MO810/MC959 2018 First Semester Unicamp, Brazil


































5.00% 5.00% 5.00%


04/03/18 04/03/18
Topic, Dataset
05/03/18
05/03/18 Model, Baseline

06/14/18

06/14/18
06/14/18 06/14/18 06/14/18
N Group Topic Dataset Dataset (with URL if available) Delivery Penalty Model Performance Measure Baseline Delivery Penalty Report Delivery Penalty Video Delivery Penalty Relevance Difficulty Compliance
1 Ishikawa Porn in cartoons private; hundreds of videos
2018-04-01 22:03:07 0.00% GoogLeNet+softmax;SVM F2 and normalized accuracy 80%,90%,91%; 87%,93%,94% 2018-05-03 20:37:55 0.00% Cartoon Porn Detection Through Deep Learning and Motion Information 2018-06-14 12:52:22 0.00% Cartoon Porn Detection Through Deep Learning and Motion Information 2018-06-14 12:52:22 0.00% 10 10 10
2 Gibaut Music recommendation grouplens hetrec2011 Last.FM https://grouplens.org/datasets/hetrec-2011/, Last.FM 2018-04-02 21:26:00 0.00% autoencoder: 18745;500;18745 MSE 1.0 to 1.5 2018-05-03 21:35:33 0.00% A Music Recommendation System with individual and social approach 2018-06-14 18:37:28 0.00% (diff title) 2018-06-14 18:37:28 0.00% 10 10 10
3 Padovani-Santos GAN (?) MNIST, CIFAR-10
dropped



dropped









4 Froes Circuit quality assessment Customer call data
2018-04-07 03:35:21 -62.99%


dropped









5 Camargo Noise in Audio Research Google Audioset https://research.google.com/audioset/dataset/index.html 2018-04-02 22:33:58 0.00% 15-layer convolutional net; description in email

2018-05-03 16:10:32 0.00% Deep Convolutional Neural Network for Audio Classification 2018-06-14 21:11:09 0.00% (no title) 2018-06-14 21:11:09 0.00% 10 10 10
6 Hasegawa Stock Market B3 ftp site, Perlin ftp://ftp.bmf.com.br/MarketData/BMF/ 2018-04-03 12:48:41 0.00% PG, 1 layer; V, 3 layers; env.modif.from Trading Gym (https://github.com/Prediction-Machines/Trading-Gym) # of positive operations; total reward 240; -0.2 points 2018-05-03 22:43:59 0.00% (no title) 2018-06-14 23:06:12 0.00% Automated Trading with Reinforcement Learning 2018-06-14 23:06:12 0.00% 10 10 10
7 Aguiar-Capone-Sangalli Sentiment analysis Book reviews, Julian McAuley http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/review s_Books_5.json.gz 2018-04-03 13:56:54 0.00% word emb 100;[ch=128,k=3,mp=3;ch=128mp=3,k=4;ch=128,k=5,mp=3];ch=128,k=5,mp=5;ch=128,k=5,mp=5;ch=128,k=5,mp=20; (+? LSTM) accuracy on fine-grained (5-item) classes 53% just CNN; 53% paper 2018-05-03 21:50:11 0.00% Sentiment analysis of Amazon’s reviews using deep learning 2018-06-14 20:16:13 0.00% Sentiment analysis of Amazon’s reviews using deep learning 2018-06-14 20:16:13 0.00% 10 10 10
8 Ricci-Claus Handwritten digits MNIST http://yann.lecun.com/exdb/mnist/ 2018-04-03 17:47:21 0.00% goal: smallest networks achieving 95% and 99% accuracy ch=32,k=5;maxp=2;ch=64,k=3;maxp=2;d=1024,dr=0.25 2018-05-03 16:52:01 0.00% Handwritten Digits Recognition 2018-06-14 22:02:04 0.00% Handwritten Digits Recognition 2018-06-14 22:02:04 0.00% 10 0 10
9 Campos-Costa Stock Market Kaggle: daily US stock info https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs 2018-04-03 18:05:26 0.00%
profitability (%/day) 0.05 2018-05-03 20:14:18 0.00% Stock Market Prediction and Trader: a machine learning approach 2018-06-14 23:51:33 0.00% Stock Market Prediction and Trader: a machine learning approach 2018-06-14 23:51:33 0.00% 10 10 10
10 Lopes-Moreira Image classification Dog Breeds http://vision.stanford.edu/aditya86/ImageNetDogs/ 2018-04-03 19:12:03 0.00% Xception+InceptionV3;d=128,L2;d=128,L2;softmax accuracy, cross-entropy loss 88.8%, 0.40 2018-05-03 16:55:04 0.00% Dog Breed Classification using Transfer Learning 2018-06-15 00:03:16 -0.05% Dog Breed Classification using Transfer Learning 2018-06-15 00:03:16 -0.05% 10 10 10
11 Tosi-Borges-Malta Word prediction Kaggle MLSD - HW3 https://www.kaggle.com/c/mlsd-hw3 2018-04-03 22:21:47 0.00% word embedding (300), 2-layer LSTM, 450 units/layer; dropout accuracy 45% DL (53% other) 2018-05-03 21:45:40 0.00% A deep learning approach to word prediction 2018-06-14 21:59:24 0.00% A deep learning approach to word prediction 2018-06-14 21:59:24 0.00% 10 10 10
12 Bahia (Moreira-Franco) Blackjack Server/client environment https://github.com/joaopedroffranco/blackjack, https://github.com/KIQ83/blackjack-client 2018-04-03 19:30:43 0.00% (1) d=50;softmax (2) d=50;d=30;softmax win rate 14%, 47%, 37%, 53% 2018-05-03 23:32:22 0.00% (no title) 2018-06-14 22:44:52 0.00% The Blackjack 2018-06-14 22:44:52 0.00% 10 10 10
13 Robles Evolutionary Pong OpenAI Gym Pong-v0 https://gym.openai.com/envs/#atari 2018-04-03 19:46:27 0.00% ch=32,k=8,str=4;ch=64,k=4,str=2;ch=64,k=3;d=512;d=18 total reward 18.4 2018-05-03 22:53:20 0.00% Deep Reinforcement Learning to play Pong 2018-06-14 22:58:56 0.00% Deep Reinforcement Learning to play Pong 2018-06-14 22:58:56 0.00% 10 10 10
14 Nagme Chest X-rays Kaggle NIH Chest X-rays
2018-04-03 20:08:57 0.00%


