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Introduction	
Context:	few	supervised	and	many	unsupervised	samples	
Problem:	 effective	 feature	 learning	 and	 design	 of	 high-quality	
classifiers.	
	
Data	supervision	needs	a	specialist	and	is	time-consuming.	
	
However,	 machine	 learning	 solutions	 do	 not	 usually	 count	 on	
the	user	in	the	machine	learning	loop.	[15][16]
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Objectives	
In	this	work,	we	have	as	main	intent	to:	
a)  obtain	large	training	set	with	accurately	labeled	samples;	
b)  keep	at	minimum	the	user	effort;	
c)  incorporate	the	user	in	the	semi-supervised	learning	process.	
	
We	 propose	 a	 semi-supervised	 approach	 that	 exploits	 feature	
space	projections	and	cognitive	ability	of	humans	 to	propagate	
labels.		
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Method	
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Experimental	Setup	
Exploit	different	levels	of	difficulty:	
	

-  MNIST	dataset	[36]:	
-  10	classes	

	

-  Parasites	dataset	(in-house):	
-  Helminth	larvae:	

-  1	class	+	1	impurity	class	

-  Helminth	eggs:	
-  8	classes	+	1	impurity	class	

-  Protozoan	cysts:	
-  6	classes	+	1	impurity	class	
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Experimental	Setup	
Compared	the	Interactive	Label	Propagation	(ILP)	with	two	
automatic	methods:		
•  Laplacian	Support	Vector	Machines	(LapSVM)	[1]	
•  Semi-Supervised	Optimum	Path	Forest	(OPF-Semi)	[2]	

With	the	labeled	dataset,	we	trained	classifiers:	
•  Support	Vector	Machines	(SVM)	[24]	
•  Optimum-Path	Forest	(OPF)	[25]	
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a)	No	label	propagation	 b)	Automatic	(OPF-Semi)	
	

c)	ILP	(proposed)		
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Supervised	 Unsupervised	 Test	

baseline	 3%	 -	 	30%	
LapSVM	 3%	 67%	 30%	
OPF-Semi	 3%	 67%	 30%	
ILP	 3%	 ?	%	 30%	

Training	set	
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Dataset	 Technique		 Labeled	
Samples		

Propagation		
Accuracy		

Kappa		
(SVM)		

Kappa		
(OPF)		

Helminth	
Larvae		

baseline		 - - 0.375378	 0.531080	

LapSVM		 67%		 0.882613		 0.121253	 0.173416	

OPF-Semi		 67%		 0.920696		 - 0.600475	

ILP		 59%		 0.981273		 0.727843	 0.723049	

Protozoan	
cysts		

baseline		 - - 0.823106	 0.762682	

LapSVM		 67%		 0.521598		 0.346761	 0.371770	

OPF-Semi		 67%		 0.802238		 - 0.729438	

ILP		 52%		 0.947177		 0.851948	 0.841023	

-	Best	results	



Conclusion	
We	 incorporate	 the	 user	 in	 the	 semi-supervised	 learning	 process	 by	
letting	 the	 feature	 space	 projection	 guide	 the	 label	 propagation	
actions	of	the	user.		
	
The	 VA	 technique	 used	 to	 propagate	 labels	 is	 very	 simple,	 and	 the	
results	are	surprisingly	good.	
	
Even	 subject	 to	 errors	 done	 by	 the	 human	 user,	 the	 ILP	 achieves	
consistent	 and	 better	 classification	 performance	 than	 two	 modern	
automatic	 label	 propagation	 methods	 and	 two	 different	 classifier	
techniques.	
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