For the edit distance we have $c(a, b)=0$ when $a=b, c(a, b)=1$ when $a!=b$ and $h=1$.
Using equations 3.16 and 3.17 from the book, one can compute a scoring system from a cost measure:

$$
\begin{align*}
p(a, b) & =M-c(a, b) \tag{3.16}\\
g & =-h+\frac{M}{2} \tag{3.17}
\end{align*}
$$

Specifying an M not big enough (such as 2), one would get:
$\mathrm{p}(\mathrm{a}, \mathrm{b})=2$ when $\mathrm{a}=\mathrm{b}, \mathrm{p}(\mathrm{a}, \mathrm{b})=1$ when $\mathrm{a}!=\mathrm{b}$ and $\mathrm{g}=0$.
The reason M should not be too big is that, in the case it is, g would also be big. However, for calculating similarities, we usually want to penalize inclusion of spaces, so intuitively one expects g to be either negative or close to 0 .

