CHAPTER 1 A MATLAB EXERCISES

1. Consider the linear system of Example 7 in Section 1.2.

x - 2y + 3z = -9

-x + 3y = -4

2x - 5y + 5z = 17

- (a) Use the MATLAB command **rref** to solve the system.
- (b) Let A be the coefficient matrix of the system, and B the right-hand side.

	[1	-2	3]	[9]
A =	-1	3	0	$B = \begin{vmatrix} -4 \\ 17 \end{vmatrix}$
	2	-5	5	L 17]

Use the MATLAB command $A \setminus B$ to solve the system.

2. Enter the matrix

	-3	2	4	5	1]
A =	3	2 0 4	2	-2	0
	9	4	6	12	2

Use the MATLAB command rref(A) to find the reduced row-echelon form of A. What is the solution to the linear system represented by the augmented matrix A?

- 3. Solve the linear system
 - 16x 120y + 240z 140w = -4-120x + 1200y - 2700z + 1680w = 60240x - 2700y + 6480z - 4200w = -180-140x + 1680y - 4200z + 2800w = 140

You can display more significant digits of the answer by typing **format long** before solving the system. Return to the standard format by typing **format short.**

4. Use the MATLAB command **rref**(A) to determine which of the following matrices are rowequivalent to

	[1	2	3	4]										
B =	5	6	7	8.										
	9	10	11	$\begin{bmatrix} 4\\8\\12 \end{bmatrix}$										
	[1	1	1	1]	Г	1	3	2	4]		[12	11	10	9]
(a)	1	0	-1	-2	(b)	5	6	7	8	(c)	4	3	2	1
	0	1	2	3		9	10	11	12		8	7	6	5

- 5. Let A be the coefficient matrix, and B the right-hand side of the linear system of equations
 - 3x + 3y + 12z = 6x + y + 4z = 22x + 5y + 20z = 10-x + 2y + 8z = 4.

Enter the matrices A and B, and form the augmented matrix C for this system by using the MATLAB command $C = [A \ B]$. Solve the system using **rref**.

6. The MATLAB command **polyfit** allows you to fit a polynomial of degree n - 1 to a set of *n* data points in the plane

 $(x_1, y_1), (x_2, y_2), \ldots, (x_n, y_n).$

Find the fourth-degree polynomial that fits the five data points of Example 2 in Section 1.3 by letting

$$x = \begin{bmatrix} -2\\ -1\\ 0\\ 1\\ 2 \end{bmatrix} \quad y = \begin{bmatrix} 3\\ 5\\ 1\\ 4\\ 10 \end{bmatrix}$$

and entering the MATLAB command polyfit(x,y,4).

- 7. Find the second-degree polynomial that fits the points (1, -2), (2, 4), (-4, -6).
- 8. Find the sixth-degree polynomial that fits the seven points (0, 0), (-1, 4.5), (-2, 133), (-3, 1225.5), (1, -0.5), (2, 3), (3, 250.5).
- 9. The following table gives the world population in billions for five different years.

Year	Population (in billions)
1960	3.0
1970	3.7
1975	4.1
1980	4.5
1985	4.8

Use p=polyfit(x,y,4) to fit the fourth-degree polynomial to this data. Then use f=polyval(p,1990) to estimate the world population for the year 1990. (The actual world population in 1990 was 5.3 billion.)