
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights


Author's personal copy

Linear Algebra and its Applications 439 (2013) 1815–1824

Contents lists available at SciVerse ScienceDirect

Linear Algebra and its Applications

www.elsevier.com/locate/laa

Solving sparse linear systems of equations over
finite fields using bit-flipping algorithm

Asieh A. Mofrad a, M.-R. Sadeghi a,∗, D. Panario b

a Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
b School of Mathematics and Statistics, Carleton University, K1S 5B6, Ontario, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 February 2012
Accepted 20 May 2013
Available online 7 June 2013
Submitted by E. Zerz

Keywords:
Bit-flipping
Sparse linear systems
Finite fields

Let Fq be the finite field with q elements. We give an algorithm
for solving sparse linear systems of equations over Fq when the
coefficient matrix of the system has a specific structure, here
called relatively connected. This algorithm is based on a well-known
decoding algorithm for low-density parity-check codes called bit-
flipping algorithm. We modify and extend this hard decision
decoding algorithm. The complexity of this algorithm is linear in
terms of the number of columns n and the number of nonzero
coefficients ω of the matrix per iteration. The maximum number
of iterations is bounded above by m, the number of equations.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Let Fq be the finite field with q elements where q is a prime power. In this paper we consider the
classical problem of solving large sparse linear systems of equations of the form

Ax = b (1)

where A = [aij]m×n , b = [bi]m×1 and x = [xi]n×1 with aij , bi , xi in some algebraic structure for 1 �
i � m, 1 � j � n. Our interest in this paper is when the elements belong to the finite field Fq .

In general, classical Gaussian elimination method can be applied. For square matrices of dimen-
sion n ×n, Gaussian elimination takes time O (n3) and space O (n2) that makes it impractical for large
and sparse systems. Over finite fields several algorithms have been proposed such as Wiedemann
method [13] and its variants [4], the conjugate gradient and Lanczos algorithms (see [3,5,9]) and

* Corresponding author.
E-mail addresses: abolpour_asie@aut.ac.ir (A.A. Mofrad), msadeghi@aut.ac.ir (M.-R. Sadeghi), daniel@math.carleton.ca

(D. Panario).

0024-3795/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.laa.2013.05.016



Author's personal copy

1816 A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824

also the structured Gaussian elimination method [9]. These algorithms can be used for linear systems
modulo any integer g by applying the Chinese remainder theorem and Hensel lifting method [6].
These methods are probabilistic in nature and are designed for square matrices A. If the coefficient
matrix of the system is an m × n matrix with m �= n, the system has to be converted to a new
system with a square coefficient matrix, so then the new system can be solved. In this paper we ex-
tend Gallager’s bit-flipping (BF) algorithm [8] for solving sparse linear systems over finite field Fq

when the coefficient matrix has a specific form that we call relatively connected. The bit-flipping
is a low-complexity algorithm which was introduced for decoding LDPC (low-density parity-check)
codes.

LDPC codes were first introduced by Gallager [8] in early 1960s and rediscovered by MacKay [11]
in 1996. An LDPC code is a code such that its parity-check matrix H is sparse. In communications,
when a vector x is sent through a channel, it is affected by noise (induced by the channel). Hence,
a vector y, which may be different from x, is received. The decoding problem is, given a received
vector y, to find a good estimation for x. The key points here are that x has to satisfy all parity-checks,
that is, HxT = 0 over Fq (in practice we are mostly interested in the case q = 2). When using LDPC
codes an important issue is that the parity-check matrix H is sparse. When solving a sparse linear
system, however, in contrast to the communications case, we do not have y as an input vector to the
algorithm and so we start the algorithm with a random vector.

There are several LDPC algorithms based on soft and hard decisions [10]. In soft decision algo-
rithms, we have input vectors that contain channel information in their components. This information
is used when decisions are taken while executing the algorithm. Hard decision algorithms, in contrast,
do not contain channel information in their components. Hence, since when solving systems of equa-
tions we do not deal with channels, we choose an effective hard decision algorithm like bit-flipping.

