Improved Booth-Lueker algorithm

- Does not stop when C1P violation is found
- Goes on to build PQR-tree instead
- Time complexity: almost linear
- Extra $O(\alpha(f))$ factor

Union-find (disjoint set) structure

- make_set(x) $O(1)$
- Creates new singleton set
- find(x): r
$O(\alpha(f))$
- Finds representative of set containing x
- union(r, s): t

O(1)

- Gets two representatives, unites their sets
- $f=$ number of elements involved
- (or, number of make_set operations)

Pointers to parent

- Children of P-nodes
- Point to their parents
- Children of Q- and R-nodes
- Use union-find structure
- Only representative has pointer to parent
- Advantage
- Merging nodes with one union-find operation
- Price to pay
- Extra find operation to get parent

Templates

- Less cases
- All templates applied to ROOT(T, S)
- Can be seen as "eliminating partial nodes" while keeping consecutiveness restrictions
- If there is a partial node, $\operatorname{ROOT}(T, S)$ is partial
- Only full or partial nodes are moved

Template: P root, Q/R partial child

(a) T^{\prime}

- At most one full child b in root
- Node v's children must be ordered "darkest first"

Template: P root, Q/R partial child

- If more than one full child b in root:

Template: P root, P partial child

- Then apply "P root, Q/R partial child" template

Template: Q/R root, Q/R partial child

- Nodes v_{i-1}, v_{i+1} ordered "darkest first"
- Node v_{i}^{\prime} s children ordered "darkest first"

Template: Q/r root, P partial child

- Then apply "Q/R root, Q/R partial child" template

Implementation details

- Nodes deleted from the tree must be kept for the sake of the union-find structure
- First pass (called bubble by Booth and Lueker) essentially kept, but goes on reagrdless of C1P: the goal is to "color" prunned nodes and find ROOT(T, S)
- NORM(T) still applies for amortized analysis
- $\operatorname{NORM}(\mathrm{T})=\#$ of Q / R nodes + \# of nodes with P parent

