|
MO810/MC959 |
2018 First Semester |
Unicamp, Brazil |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5.00% |
5.00% |
5.00% |
|
|
04/03/18 |
04/03/18 |
|
Topic, Dataset |
|
05/03/18 |
|
05/03/18 |
Model, Baseline |
|
|
06/14/18 |
|
|
06/14/18 |
|
06/14/18 |
06/14/18 |
06/14/18 |
N |
Group |
Topic |
Dataset |
Dataset (with URL if available) |
Delivery |
Penalty |
Model |
Performance Measure |
Baseline |
Delivery |
Penalty |
Report |
Delivery |
Penalty |
Video |
Delivery |
Penalty |
Relevance |
Difficulty |
Compliance |
1 |
Ishikawa |
Porn in cartoons |
private; hundreds of videos |
|
2018-04-01 22:03:07 |
0.00% |
GoogLeNet+softmax;SVM |
F2 and normalized accuracy |
80%,90%,91%; 87%,93%,94% |
2018-05-03 20:37:55 |
0.00% |
Cartoon Porn Detection Through Deep Learning and Motion Information |
2018-06-14 12:52:22 |
0.00% |
Cartoon Porn Detection Through Deep Learning and Motion Information |
2018-06-14 12:52:22 |
0.00% |
10 |
10 |
10 |
2 |
Gibaut |
Music recommendation |
grouplens hetrec2011 Last.FM |
https://grouplens.org/datasets/hetrec-2011/, Last.FM |
2018-04-02 21:26:00 |
0.00% |
autoencoder: 18745;500;18745 |
MSE |
1.0 to 1.5 |
2018-05-03 21:35:33 |
0.00% |
A Music Recommendation System with individual and social approach |
2018-06-14 18:37:28 |
0.00% |
(diff title) |
2018-06-14 18:37:28 |
0.00% |
10 |
10 |
10 |
3 |
Padovani-Santos |
GAN (?) |
MNIST, CIFAR-10 |
|
dropped |
|
|
|
|
dropped |
|
|
|
|
|
|
|
|
|
|
4 |
Froes |
Circuit quality assessment |
Customer call data |
|
2018-04-07 03:35:21 |
-62.99% |
|
|
|
dropped |
|
|
|
|
|
|
|
|
|
|
5 |
Camargo |
Noise in Audio |
Research Google Audioset |
https://research.google.com/audioset/dataset/index.html |
2018-04-02 22:33:58 |
0.00% |
15-layer convolutional net; description in email |
|
|
2018-05-03 16:10:32 |
0.00% |
Deep Convolutional Neural Network for Audio Classification |
2018-06-14 21:11:09 |
0.00% |
(no title) |
2018-06-14 21:11:09 |
0.00% |
10 |
10 |
10 |
6 |
Hasegawa |
Stock Market |
B3 ftp site, Perlin |
ftp://ftp.bmf.com.br/MarketData/BMF/ |
2018-04-03 12:48:41 |
0.00% |
PG, 1 layer; V, 3 layers; env.modif.from Trading Gym (https://github.com/Prediction-Machines/Trading-Gym) |
# of positive operations; total reward |
240; -0.2 points |
2018-05-03 22:43:59 |
0.00% |
(no title) |
2018-06-14 23:06:12 |
0.00% |
Automated Trading with Reinforcement Learning |
2018-06-14 23:06:12 |
0.00% |
10 |
10 |
10 |
7 |
Aguiar-Capone-Sangalli |
Sentiment analysis |
Book reviews, Julian McAuley |
http://snap.stanford.edu/data/amazon/productGraph/categoryFiles/review s_Books_5.json.gz |
2018-04-03 13:56:54 |
0.00% |
word emb 100;[ch=128,k=3,mp=3;ch=128mp=3,k=4;ch=128,k=5,mp=3];ch=128,k=5,mp=5;ch=128,k=5,mp=5;ch=128,k=5,mp=20; (+? LSTM) |
accuracy on fine-grained (5-item) classes |
53% just CNN; 53% paper |
2018-05-03 21:50:11 |
0.00% |
Sentiment analysis of Amazon’s reviews using deep learning |
2018-06-14 20:16:13 |
0.00% |
Sentiment analysis of Amazon’s reviews using deep learning |
2018-06-14 20:16:13 |
0.00% |
10 |
10 |
10 |
8 |
Ricci-Claus |
Handwritten digits |
MNIST |
http://yann.lecun.com/exdb/mnist/ |
2018-04-03 17:47:21 |
0.00% |
goal: smallest networks achieving 95% and 99% |
accuracy |
ch=32,k=5;maxp=2;ch=64,k=3;maxp=2;d=1024,dr=0.25 |
2018-05-03 16:52:01 |
0.00% |
Handwritten Digits Recognition |
2018-06-14 22:02:04 |
0.00% |
Handwritten Digits Recognition |
2018-06-14 22:02:04 |
0.00% |
10 |
0 |
10 |
9 |
Campos-Costa |
Stock Market |
Kaggle: daily US stock info |
https://www.kaggle.com/borismarjanovic/price-volume-data-for-all-us-stocks-etfs |
2018-04-03 18:05:26 |
0.00% |
|
profitability (%/day) |
0.05 |
2018-05-03 20:14:18 |
0.00% |
Stock Market Prediction and Trader: a machine learning approach |