In [1], the bit-flipping algorithm is used for solving sparse linear systems of equations modulo a
prime number p under the condition that the coefficient matrix has column degree at most 2. In the
present paper we extend the algorithm to solve more general systems by introducing the relatively
connected constraint. As a consequence, we have extended the work from matrices having column
degree at most 2 to matrices having any column degree under the relatively connected constraint.

The structure of the paper is as follows. In Section 2, the general form of the bit-flipping decoding
algorithm is explained. In Section 3, the extended bit-flipping algorithm is introduced. This algorithm
can solve linear systems of equations over Fq that satisfy the relatively connected condition. This
concept as well as examples are given in this section. The extended bit-flipping algorithm for systems
over F2 is given in Section 4. This case is of practical importance, while at the same time easier to
explain than the general case over Fq treated in Section 5. The cost of the algorithm is provided in
Section 6. Finally, in Section 7, further directions of research are given.

2. The bit-flipping algorithm

For decoding binary LDPC codes we are given a received vector y and need to find a vector x
such that HxT = 0 over F2, or equivalently, HxT ≡ 0 (mod 2). For this purpose, in the bit-flipping
algorithm [8], the decoder first computes all the parity-checks; then, given a fixed parameter β called
the threshold, the decoder changes any bit in the received vector y that is contained in more than
β unsatisfied parity-check equations. The flipped bits are then used in the next iteration of the de-
coding process. The decoding algorithm stops when either all of the parity-checks are satisfied or a
predefined maximum number of iterations is reached.

In contrast with choosing β as a fix number, adaptive threshold is suggested in [7]: if decoding
fails for a given value of β , then the value of β can be reduced to allow further decoding iterations.
Bit-flipping decoding with an adaptive threshold technique is given in detail in [2]. We use adaptive
threshold technique but in a slightly different manner than in [2].

A simple bit-flipping decoding algorithm is given in Algorithm 1.

Algorithm 1 (Bit-flipping algorithm).
Input: parity-check equations and input vector y.
Output: a solution vector.



Author's personal copy

A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824 1817

Fig. 1. A relatively connected Tanner graph.

1. Evaluate the parity-check equations with the input vector y. If all of them are satisfied, stop.
2. Find f i , the number of unsatisfied parity-check equations for each bit i, 1 � i � n.
3. Determine Ω , the set of bits for which f i is the largest, 1 � i � n. If this largest value is less

than β , the algorithm has failed; stop.
4. Flip the bits in the set Ω .
5. Repeat Steps 1 to 4 until all the parity-check equations are satisfied or a predefined maximum

number of iterations is reached.

3. Extended bit-flipping algorithm

In this paper we present two versions of the bit-flipping algorithm for solving the system (1).
The algorithms are called extended bit-flipping. The first one, conceptually easier, is over F2, while the
second one is for any finite field Fq . The algorithms are based on Tanner graphs [12]. In the Tanner
graph corresponding to a system, a variable xi is shown as a variable node, and an equation ek is
shown as an equation node. If a variable appears in an equation, there is an edge between their
corresponding nodes in the graph. Clearly, a Tanner graph is a bipartite graph in which equation
nodes are connected only to variable nodes and reciprocally.

The extended bit-flipping algorithm guarantees finding a solution for systems with a specific prop-
erty in their Tanner graphs that we call relatively connected condition.

Definition 3.1. A Tanner graph is relatively connected (RC), if there is a partition on the equation nodes
such that the following two properties hold:

1. For any two equation nodes of each equation set in the partition, there exists at least a path on
the Tanner graph between them such that all variable nodes in the path have degree 2.

2. For each equation set there exists at least a degree one variable node that is adjacent to an
equation node of the set.

We call each of these equation sets a relative set. If one relative set has just one equation node, we
call it a single equation node set.