dropped









15 Rodrigues Hypothalamus private; 200 MR images private 2018-04-03 20:30:22 0.00% U-Net (Ronnenberg et al, 2015) Dice index (F1 score, Sorensen-Dice coefficient) 0.75 2018-05-03 23:58:07 0.00% Hyphotalamus automatic Segmentation Using Convolutional Neural Networks 2018-06-14 23:59:03 0.00% Hyphotalamus automatic Segmentation Using Convolutional Neural Networks 2018-06-14 23:59:03 0.00% 10 10 10
16 PacBot (Idalgo-Pavan) Playing Pac Man OpenAI Gym MsPacman-v0 environment OpenAI Gym MsPacman-ram-v0 2018-04-03 23:39:25 0.00% d=128;d=128;d=512;d=512;d=128; OpenAI Gym reward complete level 2018-05-03 21:20:47 0.00% PacBot - a Reinforcement Learning Report 2018-06-15 23:41:02 -19.74% (no title) 2018-06-15 23:41:02 -19.74% 10 10 10
17 Silva-Prado Soccer positions (146,107)-sized images MNIST, CIFAR-10, and private HullConvex; all grayscale (146,107) 2018-04-03 21:37:23 0.00% ch=3,k=3,str=3;ch=3,k=3,str=3;maxp=2,str=2;d=128;softmax accuracy 28.41% 2018-05-06 17:35:45 -54.66% Image Classification using Transfer Learning 2018-06-14 19:42:45 0.00% (diff title) 2018-06-14 19:42:45 0.00% 10 10 10
18 Chevrier-Bruno Plants by leaves Leafsnap http://leafsnap.com/dataset/ 2018-04-03 21:40:11 0.00% ch=40,k=3;maxp=4,str=2;ch=40,k=2;maxp=4,str=2;ch=80,k=2;maxp=4,str=2;ch=160,k=2;maxp=2;d=500;softmax accuracy 80.00% 2018-05-04 00:01:27 -0.02% AI learns to recognize plants by leaves 2018-06-14 22:29:25 0.00% AI learns to recognize plants by leaves 2018-06-14 22:29:25 0.00% 10 10 10
19 Divino Simple voice commands TF Speech Recogn. Challenge
2018-04-12 21:07:05 -100.00%




(no delivery)