 99.4 70.4 1658 1276 99.4
15 20.6 90 37 98.7 892 1364 1080 98.8 104 2831 2348 98.9
2.0 40.0 123 35 97.5 117 2255 1836 97.9 137 3735 3089 98.0
2.5 48.7 180 77 96.2 141 3129 2524 95.8 165 5278 4376 96.2
3.0 55.8 233 106 92.3 162 3884 3154 93.3 190 8138 6759 93.8
35 60.6 256 101 88.8 175 4910 3942 88.8 206 9593 8009 89.3
4.0 62.0 280 132 82.2 180 6468 5353 82.5 213 10511 8791 83.2
4.5 60.4 332 137 73.7 174 5797 4775 73.2 209 12149 10225 74.8
5.0 57.2 353 156 64.7 157 5942 4832 61.2 187 12474 10512 62.6
Homopolymeric 17.3 274 223 99.3 55.9 5846 4144 99.6 58.9 4148 3039 93.9

For each genome the following are reportadhe number of errors in kb found prior to error correction in reads retained after error correctimmnpumber of remaining (unfixed)

errors, in bases;, the the number of data corruptions (nucleotides that were correct in the original read and incorrect in the fixed read), in bases %; and the pezaedstage o
retained after error correction.

regions could often only be detected using the multiplicity Table 3. Number of contigs for assembled reads at increasing error rates
ratio threshold. Our error correction method is more effective
on the random dataset. Upon inspection of the error-correcteg . ated error

- Fictitious 85H09 47A01
reads for the BACs, many of the errors that were unfixedate
or corrupted were located in regions of low complexity. In
high coverage projects, the correct modifications to make s 29 29 47
are further obscured in low-complexity regions because mang.o 27 25 67
erroneous-tuples appear with high multiplicity. Also, many 1.5 29 39 69
of the corruptions in low-complexity regions were in homo- 20 ;‘21 22 1’;‘;
polymeric regions, unfortunately the regions that are mosg 37 74 205
likely to be missequenced in sequencing-by-synthesis. We s 41 122 72
believe that this problem can be fixed by changing the scoring.o 56 184 200
model to accommodate a bias toward indels within homo#-> 7 183 116
polymeric regions. However, such a change will be postpone 'gn dom walk 8248 35451 41‘;09
until a true error distribution of this sequencing technology is
known.

] ) ) Genomes were sampled with 3@overage with length of 126 40.
While this method works well on short reads, it does not

scale well to longer reads. The expected number of errors pe
read increases with read length, and consequently the size 9
the search space increases. For high error rates on long re
the size of the search space becomes prohibitive.

After error correction was performed on the test data, the
retained (corrected) reads were assembled using a new véd- CONCLUSIONS
sion of EULER (Pevznegt al., 2004). This version can detect We have examined the feasibility of assembling reads pro-
some of the topological features that are added to the de Bruijduced by emerging sequencing technologies. While many
graph when there are sequencing inconsistencies (errors karge contigs may be assembled using even very short reads,
a heterozygous sample) that otherwise fragment the repesatibstantial (if not prohibitive) finishing efforts are required
graph. The errors and corruptions after error correction comfor resolving entirely all but the simplest of genomes. This is
plicate the repeat graph. Results of assembling the fictitiousspecially true in the assembly of reads that have high error
genome and BACs 47A01 and 85H09 with an average reachtes that may be a feature of some of these technologies.
length of 120 and varied error rates are summarized in Table 3. Finally, we note that a powerful tool used in current sequen-
To obtain 95% coverage for BAC 85H09, 29 contigs (38% ofcing projects is the use of mate-pairs for repeat resolution
the total contigs) were required at a 3.0% simulated error rat§Weber and Myers, 1997; Pevzner and Tang, 2001). The
BAC 47A01 contained more difficult-to-fix low-complexity Eulerian approach to fragment assembly is well suited for

gions and required 109 (48% of total) contigs for 95% cov-
age. With very low error rates, 0.5% BAC 85H09 required
y eight contigs for 95% coverage.
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mate-pair analysis (Pevzner and Tang, 2001), and it is eagyuang,X. and Madan,A. (1999) CAP3: a DNA sequence assembly

to incorporate mate-pairs in our algorithm for short read program.Genome Res., 9, 868-877.

assembly. However, since some of the new technologies aifduang,X., Wang,J., Aluru,S., Yang,S.-P. and Hillier,L. (2003)

to produce genomes using clone-free data, we did not use PCAP: a whole-genome assembly prograBenome Res., 13,

mate-pairs in the existing version of the assembly algorithm. 2164-2170.

The resolution described by repeat graphs in Table 1 dic'—d“sré’a'zé :::a\sl\éztrirbrga&“:{pétlz?;) gzn;i/v;ggorithm for DNA

hat an extra experimental is requir ini ’ Lo G e I

tsa;gj;n;tng prij;(i.elt E:maiﬁst:cfl;elﬂnsgeiglrj n?(;jlet(?u];g]rlzrilo?aﬁe’p'B" Butler,J., Gnerre,S., Mauceli,E., Lindbad-Toh,K.,
h . - . Mesiror,J.P., Zody,M.C. and Lander,E.S. (2003) Whole-genome

logists to determine a high-throughput method for producing

L S - . . sequence assembly for mammalian genomes: AractGendme
data similar to mate-pair information without the tedious task res 13 91-96.

of producing a clone library. We emphasize, however, thaiyitra,R., Shendure,J., Olejnik,J., Edyta-Krzymansk-Olejnik, and
due to the extreme complexity of the repeat graph for short Church,G. (2003) Fluoresceitt situ sequencing on polymerase
reads, there may be a need for more accurate insert distancecolonies.Anal. Biochem., 320, 55-65.

estimates, and it presents yet another challenge for developévipuse Genome Sequencing Consortium (2002) Initial sequencing
of short read sequencing. Alternatively, the repeat structure and comparative analysis of the mouse genoNaure, 420,

that is assembled after equivalent transformation can provide 920-562.

information for a high-throughput mapping technology. WeMyelrS"_E'W'* Sutton,G.G., Delcher,A.L., Dew,.M., Fasulo,D.P.,
are eager to see the progress of this field. Flanigan,M.J., Kravitz,S.A., Mobanry,C.M., Reinert,K.H.,

Renuington,K.A. (2000) A whole-genome assembly of Droso-
phila. Science, 287, 2196-2204.
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