CHAPTER 4 MATLAB EXERCISES

- **1.** Let $\mathbf{u}_1 = (1, 1, 2, 2)$, $\mathbf{u}_2 = (2, 3, 5, 6)$, and $\mathbf{u}_3 = (2, -1, 3, 6)$. Use MATLAB to write (if possible) the vector \mathbf{v} as a linear combination of the vectors \mathbf{u}_1 , \mathbf{u}_2 , and \mathbf{u}_3 .
 - (a) $\mathbf{v} = (0, 5, 3, 0)$
 - (b) $\mathbf{v} = (-1, 6, 1, -4)$
- **2.** Use MATLAB to determine whether the given set of vectors spans \mathbf{R}^4 .
 - (a) $\{(1, -2, 3, 4), (2, 4, 5, 0), (-2, 0, 0, 4), (3, 2, 1, -4)\}$
 - (b) $\{(0, 1, -1, 1), (2, -2, 3, 1), (7, 0, 1, 0), (5, 2, -2, -1)\}$
- 3. Use MATLAB to determine whether the set is linearly independent or dependent.
 - (a) $\{(0, 1, -3, 4), (-1, 0, 0, 2), (0, 5, 3, 0), (-1, 7, -3, -6)\}$
 - (b) $\{(0,0,1,2,3),(0,0,2,3,1),(1,2,3,4,5),(2,1,0,0,0),(-1,-3,-5,0,0)\}$
- **4.** Use MATLAB to determine whether the set of vectors forms a basis of \mathbb{R}^4 .
 - (a) $\{(1, -2, 3, 4), (2, 4, 5, 0), (-2, 0, 0, 4), (3, 2, 1, -4)\}$
 - (b) $\{(0, 1, -1, 1), (2, -2, 3, 1), (7, 0, 1, 0), (5, 2, -2, -1)\}$
 - (c) $\{(0, 1, -3, 4), (-1, 0, 0, 2), (0, 5, 3, 0), (-1, 7, -3, -6)\}$
 - (d) $\{(0,0,1,2),(0,2,3,1),(1,3,4,5),(2,1,0,0),(-3,-5,0,0)\}$
- 5. Suppose you want to find a basis for \mathbf{R}^4 that contains the vectors $\mathbf{v}_1 = (1, 1, 0, 0)$ and $\mathbf{v}_2 = (1, 0, 1, 0)$. One way to do this is to consider the set of vectors consisting of \mathbf{v}_1 and \mathbf{v}_2 , together with the standard basis vectors, $\mathbf{e}_1 = (1, 0, 0, 0)$, $\mathbf{e}_2 = (0, 1, 0, 0)$, $\mathbf{e}_3 = (0, 0, 1, 0)$, and $\mathbf{e}_4 = (0, 0, 0, 1)$. Let A be the matrix whose columns consist of the vectors \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 , and \mathbf{e}_4 , and apply **rref** to A to obtain

$$A = \begin{bmatrix} 1 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & -1 & -1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}.$$

Since the leading ones of the reduced matrix on the right are in columns 1, 2, 3, and 6, a basis for \mathbb{R}^4 consists of the corresponding column vectors of $A: \{\mathbf{v_1}, \mathbf{v_2}, \mathbf{e_1}, \mathbf{e_4}\}$.

A convenient way to construct the matrix A is to define the matrix B whose columns are the given vectors \mathbf{v}_1 and \mathbf{v}_2 . Then A is simply the matrix obtained by adjoining the 4×4 identity matrix to $B: A = [B \quad \text{eye}(4)]$.

Use this algorithm to find a basis for \mathbb{R}^5 that contains the given vectors.

- (a) $\mathbf{v}_1 = (2, 1, 0, 0, 0), \quad \mathbf{v}_2 = (-1, 0, 1, 0, 0),$
- (b) $\mathbf{v}_1 = (1, 0, 2, 0, 0), \quad \mathbf{v}_2 = (1, 1, 2, 0, 0), \quad \mathbf{v}_3 = (1, 1, 1, 0, 1)$
- **6.** Use MATLAB to find a subset of the given set of vectors that forms a basis for the span of the vectors.
 - (a) $\{(1, 2, -1, 0), (-3, -6, 3, 0), (1, 0, 0, 1), (-2, -2, 1, -1)\}$
 - (b) $\{(0,0,1,1,0),(1,1,0,0,1),(1,1,1,1,1),(1,1,2,2,1),(0,0,3,3,1),(0,0,0,0,1)\}$

$$A = \begin{bmatrix} -1 & 2 & 0 & 0 & 3 \\ 0 & 2 & 3 & -1 & 2 \\ -1 & 4 & 3 & -1 & 5 \\ 2 & -4 & 0 & 0 & -6 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix}.$$

- (a) Find a basis for the row space of A.
- (b) Find a basis for the column space of A.
- (c) Use the MATLAB command **rank** to find the rank of A.
- **8.** Find a basis for the nullspace of the given matrix *A*. Then verify that the sum of the rank and nullity of *A* equals the number of columns.

(a)
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}$$

- (b) A = hilb(5)
- (c) A = pascal(5)
- (d) A = magic(6)
- **9.** Let $\{(1,0,1), (0,-1,2), (2,3,-5)\}$ be a (nonstandard) basis for \mathbb{R}^3 . You can find the coordinate matrix of $\mathbf{x} = (1,2,-1)$ relative to this basis by writing \mathbf{x} as a linear combination of the basis vectors. That is, the coordinate matrix is the solution vector to the linear system $B\mathbf{c} = \mathbf{x}$, where the basis vectors form the columns of B. Use MATLAB to solve this system and compare your answer to Section 4.7, Example 3.
- **10.** Let $B = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$ and $B1 = \{(1, 0, 1), (0, -1, 2), (2, 3, -5)\}$ be the two bases of R^3 given in Section 4.7, Example 4. We can use MATLAB to find the transition matrix from B to B1 by first forming the two matrices

$$B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad \text{and} \quad B1 = \begin{bmatrix} 1 & 0 & 2 \\ 0 & -1 & 3 \\ 1 & 2 & -5 \end{bmatrix}.$$

Adjoin B and B1 by using the MATLAB command $C = [B1 \ B]$. Let A be the reduced row-echelon form of C, A = rref(C). Finally, $PINV = P^{-1}$ is obtained by deleting the first three columns of this reduced matrix using the MATLAB command PINV = A(:,4:6). You obtain P simply by inverting PINV.

Find the transition matrix from B to B1.

(a)
$$B = \{(-3, 2), (4, -2)\}, B1 = \{(-1, 2), (2, -2)\}.$$

(b)
$$B = \{(1, 1, 1, 1), (0, 1, 1, 1), (0, 0, 1, 1), (0, 0, 0, 1)\},\$$

$$B1 = \{(1, 0, 1, 0), (1, 0, -1, 0), (0, 1, 0, 1), (0, 1, 0, -1)\}$$