SCJ

- Distance between two genomes
- Weighted median, *n* genomes
- Median of three genomes

Distance

• Distance between genomes Σ and Π

d(Σ, Π) =
$$| Σ - Π | + | Π - Σ |$$

= $| Σ | + | Π | - 2 | Σ ∩ Π |$

Each genome is a set of adjacencies

- Genomes Π_1 , Π_2 , ..., Π_n
- Weights w₁, w₂, ..., w_n
- Find genome Γ such that

$$\sum_{i} W_{i} d(\Gamma, \Pi_{i})$$

is minimum

Each adjacency can be viewed as a genome

$$d(\alpha, \Pi_{i}) = \begin{cases} |\Pi_{i}| - 1 & \alpha \in \Pi_{i} \\ |\Pi_{i}| + 1 & \alpha \in \Pi_{i} \end{cases}$$

$$\sum_{i} w_{i} d(\alpha, \Pi_{i}) = \sum_{i} w_{i} |\Pi_{i}| - \sum_{\alpha \in \Pi_{i}} w_{i} + \sum_{\alpha \notin \Pi_{i}} w_{i}$$

Each adjacency can be viewed as a genome

$$d(\alpha, \Pi_{i}) = \begin{cases} |\Pi_{i}| - 1 & \alpha \in \Pi_{i} \\ |\Pi_{i}| + 1 & \alpha \in \Pi_{i} \end{cases}$$

$$\int_{i} w_{i} d(\alpha, \Pi_{i}) = \sum_{i} w_{i} |\Pi_{i}| - \sum_{\alpha \in \Pi_{i}} w_{i} + \sum_{\alpha \notin \Pi_{i}} w_{i}$$

Take all adjacencies α such that

$$f(\alpha) < 0$$

• If α and β conflict, then $f(\alpha) + f(\beta) \ge 0$

Median

- Genomes Π_1 , Π_2 , Π_3
- Weights 1, 1, 1
- $f(\alpha) = -3, -1, 1, \text{ or } 3$
- Unique median: adjacencies with $f(\alpha) < 0$