Parsimony: character data

- Small Phylogeny Problem (SPP):
 - Given a phylogeny, reconstruct events minimizing amount of evolution
- Big Phylogeny Problem (BPP):
 - Search, among all phylogenies, the ones with minimum evolution

Small example

	Characters						
Species	C1	C2	C3	C4	C5	C6	
Alpha	1	0	0	1	1	0	
Beta	0	0	1	0	0	0	
Gamma	1	1	0	0	0	0	
Delta	1	1	0	1	1	1	
Epsilon	0	0	1	1	1	0	

Possible phylogeny

Reconstruction of C1 (1)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C1 (2)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C2 (1)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C2 (2)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C2 (3)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C3 (1)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C3 (2)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C4 (1)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C4 (2)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Reconstruction of C6 (1)

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Parsimony

- Several ways of minimizing each character
- Equivalent characters
 - Same vector
 - Same changes
- Complementary characters:
 - Same changes

All characters

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Most parsimonious tree

	C1	C2	C3	C4	C5	C6
А	1	0	0	1	1	0
В	0	0	1	0	0	0
G	1	1	0	0	0	0
D	1	1	0	1	1	1
Е	0	0	1	1	1	0

Parsimony

- Rooted and unrooted trees
 - Number of changes depends only on the unrooted tree when changes are symmetric
- Rooting a tree
 - Outgroup
 - Molecular clock
- Branch length
 - Amount of change (or evolution)

Parsimony issues

- Given a topology and a character (SPP):
 - Minimize number of changes
 - Reconstruct ancestor states
- Most parsimonious among all trees (BPP)
- DNA or protein sequences, other characters
- Biological basis for parsimony
- Statistical support for most parsimonious tree