AN EXPOSITION OF THE AKS POLYNOMIAL-TIME PRIMALITY TEST
Michael J. Jacobson, Jr.
University of Calgary
November 29, 2002

History

Miller 1976 — deterministic polynomial time (Extended Riemann Hypothesis)

Rabin 1980 — randomized polynomial time (no ERH)

Adleman, Pomerance, Rumely 1983 — deterministic $O((\log n)^{O(\log \log \log n)})$

Goldwasser Kilian 1986 — expected polynomial time

Adleman, Huang 1992 — randomized polynomial time

* Agrawal, Kayal, Saxena 2002 — $\tilde{O}(\log^{12} n)$

Notation and Assumptions

$$\tilde{O}(\log^c n) = O(\log^c n \text{ poly}(\log \log n)) = O(\log^{c+\epsilon} n)$$

Multiply two integers $\leq n$:

• $O(\log^2(n))$ or $O(\log n \log \log n)$ using FFT

Multiply two degree r polynomials:

• $O(r^2)$ coefficient mults or $O(r \log r)$ using FFT

Computing $a^x - O(\log x)$ multiplications

 $o_r(n)$ — smallest $k \in \mathbb{Z}^+$ such that $n^k \equiv 1 \pmod{r}$

• if $q \mid r - 1$ and $n^{(r-1)/q} \not\equiv 1 \pmod{r}$ then $q < o_r(n)$

 $\mathbb{F}_p[x]$ — ring of polynomials with coeffs modulo p

 $\mathbb{F}_p[x]/h(x)$ — equivalence classes modulo h(x)

Observation

Let gcd(a, n) = 1. Then n is prime if and only if $(x - a)^n \equiv x^n - a \pmod{n}$ (follows from the binomial theorem)

Example:

$$(x-3)^7 = x^7 - 21x^6 + 189x^5 - \dots + 5103x - 2187$$

$$\equiv x^7 - 3 \pmod{7}$$

$$(x-5)^6 = x^6 - 30x^5 + 375x^4 - \dots - 18750x + 15625$$

$$\equiv x^6 + 3x^4 + 2x^3 + 3x^2 + 1 \pmod{6}$$

This idea unconditionally proves primality:

- Takes time $\Omega(n)$ (polys of degree n)
- Can this be reduced?

Main Idea

Compute $(x-a)^n$ and $x^n-a \mod x^r-1$, $n \pmod r$

- \bullet only work with polynomials of degree < r
- $O(r^2 \log^3 n)$ or $\tilde{O}(r \log^2 n)$ (using FFT)

If n is prime, $(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$

If n is composite, $\exists a, r \text{ such that } (x-a)^n \not\equiv x^n - a \pmod{x^r-1, n}$

Example:

$$(x-5)^6 \equiv 3x^4 + 2x^3 + 3x^2 + x + 1 \pmod{x^5 - 1, 6}$$

 $x^6 - 5 \equiv x + 1 \pmod{x^5 - 1, 6}$

- \bullet Can such a, r be found in polynomial time?
- Can we verify that none exist in polynomial time?

The Algorithm (AKS 2002)

- 1. If n is a perfect power, output COMPOSITE
- 2. Find prime r (sequentially) such that:
- gcd(n,r) = 1,
- $q \ge 4\sqrt{r} \log n$ (largest prime factor of r-1)
- $n^{(r-1)/q} \not\equiv 1 \pmod{r}$
- 3. For all $a \in \{1, ..., |2\sqrt{r} \log n|\}$:
- if $(x-a)^n \not\equiv x^n a \pmod{x^r 1, n}$ output COMPOSITE
- 4. Output PRIME

Need to address runtime and correctness

Polynomial Time?