Example 3.1. Consider the Tanner graph in Fig. 1. It is easy to see that there are just two relative
sets: {e1, e3} and {e2, e4, e5}. The dashed path satisfies the first RC property for the set {e1, e3}, and
the variable node x4 satisfies the second property for this set. Similarly, the bold path and x6 satisfy
properties 1 and 2, respectively, for the set {e2, e4, e5}.

There are two important paths for our algorithm that we call Type 1 and Type 2, respectively. They
are depicted in Fig. 2. Type 1 paths start and finish in unsatisfied equation nodes (drawn with crossed
squares); a Type 2 path has last variable node with degree 1. In these paths, all intermediate variable
nodes have degree 2.

Indeed, the relatively connected condition implies that if we keep all columns (or variable nodes
in the Tanner graph) with degrees 1 and 2 together with their connected equation nodes, and remove
the rest of columns and rows, the number of rows (or equation nodes) should stay unchanged. Com-
paring the relatively connected condition with the constraint that column degree be at most 2 in [1],



Author's personal copy

1818 A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824

Fig. 2. Two type of paths in a Tanner graph.

it is clear that the new condition in this paper is more general. Therefore, it is more probable that the
sparse system (that should be solved) passes the relatively connected constraint than the column de-
gree at most 2 constraint. Moreover, some algorithms need some precomputations before solving the
system. For instance, the system may be converted to an equivalent square one. Converting a sparse
system to a relatively connected one, following the new version in this paper, is much simpler than
in [1]; finding such an equivalent system, is even more simpler when compared to [1], if n � m.

4. Extended bit-flipping algorithm for linear system of equations over FFF2

We start by introducing the notation to be used on the algorithms. For each variable node xi ,
1 � i � n, we denote:

dxi the degree of variable node xi ;
f i the number of unsatisfied equation nodes adjacent to variable node xi ;
βi the reliability ratio f i/dxi ;
β the largest value of βi ’s;
Ω the set of variable nodes with reliability ratio equal to β .

If x′ = [x′
i]n×1 is the output solution of the system (1) and x = [xi]n×1 is an arbitrary vector, a vari-

able node xi is called a true node if xi = x′
i and it is called a false node if xi �= x′

i . In addition, an
adjacent edge to a true node or to a false node is called a true edge or a false edge, respectively.

Algorithm 2 (Extended bit-flipping algorithm over F2).
Input: the system and a random initial vector x ∈ {0,1}n .
Output: a solution vector x.

1. Set vector x on the system. If all the equations are satisfied, then we have a solution; stop.
2. Compute f i and βi , for each variable node xi , 1 � i � n.
3. Compute the threshold β and identify the set Ω .
4. If β > 1/2 for a variable node xi ∈ Ω , flip the value of xi and remove it from Ω . Repeat the

process for any other element of Ω which still has reliability ratio β , until Ω become the empty
set. Go to Step 1 with these modified variable node values.

5. If β = 1/2, for a variable node xi ∈ Ω , find a path such as Fig. 2 and flip the value of all variable
nodes in the path, then rebuild Ω (the crossed square in Fig. 2 is an adjacent equation node to xi ,
however, the adjacent variable node to a crossed square is not necessarily xi ). Repeat the process
with the modified variable node values until Ω is the empty set and then go to Step 1 with these
new variable node values.

Proposition 4.1. If the system (1) over a finite field Fq has at least one solution and the corresponding Tan-
ner graph is relatively connected, there exists a path in Step 5 starting from an unsatisfied equation node ek
(adjacent to a variable node xi , like in Step 5), and ending with another unsatisfied equation node el; or there
exists a path starting from ek and ending with a degree one variable node (Type 1 and Type 2 in Fig. 2, respec-
tively).



