
Informatics Concepts

Strings

● s = AATGCA
● |s| = 6, s[1] = a, s[3] = t
● ϵ : empty string
● Subsequence, substring
● Supersequence, superstring
● Concatenation, prefix, suffix

Informatics Concepts

Graphs

● V, E
● Directed, undirected edges
● Simple graphs: no loops or multiple edges
● Incidence, adajcency
● Head ← tail
● Degree, outdegree, indegree

Graphs

Undirected graph Directed graph

Graphs

● Weighted graphs (cost or distance)
● Subgraph, proper subgraph, spanning

subgraph, induced subgraph
● Paths, cycles (simple), reachability
● Path weight
● Connected, disconnected graphs
● Connected components

Graph classes

● Acyclic graphs (forests)
● Complete graphs (all possible edges present)
● Bipartite
● Trees (connected forests)

– Leaves, internal nodes

– Rooted tress, root

– Parent, children

– Ancestors, descendants

– Lowest common ancestor

Computational problems

● Eulerian graphs, Eulerian paths
● Hamiltonian graphs, Hamiltonian paths
● Minimum Spanning Trees (MSTs)

– weighted, undirected graphs

● Vertex-coloring
● Maximum mathcing (weighted graphs)

Graph representation

● Adajcency matrix
● Adjacency lists
● Sparse and dense graph families (infinite)

Algorithms

● Random Access Machine (RAM)
● Memory, registers
● Program: informal instructions

– input:
– output:
– CONSTANT
– variable

– keyword (for, if, while, etc.)

Algorithms

● Correct algorithm
● Worst case running time

– as a function of input size, n

● f(n) = 7n2 + 3n + 1 = O(n2)
● Linear time, quadratic time, polynomial time

NP-completeness

Solvable
in

polynomial
time

Gray area

?

undecided

NP-complete
problems

Unsolvable
in

polynomial
time

Computational problems

P

NP-completeness

● NP-complete vs. NP-hard
● Reductions: A < B
● Eulerian graph: P
● Hamiltonian graph: NP-hard
● MST: P
● Vertex coloring: NP-hard
● Maximum matching|: P

NP-hard problem: What to do?

● Restrict input: e.g., vertex coloring is in P for
bipartite graphs

● Brute-force: maybe your instance can be solved
in reasonable time

● Approximation algorithms
● Heuristics

Important algorithms

● Depth-first search (DFS): stack
● Breadth-first search (BFS): queue
● Sorting: O(n log n), sometimes O(n)
● Greedy algorithms
● Dynamic programming

Important data structures

● Stack
● Queue
● Hash table
● Binary search tree
● Disjoint forest (union-find)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