- 1. Perfect power test $O(\log^3 n)$
- 2. Finding r (test all $1, 2, \ldots, r$):
- gcd(n, r) —poly(log r)
- r prime, finding $q O(r^{1/2} \text{ poly}(\log r))$
- $n^{(r-1)/q} \not\equiv 1 \pmod{r}$ $\operatorname{poly}(\log r)$
- Total: $\tilde{O}(r \cdot r^{1/2} \text{ poly}(\log r))$
- 3. Testing primality condition:
- $\lfloor 2\sqrt{r}\log n \rfloor$ tests
- each test costs $\tilde{O}(r \log^2 n)$ (using FFT)
- Total: $\tilde{O}(r^{3/2}\log^3 n)$

Need to know size of r — should be poly(log n)

Size of r

Need r such that:

- 1. r-1 has a prime factor $q \ge 4\sqrt{r} \log n$
- 2. $q \mid o_r(n)$ (order of n modulo r)

Property 1:

Let P(n) denote the largest prime divisor of n

Fourry 1985 — $O(x/\log x)$ primes $r \le x$ have $P(r-1) > x^{2/3}$

If
$$x \in O(\log^6 n)$$
, then $\exists r \in O(\log^6 n)$ with $q = P(r-1) \ge r^{2/3} \ge 4\sqrt{r} \log n$

Call such r "special primes"

Size of r — Property 2

Let $x = c \log^6 n$ and consider $\Pi = (n-1)(n^2 - 1) \dots (n^{\lfloor x^{1/3} \rfloor} - 1)$

- Π has at most $x^{2/3} \log n$ distinct prime factors
- \exists at least $c_3 \log^6 n/(\log \log n)$ "special primes"
- \exists at least one special prime $r \not \mid \Pi$

Does $q \mid o_r(n)$?

- $o_r(n) > x^{1/3}$ (since $n^k \equiv 1 \pmod{r} \Longrightarrow r \mid n^k 1$)
- $(r-1)/q < r/(r^{2/3}) = r^{1/3} < x^{1/3} < o_r(n)$
- $o_r(n) \mid r 1$ but $o_r(n) \not \mid (r 1)/q \Longrightarrow q \mid o_r(n)$

Thus, $r \in O(\log^6 n)$

Summary of Run Time

- 1. Perfect power test $O(\log^3 n)$
- 2. Finding r:
- $r \in O(\log^6 n)$
- testing each $1, \ldots, r$ costs $O(r^{1/2} \text{ poly}(\log r))$
- Total $\tilde{O}(\log^6 n \ (\log^6 n)^{1/2}) = \tilde{O}(\log^9 n)$
- 3. Testing primality condition $\tilde{O}(r^{3/2} \log^3 n)$
- $\bullet \ \tilde{O}((\log^6 n)^{3/2} \log^3 n) = \tilde{O}(\log^{12} n)$

Overall runtime: $\tilde{O}(\log^{12} n)$

(Asymptotic) polynomial time!

Is the Algorithm Correct?

Need to show:

- 1. If n is prime, output is PRIME (easy)
- 2. If output is PRIME, then n is prime (not so easy)

To show 1 (assume n is prime):

- $(x-a)^n \equiv x^n a \pmod{n}$ for all a with $\gcd(a,n) = 1$.
- All a in Step 3 have gcd(a, n) = 1.
- $\bullet (x-a)^n \equiv x^n a \pmod{x^r 1, n}$ for all a in Step 3

Outline of Proof

Assume $(x-a)^n \equiv x^n - a \pmod{x^r - 1, n}$

1. \exists prime $p \mid n$ and $h(x) \mid x^r - 1$ s.t.

$$(x-a)^n = x^n - a$$
 in $\mathbb{F}_p[x]/h(x)$

(i.e., coefficients mod p and polynomials mod h(x))

- 2. \exists a "large" cyclic subgroup G of $(\mathbb{F}_p[x]/h(x))^*$
- 3. $\exists (i_1, j_1) \neq (i_2, j_2)$ such that
- $\bullet \ 0 \le i_1, i_2, j_1, j_2 \le \lfloor \sqrt{r} \rfloor$
- $t \equiv u \pmod{r}$ where $t = n^{i_1}p^{j_1}$ and $u = n^{i_2}p^{j_2}$
- $g^t = g^u$ for all $g \in G$
- 4. If g generates G and |G| is "large"
- t = u, and thus $n = p^k$

<u>Underlying Structure</u>

Let
$$\ell = \lfloor 2\sqrt{r}\log n \rfloor$$

Assume the algorithm outputs PRIME. Then

$$\bullet (x-a)^n \equiv x^n - a \pmod{x^r - 1, n}, \ 1 \le a \le \ell$$

By construction $q \mid o_r(n)$

- \exists prime $p \mid n$ such that $q \mid o_r(p)$
- $\bullet q \mid o_r(p) \Rightarrow q \leq o_r(p)$
- $\exists h(x) | x^r 1, \deg(h(x)) = o_r(p), \text{ irreducible}$
- $q \le d = \deg(h(x))$

$$(x-a)^n = x^n - a$$
 in $\mathbb{F}_p[x]/h(x)$

(Intuition: $x \equiv y \pmod{pq} \Rightarrow x \equiv y \pmod{p}$)