Author's personal copy

A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824 1819

Proof. In Step 5, since β = 1/2, for each variable node xi ∈ Ω there exists at least an unsatisfied
adjacent equation node ek which belongs to a relative set and is not a single equation node. Because
there exists a degree one variable node adjacent to one of the equation nodes of each set, and there is
a path between any two equation nodes (by property 1 of RC Tanner graphs), a Type 2 path exists. If
there is more than one unsatisfied equation node in the relative set, it is clear from the RC definition
that a Type 1 path exists. �

Next we show the correctness of the extended bit-flipping algorithm for linear systems of equa-
tions over F2 satisfying the RC conditions. Alternatively, define RC systems as being the ones that
satisfy the RC conditions. We observe that systems such that variables appear in at most two equa-
tions satisfy the relatively connected condition. The proof of correctness for this particular type of
systems with column degree at most 2 over F2 is shown in [1]. Here we extend that proof to systems
satisfying the relatively connected condition.

Proposition 4.2. For systems like (1) over F2 satisfying the relatively connected condition, the case β < 1/2
in the algorithm never occurs.

Proof. From the relatively connected property, each equation node has at least a degree 1 or a de-
gree 2 variable node. By definition of β an unsatisfied equation node causes β � 1/2. The case β = 0
means that all equations are satisfied and so the algorithm stops in Step 1. �
Theorem 4.1. If the system (1) over F2 has at least one solution and its Tanner graph is relatively connected,
the algorithm finds a solution.

Proof. For case β > 1/2, by definition of threshold and Step 4, the number of unsatisfied equations is
reduced after flipping variables.

In case β = 1/2, by Proposition 4.1, there is a path (Type 1 or Type 2) on the graph. By flipping
the value of the variable nodes in the path, all equation nodes of the path are now satisfied. Thus the
number of unsatisfied equation nodes reduces by two units for Type 1 and one unit for Type 2.

We can conclude that during each iteration of the algorithm, the number of unsatisfied equations
is reduced by at least one unit. The number of equation nodes is finite so the algorithm stops when
the number of unsatisfied equations reduces to zero. �

The algorithm is illustrated in Example 4.1.

Example 4.1. Consider the following system over F2 with Tanner graph depicted in Fig. 1:

x3 + x7 = 0,

x1 + x2 + x5 = 0,

x4 + x5 + x7 = 1,

x1 + x3 + x5 + x6 = 1,

x2 + x3 = 0.

Let us suppose that x = (1,0,1,1,0,1,0) is the input random vector. The algorithm works as follows:

Step 1. x does not satisfy equations e1, e2 and e5.
Step 2. We have

f1 = 1, f2 = 2, f3 = 2, f4 = 0, f5 = 1, f6 = 0, f7 = 1,

and

β1 = 1

2
, β2 = 1, β3 = 2

3
, β4 = 0, β5 = 1

3
, β6 = 0, β7 = 1

2
.

Step 3. β = 1 and Ω = {x2}.



Author's personal copy

1820 A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824

Fig. 3. A path between e1 and x4.

Step 4. Flip x2, set x2 = 1 and exclude x2 from Ω . Since Ω = ∅, go to Step 1.
Step 1. The modified vector (1,1,1,1,0,1,0) does not satisfy the equation e1.
Step 2.

f1 = 0, f2 = 0, f3 = 1, f4 = 0, f5 = 0, f6 = 0, f7 = 1,

and

β1 = 0, β2 = 0, β3 = 1

3
, β4 = 0, β5 = 0, β6 = 0, β7 = 1

2
.

Step 3. β = 1
2 and Ω = {x7}.

Step 5. Equation node e1 is adjacent to variable node x7 and there is a path between e1 and x4, which
is a degree one variable node; see Fig. 3 for the path. We flip the variable node values contained in
the path (that is, x4 = 0 and x7 = 1), Ω = ∅ and go to Step 1.
Step 1. All equations are satisfied, so the output vector is:

x = (1,1,1,0,0,1,1).

5. Extended bit-flipping algorithm for linear system of equations over FFFq

We use the same notations for β , Ω and dxi as before. Instead of f i we define ti for each variable
node xi as follows. For each adjacent equation node to xi , first we fix the other variable node values
and then solve the equation for xi . This involves, more precisely, to solve an equation of the form
cx = d over Fq . This equation has a unique solution since we work over a finite field.

