
Testing for C1P using PQ-Trees

● C1P: order U so that certain sets S U are
consecutive

● PQ-Tree: represents admissible permutations
● Online algorithm: tree changes with every new

set added
● Reduction algorihtm: linear in |S| under

amortized analysis
● Size of input: n + m + f

PQ-Trees

● Universal set U
● Leaves: elements of U
● Internal nodes:

– P nodes

– Q nodes

T
1
 T

2
 … T

k

T
1
 T

2
 … T

k

Proper PQ-Trees

● Every element of U appears exactly once as a
leaf

● Every P node has at least 2 childern
● Every Q Node has at least 3 children

● Reading the leaves from left to right

Frontier

Equivalent trees

● Notation: T1 = T2

● T1 and T2 are equivalent when one can be
transformed into the other by zero or more
equivalence transformations:
– arbitrarily permute the children of a P node

– reverse the children of a Q node

CONSISTENT(T) = {FRONTIER(T') | T' = T}

Universal tree and null tree

● Universal tree: |U| = m

● Null tree = CONSISTENT() =

a
1
 a

2
 … a

m

Modern implementation

PQTree<E>

universalSet: set of <E>
root: PQNode<E>

proper(): boolean
frontier(): list of <E>
equivalent(PQTree<E>):
 boolean
consistent(): set of
 <list of <E>>
isUniversal(): boolean
reduce(set of <E>)

PQNode<E>

parent: PQNode<E>
childList: list of
 <PQNode>
type: Enum(P,Q,L)

Reducing PQ-trees

● Input: PQ-tree T, set S U

● Bottom-up: starts at leaves; process each node only
after all its children have been processed

● Processing each node:
– Find a pattern that applies to it

– Replace the pattern by the replacement

● Stop when:
– No pattern for a node: return null tree

– After processing a node that “contains” S

Modern implementation (2)

PQTree<E>

universalSet: set of <E>
root: PQNode<E>

proper(): boolean
frontier(): list of <E>
equivalent(PQTree<E>):
 boolean
consistent(): set of
 <list of <E>>
isUniversal(): boolean
reduce(set of <E>)

PQNode<E>

parent: PQNode<E>
childList: list of
 <PQNode>
type: Enum(P,Q,L)

findPattern(): Pattern
apply(Pattern)
contains(set of <E>):
 boolean

Processing a node with respect to S

● Full, empty, partial

● Pertinent: full or partial
● Pertinent subtree: contains S
● ROOT(T,S): lowest node whose frontier

contains S

partialemptyfull

Modern implementation (3)

PQTree<E>

universalSet: set of <E>
root: PQNode<E>

proper(): boolean
frontier(): list of <E>
equivalent(PQTree<E>):
 boolean
consistent(): set of
 <list of <E>>
isUniversal(): boolean
reduce(set of <E>)
root(set of <E>): PQNode<E>

PQNode<E>

parent: PQNode<E>
childList: list of
 <PQNode>
type: Enum(P,Q,L)

findPattern(): Pattern
apply(Pattern)
contains(set of <E>):
 boolean
frontier(): list of <E>

Templates: pattern and replacement

● Goal: after replacement, the frontier of the
subtree rooted at this node, as well as all
equivalent subtrees, have all their pertinent
leaves consecutive

● Affects node and its children only
● Type of node and label of children (full, empty,

partial) matter
● Types of children do not matter

any type

Templates for leaves

● Just label as empty or full

Templates for P-nodes

......

... ...

Pattern Replacement

Templates for P-nodes (cont.)

● Templates when some children are empty and
some full
– Depend on node being ROOT(T,S) or not

– If node is not ROOT(T,S), creates a partial P-node

● Templates when there are partial children
– One or two partial children ok

– More than two partial children: no pattern

● All templates: apply to equivalent nodes as well

Templates for Q-nodes

● Templates for all children empty or all children full
● Templates for some children empty and some full
● Depend on node being ROOT(T,S) or not
● Templates for partial children

– One or two partial children ok
– More than two partial children: no pattern

● All templates: apply to equivalent nodes as well

Efficient implementation

● Need to avoid empty subtrees to guarantee
amortized |S| time

● Prunned pertinent subtree
● Two bottom-up phases

– Bubbling up: identifying prunned pertinent nodes

– Reduce: reducing prunned pertinent nodes

● Problem with parent pointers: blocking
● NORM(T): potential for amortized analysis

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16

