CHAPTER 6 MATLAB EXERCISES

1. Find the kernel and range of the linear transformation given by $T(\mathbf{x}) = A\mathbf{x}$ for these matrices A.

(a)
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & -1 & 1 \\ -2 & 0 & -2 \end{bmatrix}$$
 (b) $A = \begin{bmatrix} 1 & 0 & -3 & 2 \\ 0 & -1 & -2 & 2 \\ 1 & 2 & 4 & -5 \end{bmatrix}$ (c) $A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 9 & 10 & 11 & 12 \\ 5 & 6 & 7 & 8 \\ 12 & 14 & 15 & 16 \end{bmatrix}$ (d) $A = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 \\ -1 & 1 & -1 & 1 & -1 \end{bmatrix}$

2. Let B be the upper trianglular matrix generated by the MATLAB command $\mathbf{B} = \mathbf{triu}(\mathbf{ones}(\mathbf{6}))$. Let $A = BB^T - B$ and determine the rank and nullity of the linear transformation

$$L: R^6 \rightarrow R^6, L(\mathbf{x}) = A\mathbf{x}.$$

(a) A = magic(6)

3. Which of these linear transformations defined by $T(\mathbf{x}) = A\mathbf{x}$ are one-to-one? Which are onto?

(b) A = hilb(6)

4. Let
$$T: R^n \to R^m$$
 be a linear transformation. Let $B = \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ and $B1 = \{\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_m\}$ be bases for R^n and R^m , respectively. You can use MATLAB to find the matrix of T relative to the bases B and $B1$ as follows.

- (a) Form the matrices B and B1 whose *columns* are the given basis vectors.
- (b) Let A be the $m \times n$ standard matrix of T.
- (c) Adjoin B1 to AB to form the $m \times (m + n)$ matrix C: $\mathbf{C} = [\mathbf{B1} \ \mathbf{A}^* \mathbf{B}]$.
- (d) Use $\mathbf{rref}(C)$ to calculate the reduced row-echelon form of C. The $m \times n$ matrix composed of the right-hand n columns of C form the matrix of T relative to the bases B and B1.

(c) A = tril(ones (6))

Use this algorithm to find the matrix of the following linear transformations relative to the given bases.

(a)
$$T: R^2 \to R^3$$
, $T(x, y) = (x + y, x, y)$,
 $B = \{(1, -1), (0, 1)\}$, $B1 = \{(1, 1, 0), (0, 1, 1), (1, 0, 1)\}$
(b) $T: R^3 \to R^2$, $T(x, y, z) = (2x - z, y - 2x)$,
 $B = \{(2, 0, 1), (0, 2, 1), (1, 2, 1)\}$, $B1 = \{(1, 1), (2, 0)\}$
(c) $T: R^3 \to R^4$, $T(x, y, z) = (2x, x + y, y + z, x + z)$,
 $B = \{(2, 0, 1), (0, 2, 1), (1, 2, 1)\}$,
 $B1 = \{(1, 0, 0, 1), (0, 1, 0, 1), (1, 0, 1, 0), (1, 1, 0, 0)\}$

5. Use the results of Exercise 4 to find the image of the given vector \mathbf{v} two ways: first by calculating $T(\mathbf{v}) = A\mathbf{v}$, and second by using the matrix of T relative to the bases B and B1.

(a)
$$\mathbf{v} = (5, 4)$$

(b)
$$\mathbf{v} = (0, -5, 7)$$

(c)
$$\mathbf{v} = (1, -5, 2)$$

- (a) Form the matrices B and B1 whose columns are the given basis vectors.
- (b) Adjoin B to B1, forming the $n \times 2n$ matrix C, $\mathbf{C} = [\mathbf{B1} \ \mathbf{B}]$.
- (c) Let D be the reduced row-echelon form of C, $\mathbf{D} = \mathbf{rref}(\mathbf{C})$.
- (d) P^{-1} is the $n \times n$ matrix consisting of the right-hand n columns of D.

Use MATLAB to find the matrix A1 of the linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ relative to the basis B1.

(a)
$$T: R^2 \to R^2$$
, $T(x, y) = (2x - y, y - x)$,
 $B1 = \{(1, -2), (0, 3)\}$

(b)
$$T: \mathbb{R}^3 \to \mathbb{R}^3$$
, $T(x, y, z) = (x, x + 2y, x + y + 3z)$, $B1 = \{(1 - 1, 0), (0, 0, 1), (0, 1, -1)\}$

7. Let $B = \{1, 0, 0\}, (0, 1, 0), (0, 0, 1)\}$ and $B1 = \{(1, 1, 0), (1, -1, 0), (0, 0, 1)\}$ be bases for R^3 , and let

$$A = \begin{bmatrix} 1 & 3 & 0 \\ 3 & 1 & 0 \\ 0 & 0 & -2 \end{bmatrix}$$

be the matrix of $T: \mathbb{R}^3 \to \mathbb{R}^3$ relative to B, the standard basis.

- (a) Find the transition matrix P from B1 to B.
- (b) Find the transition matrix P^{-1} from B to B1.
- (c) Find A1, the matrix of T relative to B1.
- (d) Let

$$\begin{bmatrix} \mathbf{v} \end{bmatrix}_{B1} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$

and find $[\mathbf{v}]_B$ and $[T(\mathbf{v})]_B$.

(e) Find $[T(\mathbf{v})]_{B1}$ two ways: first as $P^{-1}[T(\mathbf{v})]_B$ and then as $A1[\mathbf{v}]_{B1}$.