Matrix Medians

- Permutations can be seen as matrices
- Norm of $A=$ rank of $A-I$
- Median of matrices A, B, C : M such that
$\operatorname{rank}(A-M)+\operatorname{rank}(B-M)+\operatorname{rank}(C-M)$
is mimimum

Finding medians

- Small rank(A - M)
- Large vector space where A = M
- The same must happen with B and C

Spaces where matrices agree

$A=B$

$$
B=C
$$

$$
A=C
$$

Decomposing R^{n}

$k_{5} \quad V_{*}$ (.A.B.C. $) \quad \mathrm{M}=\mathrm{A}, \mathrm{B}$, or C

k_{3}	k_{2}	k_{4}
$\mathrm{~V}_{\star}(. \mathrm{A} . \mathrm{BC})$.	$\mathrm{V}_{\star}\left(. \mathrm{AB} . \mathrm{C}_{.}\right)$	$\mathrm{V}_{\star}(. \mathrm{AC} . \mathrm{B})$.
$\mathrm{M}=\mathrm{B}$	$\mathrm{M}=\mathrm{A}$	$\mathrm{M}=\mathrm{A}$

k_{1}
V_{*} (.ABC.)
$M=A$

$$
k_{1}+k_{2}+k_{3}+k_{4}+k_{5}=n
$$

Median approximations

- $\mathrm{M}_{\mathrm{A}}=\mathrm{A}$ in V_{*} (.A.B.C.)
- M_{B}, M_{C} are defined similarly
- $\mathrm{M}_{\mathrm{A}}, \mathrm{M}_{\mathrm{B}}, \mathrm{M}_{\mathrm{C}}$ are approximations to a median
$d\left(M_{x} ; A, B, C\right) \leq 4 / 3$ median score