2018-06-14 23:51:33 |
0.00% |
Stock Market Prediction and Trader: a machine learning approach |
2018-06-14 23:51:33 |
0.00% |
10 |
10 |
10 |
10 |
Lopes-Moreira |
Image classification |
Dog Breeds |
http://vision.stanford.edu/aditya86/ImageNetDogs/ |
2018-04-03 19:12:03 |
0.00% |
Xception+InceptionV3;d=128,L2;d=128,L2;softmax |
accuracy, cross-entropy loss |
88.8%, 0.40 |
2018-05-03 16:55:04 |
0.00% |
Dog Breed Classification using Transfer Learning |
2018-06-15 00:03:16 |
-0.05% |
Dog Breed Classification using Transfer Learning |
2018-06-15 00:03:16 |
-0.05% |
10 |
10 |
10 |
11 |
Tosi-Borges-Malta |
Word prediction |
Kaggle MLSD - HW3 |
https://www.kaggle.com/c/mlsd-hw3 |
2018-04-03 22:21:47 |
0.00% |
word embedding (300), 2-layer LSTM, 450 units/layer; dropout |
accuracy |
45% DL (53% other) |
2018-05-03 21:45:40 |
0.00% |
A deep learning approach to word prediction |
2018-06-14 21:59:24 |
0.00% |
A deep learning approach to word prediction |
2018-06-14 21:59:24 |
0.00% |
10 |
10 |
10 |
12 |
Bahia (Moreira-Franco) |
Blackjack |
Server/client environment |
https://github.com/joaopedroffranco/blackjack, https://github.com/KIQ83/blackjack-client |
2018-04-03 19:30:43 |
0.00% |
(1) d=50;softmax (2) d=50;d=30;softmax |
win rate |
14%, 47%, 37%, 53% |
2018-05-03 23:32:22 |
0.00% |
(no title) |
2018-06-14 22:44:52 |
0.00% |
The Blackjack |
2018-06-14 22:44:52 |
0.00% |
10 |
10 |
10 |
13 |
Robles |
Evolutionary Pong |
OpenAI Gym Pong-v0 |
https://gym.openai.com/envs/#atari |
2018-04-03 19:46:27 |
0.00% |
ch=32,k=8,str=4;ch=64,k=4,str=2;ch=64,k=3;d=512;d=18 |
total reward |
18.4 |
2018-05-03 22:53:20 |
0.00% |
Deep Reinforcement Learning to play Pong |
2018-06-14 22:58:56 |
0.00% |
Deep Reinforcement Learning to play Pong |
2018-06-14 22:58:56 |
0.00% |
10 |
10 |
10 |
14 |
Nagme |
Chest X-rays |
Kaggle NIH Chest X-rays |
|
2018-04-03 20:08:57 |
0.00% |
|
|
|
dropped |
|
|
|
|
|
|
|
|
|
|
15 |
Rodrigues |
Hypothalamus |
private; 200 MR images |
private |
2018-04-03 20:30:22 |
0.00% |
U-Net (Ronnenberg et al, 2015) |
Dice index (F1 score, Sorensen-Dice coefficient) |
0.75 |
2018-05-03 23:58:07 |
0.00% |
Hyphotalamus automatic Segmentation Using Convolutional Neural Networks |
2018-06-14 23:59:03 |
0.00% |
Hyphotalamus automatic Segmentation Using Convolutional Neural Networks |
2018-06-14 23:59:03 |
0.00% |
10 |
10 |
10 |
16 |
PacBot (Idalgo-Pavan) |
Playing Pac Man |
OpenAI Gym MsPacman-v0 |
environment OpenAI Gym MsPacman-ram-v0 |
2018-04-03 23:39:25 |
0.00% |
d=128;d=128;d=512;d=512;d=128; |
OpenAI Gym reward |
complete level |
2018-05-03 21:20:47 |
0.00% |
PacBot - a Reinforcement Learning Report |
2018-06-15 23:41:02 |
-19.74% |
(no title) |
2018-06-15 23:41:02 |
-19.74% |
10 |
10 |
10 |
17 |
Silva-Prado |
Soccer positions |
(146,107)-sized images |
MNIST, CIFAR-10, and private HullConvex; all grayscale (146,107) |
2018-04-03 21:37:23 |
0.00% |
ch=3,k=3,str=3;ch=3,k=3,str=3;maxp=2,str=2;d=128;softmax |
accuracy |
28.41% |
2018-05-06 17:35:45 |
-54.66% |
Image Classification using Transfer Learning |
2018-06-14 19:42:45 |
0.00% |
(diff title) |
2018-06-14 19:42:45 |
0.00% |
10 |
10 |
10 |
18 |
Chevrier-Bruno |
Plants by leaves |
Leafsnap |
http://leafsnap.com/dataset/ |
2018-04-03 21:40:11 |
0.00% |
ch=40,k=3;maxp=4,str=2;ch=40,k=2;maxp=4,str=2;ch=80,k=2;maxp=4,str=2;ch=160,k=2;maxp=2;d=500;softmax |
accuracy |
80.00% |
2018-05-04 00:01:27 |
-0.02% |
AI learns to recognize plants by leaves |
2018-06-14 22:29:25 |
0.00% |
AI learns to recognize plants by leaves |
2018-06-14 22:29:25 |
0.00% |
10 |
10 |
10 |
19 |
Divino |
Simple voice commands |
TF Speech Recogn. Challenge |
|
2018-04-12 21:07:05 |
-100.00% |
|
|
|
|
|
(no delivery) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|