Next we determine x′
i , a value in Fq that is satisfied by the maximum number of adjacent equation

nodes to xi . If there is more than one such value and the current value of xi is one of them, we set x′
i

to be the current value of xi ; otherwise, we choose one of them at random. We now define ti to be
this maximum number of adjacent equation nodes satisfied by x′

i .
Finally, if the current value of the variable node xi is satisfied by ti equations, then we set the

reliability ratio of xi to be βi = − ti
dxi

; otherwise we set βi = ti
dxi

.

Remark 5.1. In contrast with the case F2 where we set f i as the number of unsatisfied equations,
in Fq we set ti as the number of satisfied equations. In both cases we choose the maximum of f i/di
(in F2) and ti/di (in Fq). In F2 this entails finding the variables with most unsatisfied adjacent equa-
tion nodes. Hence flipping them is helpful. In Fq we need: (1) an element of Fq (x′

i ) with maximum
number of adjacent equation nodes, and (2) the knowledge whether this number is the current value
of xi or not. If we do not know whether it is the current value of xi , we may fall into a loop (for
example, a variable node with βi = 1 causes β = 1 forever). Hence, we use the negative sign in order
to exclude them from the flipping step.

We observe that our threshold β is a real number satisfying −1 < β � 1 but in bit-flipping decod-
ing algorithms the threshold is a positive integer. The reason for choosing a fraction for the threshold
is that unlike many parity-check matrices for decoding algorithms, columns of the coefficient matrix
of the linear system do not necessarily have the same column degree. This means that if the number



Author's personal copy

A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824 1821

of unsatisfied parity-checks for each variable is known, then the number of satisfied parity-checks is
also known and the decision for flipping can be done. However, in linear systems there may exist
some different column degrees. Hence, for a given variable node xi we define the reliability ratio βi
and set the threshold β as a maximum number of βi ’s (not f i ’s). This helps us to correctly decide
whether to flip the variable value or not.

Algorithm 3 (Extended bit-flipping algorithm over Fq).
Input: the system and a random initial vector x ∈ Fn

q .
Output: a solution vector x.

1. Set vector x into the system. If all the equations are satisfied, then we have a solution; stop.
2. Compute ti and βi for each variable node xi , 1 � i � n.
3. Determine the threshold β . If β > 0 construct the set Ω and go to Step 4. If β < 0 go to Step 5.
4. For an xi ∈ Ω , set xi = x′

i . Exclude xi from Ω and reconstruct Ω . Repeat this step until Ω = ∅ and
go to Step 1 with the modified variable values.

5. For a variable node xi ∈ Ω chose an unsatisfied adjacent equation node to xi , say ek . Find a degree
one variable node (for a Type 2 path) or an unsatisfied equation node (for a Type 1 path). Starting
from xt (the adjacent variable node in the path to ek), each variable node in this path gets a value
such that the previous equation node is satisfied. Repeat the process with the new variable node
values until Ω is the empty set and then go to Step 1 with these new variable node values.

Proposition 4.1 also ensures the existence of a Type 1 or a Type 2 path in Step 5 for the above
algorithm. The following theorem addresses the correctness of the extended bit-flipping algorithm for
linear system of equations over Fq .

Theorem 5.1. If the system (1) over Fq has at least one solution and its Tanner graph is relatively connected,
the algorithm finds a solution.

Proof. In Step 4 (β > 0), the number of unsatisfied equations is reduced after changing the values of
the elements in Ω .

In Step 5 (β < 0), the change of variable node values in the path ensures that the first unsatisfied
equation node in the path is now satisfied while the other equation nodes in the path remain satis-
fied. Hence, the number of unsatisfied equation nodes reduces by at least 1 unit (we observe that if
we find a Type 2 path, it is possible that the number of unsatisfied equation is reduced by two).

