Improved Booth-Lueker algorithm

- Does not stop when C1P violation is found
- Goes on to build PQR-tree instead
- Time complexity: almost linear
- Extra O(α(f)) factor

Union-find (disjoint set) structure

- *make_set(x) O(1)*
 - Creates new singleton set
- - Finds representative of set containing x
- union(r, s): t O(1)
 - Gets two representatives, unites their sets
- f = number of elements involved
- (or, number of make_set operations)

Pointers to parent

- Children of P-nodes
 - Point to their parents
- Children of Q- and R-nodes
 - Use union-find structure
 - Only representative has pointer to parent
- Advantage
 - Merging nodes with one union-find operation
- Price to pay
 - Extra find operation to get parent

Templates

- Less cases
- All templates applied to ROOT(T, S)
- Can be seen as "eliminating partial nodes" while keeping consecutiveness restrictions
- If there is a partial node, ROOT(T, S) is partial
- Only full or partial nodes are moved

Template: P root, Q/R partial child

- At most one full child *b* in root
- Node v's children must be ordered "darkest first"

Template: P root, Q/R partial child

• If more than one full child b in root:

Template: P root, P partial child

• Then apply "P root, Q/R partial child" template

Template: Q/R root, Q/R partial child

- Nodes V_{i-1} , V_{i+1} ordered "darkest first"
- Node *v*_i's children ordered "darkest first"

Template: Q/r root, P partial child

 Then apply "Q/R root, Q/R partial child" template

Implementation details

- Nodes deleted from the tree must be kept for the sake of the union-find structure
- First pass (called bubble by Booth and Lueker) essentially kept, but goes on reagrdless of C1P: the goal is to "color" prunned nodes and find ROOT(T, S)
- NORM(T) still applies for amortized analysis
- NORM(T) = # of Q/R nodes + # of nodes with P parent