
Solving C1P components

● Connected components of Strictly Overlap
Graph

● Process each row in turn
● Place each row according to a previously

placed neighbor
● To fix direction, need to have already processed

neighbor of neighbor
● Process rows in DFS

Algorithm Place

● input: w → v → u (w and v can be nil)
● if v = nil and w = nil: place 1s of u consecutively
● if w = nil: place v \ u, v∩u, u \ v
● if |u∩w| < min(|u∩v|, |v∩w|):

 w, v \ u, v∩u, u \ v
● else:

 v \ u, v∩u, u \ v, w
● Check consistency of columns sets

Issues

● Twin elements: belong to exactly the same sets
● Twin elements are grouped in twin classes

(column sets)
● How to handle twin sets?
● Complexity: O(mn) → O(m + n + f), where

f = ∑|S|

Twin classes in a Path

5 2

7

8

path

twin class

● After adding {2,7,8} and {2,5,7}

Twin classes in a Path

● After adding {2,7,8} , {2,5,7} , and {1,4,7,8}

7 8

4

125

Improved placement algorithm

● path ← [] ; C1P ← true
● for each set S in DFS order :

 color each x S in its class (possibly newclass)
 for each partial class C :
 cut uncolored elements from C make a new class
 place uncolored subclass near empty neighbor
 if no such neighbor : C1P ← false
 if nonconsecutive full classes : C1P ← false
 if there is a newclass :
 if both path extremities empty : C1P ← false
 place newclass in path extremity, preferably full
 remove colors

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

