Algebraic distance

- Definition: weight of a lightest series of operations that transform genome π into genome σ
- Recall: ρ is applicable to π when $\pi\rho$ is a genome
- Recall: weight of $\rho = ||\rho||/2$
- $d_{alg}(\pi, \sigma) = ||\sigma\pi^{-1}||/2 = ||\pi\sigma^{-1}||/2 = ||\pi^{-1}\sigma||/2 = ||\sigma^{-1}\pi||/2$
- $d_{alg}(\pi, \sigma) = ||\sigma\pi||/2$ in adjacency algebraic

Finding sorting operations

- Compute $\sigma\pi^{-1}$
- If μ and $\pi\mu^{-1}\pi^{-1}$ are disjoint, then $\rho = \mu\pi\mu^{-1}\pi^{-1}$ is a sorting operation on π

Cycles dividing cycles

Weights of classical operations

- Reversals, translocations, circular fusions, circular fissions: 2-breaks
- 2-breaks are of the form $\mu\pi\mu^{-1}\pi^{-1}$ for μ a 2-cycle
- 2-breaks have weight = 1
- Linear fusions, linear fissions, circularizations, linearizations: weight = 1/2

Relationship with DCJ

• Adjacency graph AG(π , σ)

•
$$d_{alg} = N - C - P/2$$

•
$$d_{DCJ} = N - C - P_{odd}/2$$

- Warning: ${\rm P}_{\rm odd}$ in AG is not the same as ${\rm P}_{\rm odd}$ in BG (breakpoint graph)

Linear chromosomes

- Chromosomal algebraic representation
- Circular chromosomes:
 - two cycles
 - each one is the reverse complement of the other
- Linear chromosomes:
 - one cycle
 - the cycle is self-reverse-complementary

- Linear fission / linearization: $\rho = (-u v)$
 - u, v consecutive blocks
- Linear fusion / circularization: $\rho = (u v)$
 - u, v telomeres being linked

- Reversal: $\rho = (-u v)(w x)$
 - v, w consecutive blocks; u, x consecutive blocks
 - same chromosome, different strands
- Circular fission / excision: $\rho = (-u v)(w x)$
 - v, w consecutive blocks; u, x consecutive blocks
 - same chromosome, same strand

- Circular fusion / translocation: $\rho = (-u v)(w x)$
 - v, w consecutive blocks; u, x consecutive blocks
 - different chromosomes, same type
- Circular reabsorption: $\rho = (-u v)(w x)$
 - v, w consecutive blocks; u, x consecutive blocks
 - different chromosomes, different type

- Transposition: $\rho = (-u v w)(x y z)$
 - u, z; v, y; w, x consecutive blocks
 - same strand, same order
- Block interchange: $\rho = (-u v)(w x)(-y z)(p q)$
 - v, w; y, q; u, x; z, p consecutive blocks
 - same strand, same order