Therefore, as in the algorithm over F2, the number of unsatisfied equations reduces to zero and
the algorithm finally stops in Step 1. �
Remark 5.2. We observe that β is at least −1/2 because each unsatisfied equation node (instead of
single nodes) has at least a degree 2 variable node and so its reliability ratio is −1/2, and β is the
maximum of βi ’s. If there is no unsatisfied equation node we have already achieved the solution in
Step 1. Also β never gets the value 0 because for each xi , ti is at least 1.

The algorithm is illustrated in the following example; we choose the prime field F5, for simplicity
in the calculations.

Example 5.1. Consider the following system over F5:

4x1 + x2 + 3x6 = 3,

4x4 + x5 + 4x8 + 2x9 + x10 = 4,

4x1 + 3x4 + 2x9 = 1,

3x3 + 4x7 = 1,

x2 + 3x7 = 1,

x7 + 3x8 + 4x9 = 4,

3x1 + 3x5 = 4.



Author's personal copy

1822 A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824

Fig. 4. Tanner graph of the system.

The graph of the system is shown in Fig. 4. We do not include the coefficients (in this case elements
in F5) for simplicity.

There are three relative sets: {e1, e5}, {e2, e3, e6, e7} and {e4} which is a single equation node. The
algorithm finds the solution of the system over F5 as follows:

Let the input vector be x = (3,1,0,2,1,4,4,2,3,0).

Step 1. The equations e1, e2, e3, e5, e6 and e7 are not satisfied.
Step 2. In order to compute ti and βi , we first compute x′

i . We have

x′
1 = 1, x′

2 = 4, x′
3 = 0, x′

4 = 1, x′
5 = 2,

x′
6 = 0, x′

7 = 4, x′
8 = 1, x′

9 = 1, x′
10 = 1.

We get

t1 = 1, t2 = 2, t3 = 1, t4 = 2, t5 = 1,

t6 = 1, t7 = 1, t8 = 2, t9 = 2, t10 = 1,

and

β1 = 1

3
, β2 = 2, β3 = −1, β4 = 1, β5 = 1

2
,

β6 = 1, β7 = −1

3
, β8 = 1, β9 = 2

3
, β10 = 1.

Step 3. β = 1 and Ω = {x2, x4, x6, x8, x10}, then go to Step 4.
Step 4. Set x4 = x′

4 = 1 and remove it from Ω . Since β2 = 1, β6 = 1, β8 = − 1
2 and β10 = −1, we have

Ω = {x2, x6}. Set x6 = x′
6 = 0 and remove it from Ω . Since β2 = − 1

2 , Ω = ∅ and we go to Step 1.
Step 1. The modified vector does not satisfy the equations e5, e6 and e7.
Step 2. We just compute ti and βi ’s values for variable nodes which are adjacent to at least one
unsatisfied equation node. Obviously, the value of βi ’s for the other variable nodes equals −1. We
obtain

x′
1 = 3, x′

2 = 1, x′
5 = 1, x′

7 = 4, x′
8 = 2, x′

9 = 3,

and hence we get

t1 = 2, t2 = 1, t5 = 1, t7 = 1, t8 = 1, t9 = 2,

and

β1 = −2

3
, β2 = −1

2
, β5 = −1

2
, β7 = −1

3
, β8 = −1

2
, β9 = −2

3
.

Step 3. We have β = − 1
3 so Ω = {x7} and go to Step 5.



Author's personal copy

A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824 1823

Fig. 5. A path between e5 and x6.

Fig. 6. A path between e7 and e6.

Step 5. The equation node e5 is adjacent to the variable x7 and there is a path between e5 and x6,
which is a variable node with degree 1; see Fig. 5.

We set x2 = 4 so e5 is satisfied; then we set x6 = 4 in order that e2 is satisfied. Since Ω = ∅ we
go to Step 1.
Step 1. The modified vector does not satisfy the equations e6 and e7.
Step 2. We obtain

x′
1 = 3, x′

5 = 1, x′
7 = 4, x′

8 = 2, x′
9 = 3,

and hence we get

t1 = 2, t5 = 1, t7 = 2, t8 = 1, t9 = 2,

and

β1 = −2

3
, β5 = −1

2
, β7 = −2

3
, β8 = −1

2
, β9 = −2

3
.

