Algebraic distance

- Definition: weight of a lightest series of operations that transform genome π into genome σ
- Recall: ρ is applicable to π when $\pi \rho$ is a genome
- Recall: weight of $\rho=\| \rho| | / 2$
- $\mathrm{d}_{\mathrm{alg}}(\pi, \sigma)=\left\|\sigma \pi^{-1}\left|/ 2=\left\|\pi \sigma^{-1}\left|/ 2=\left\|\pi^{-1} \sigma| | / 2=\right\| \sigma^{-1} \pi\right| \mid / 2\right.\right.\right.$
- $\mathrm{d}_{\mathrm{alg}}(\pi, \sigma)=\| \sigma \pi| | / 2$ in adjacency algebraic

Finding sorting operations

- Compute $\sigma \pi^{-1}$
- Find a cycle μ dividing $\sigma \pi^{-1}$
- If μ and $\pi \mu^{-1} \pi^{-1}$ are disjoint, then $\rho=\mu \pi \mu^{-1} \pi^{-1}$ is a sorting operation on π

Cycles dividing cycles

Weights of classical operations

- Reversals, translocations, circular fusions, circular fissions: 2-breaks
- 2-breaks are of the form $\mu \pi \mu^{-1} \pi^{-1}$ for μ a 2-cycle
- 2-breaks have weight = 1
- Linear fusions, linear fissions, circularizations, linearizations: weight $=1 / 2$

Relationship with DCJ

- Adjacency graph $\mathrm{AG}(\pi, \sigma)$
- $d_{\mathrm{alg}}=\mathrm{N}-\mathrm{C}-\mathrm{P} / 2$
- $\mathrm{d}_{\mathrm{DCJ}}=\mathrm{N}-\mathrm{C}-\mathrm{P}_{\text {odd }} / 2$
- Warning: $P_{\text {odd }}$ in $A G$ is not the same as $P_{\text {odd }}$ in $B G$ (breakpoint graph)

Linear chromosomes

- Chromosomal algebraic representation
- Circular chromosomes:
- two cycles
- each one is the reverse complement of the other
- Linear chromosomes:
- one cycle
- the cycle is self-reverse-complementary

Algebraic structure of operations

- Linear fission / linearization: $\rho=(-u \mathrm{v})$
- u, v consecutive blocks
- Linear fusion / circularization: $\rho=(u v)$
- u, v telomeres being linked

Algebraic structure of operations

- Reversal: $\rho=(-u-v)(w x)$
- v, w consecutive blocks; u, x consecutive blocks
- same chromosome, different strands
- Circular fission / excision: $\rho=(-u-v)(w x)$
- v, w consecutive blocks; u, x consecutive blocks
- same chromosome, same strand

Algebraic structure of operations

- Circular fusion / translocation: $\rho=(-u-v)(w x)$
- v, w consecutive blocks; u, x consecutive blocks
- different chromosomes, same type
- Circular reabsorption: $\rho=(-u-v)(w x)$
- v, w consecutive blocks; u, x consecutive blocks
- different chromosomes, different type

Algebraic structure of operations

- Transposition: $\rho=(-u-v-w)(x$ y $z)$
- u, z; v, y; w, x consecutive blocks
- same strand, same order
- Block interchange: $\rho=(-u-v)(w x)(-y-z)(p q)$
- v, w; y, q; u, x; z, p consecutive blocks
- same strand, same order