The Group G

Consider set of products of (x-a) in $\mathbb{F}_p[x]/h(x)$

$$G = \left\{ \prod_{1 \le a \le \ell} (x - a)^{\alpha_a} \mid \alpha_a \ge 0 \right\}$$

- G is a cyclic subgroup of $(\mathbb{F}_p[x]/h(x))^*$
- \exists a generator g with order |G|

How large is G?

• The following products are distinct modulo h(x):

$$\prod_{1 \le a \le \ell} (x - a)^{e_a}, \quad \sum_{1 \le a \le \ell} e_a \le d - 1$$

(since all a < n and gcd(a, n) = 1)

•
$$|G| > {\ell+d-1 \choose \ell} = \frac{(d+l-1)(d+l-2)...(d)}{l!} > (\frac{d}{\ell})^{\ell}$$

$$d \ge q \ge 2\ell$$
, so $|G| > 2^{\ell} = n^{2\lfloor \sqrt{r} \rfloor}/2$

More Properties of G

If $(x-a)^n \equiv x^n - a \pmod{p, x^r - 1}$ then

$$\bullet (x^{n^i} - a)^n = x^{n^{i+1}} - a$$

•
$$(x-a)^{n^i} = x^{n^i} - a, i \ge 0$$
 (induction)

$$(x-a)^{n^i p^j} = (x^{n^i} - a)^{p^j} = x^{n^i p^j} - a$$

Let
$$t = n^{i_1}p^{j_1}$$
 and $u = n^{i_2}p^{j_2}$ with $(i_1, j_1) \neq (i_2, j_2)$ and $t \equiv u \pmod{r}$

Then for all $1 \le a \le \ell$

$$(x-a)^t = (x-a)^u$$
 in $\mathbb{F}_p[x]/h(x)$

For any $g \in G$, $g^t = g^u$ since

$$g = (x-1)^{\alpha_1}(x^2-1)^{\alpha_2}\dots(x-\ell)^{\alpha_\ell}$$

and

$$g^{t} = ((x-1)^{t})^{\alpha_{1}}((x^{2}-1)^{t})^{\alpha_{2}}\dots((x-\ell)^{t})^{\alpha_{\ell}}$$

$$= ((x-1)^{u})^{\alpha_{1}}((x^{2}-1)^{u})^{\alpha_{2}}\dots((x-\ell)^{u})^{\alpha_{\ell}}$$

$$= g^{u}$$

Putting it Together

Consider $n^i p^j$, $0 \le i, j \le \lfloor \sqrt{r} \rfloor$:

- total number of pairs is $(1 + |\sqrt{r}|)^2 > r$
- $\exists (i_1, j_1) \neq (i_2, j_2)$ such that $n^{i_1} p^{j_1} \equiv n^{i_2} p^{i_2} \pmod{r}$

Let $g \in G$

- $g^t = g^u$, where $t = n^{i_1} p^{j_1}$ and $u = n^{i_2} p^{i_2}$
- $g^{|t-u|} = 1$ in G
- $|t u| < n^{\lfloor \sqrt{r} \rfloor} p^{\lfloor \sqrt{r} \rfloor} \le n^{2\lfloor \sqrt{r} \rfloor} / 2 < |G|$

If g generates G, we must have t = u:

- $n^{i_1}p^{j_1} = n^{i_2}p^{j_2}$ with $(i_1, j_1) \neq (i_2, j_2)$
- $\bullet n = p^k$

Step 1 assures us that k=1

Advertisement

What: Conference in Number Theory in Honour of Professor H.C. Williams

Where: The Banff Centre, Banff, Alberta, Canada

When: May 24–30, 2003

Who and Why:

Manindra Agrawal will give a special evening lecture at the Banff Center on Sunday May 25, 2003, with a reception to follow in his honour sponsored by RSA Security Inc.

More Info:

www.fields.utoronto.ca/programs/scientific