Step 3. We have β = − 1
2 so Ω = {x5, x8} and go to Step 5.

Step 5. We obtain that e7 is unsatisfied and is adjacent to x5. There is a Type 1 path between e7
and e6; see Fig. 6.

For satisfying e7 we set x5 = 0 and for satisfying e2 we set x8 = 1. We obtain that e6 is satisfied
and Ω = ∅, so we go to Step 1.
Step 1. All equations are satisfied, so the output solution is:

x = (3,4,0,1,0,4,4,1,3,0).

We comment that in Step 2 of the algorithms it is enough to compute f i and ti (respectively,
for the algorithms over F2 and Fq) and βi for variable nodes which are adjacent to at least one
unsatisfied equation node. The βi value for the other variable nodes is equal to 0 in F2 and to −1
in Fq . Also in Step 3 of the algorithms, we can flip (or change) the value of xi ’s with greater dxi . This
might cause a faster reduction in the number of unsatisfied equation nodes.



Author's personal copy

1824 A.A. Mofrad et al. / Linear Algebra and its Applications 439 (2013) 1815–1824

6. Complexity analysis of the extended bit-flipping algorithms

Proposition 6.1. The complexity of the extended bit-flipping algorithms is linear in terms of the number of
variables and the number of nonzero elements of the coefficient matrix A.

Proof. We analyze the cost of the algorithms step by step for one iteration. Let dxi , 1 � i � n, denote
the degree of variable node xi and let ω denote the number of nonzero elements of the coefficient
matrix A.

In Step 1 we have at most ω multiplications, (ω − m) summations and m comparisons.
In Step 2, for F2, in order to construct the f i ’s, we need ω comparisons and at most (ω − n)

summations and in general (2ω − n) operations. For Fq in order to construct each ti , we need to
compute dxi inverses in Fq and (dxi −1) comparisons. Hence, for n variable nodes, we execute (2ω−n)

operations. To construct the βi ’s, we compute n divisions.
In Step 3, we have n comparisons.
In Step 4, we have at most n comparisons per iteration.
In the worst-case, we need ω operations in Step 5. Therefore, the number N of operations in each

iteration is at most

N = 5ω + 2n.

This proves the proposition. �
The number of equations is an upper bound on the number of iterations because in each iteration

at least one unsatisfied equation node is corrected. Hence, the total number of operations is bounded
above by m × (5ω + 2n).

7. Conclusions

Our extended bit-flipping algorithms are fast simple algorithms with good performance for sparse
systems with a specific form for the Tanner graph called relatively connected.

Moreover, if the Tanner graph of the system is not relatively connected, the algorithm may be used
in a probabilistic way. In this case we try several random input vectors whenever Type 1 or Type 2
paths do not exist for the current vector. This strategy is promising because of its low complexity
and large applicability. This has a similar effect as in message-passing decoding methods which are
proved to work only for cycle-free Tanner graphs but can still be used in graphs with large girth.

References

[1] A. Abolpour, M.-R. Sadeghi, D. Panario, Extended bit-flipping algorithm for solving large sparse linear systems of equations
modulo a prime number p, in: Proc. ITW, July 2011, pp. 688–692.

[2] J. Cho, W. Sung, Adaptive threshold technique for bit-flipping decoding of low-density parity-check codes, IEEE Commun.
Lett. 14 (9) (2010) 857–859.

[3] D. Coppersmith, Solving linear equations over GF(2): block Lanczos algorithm, Linear Algebra Appl. 192 (1993) 33–60.
[4] D. Coppersmith, Solving homogeneous linear equations over GF(2) via block Wiedemann algorithm, Math. Comp. 62 (1994)

333–350.
[5] D. Coppersmith, A. Odlyzko, R. Schroeppel, Discrete logarithms in GF(p), Algorithmica 1 (1986) 1–15.
[6] A. Das, C.E. Veni Madhavan, Public-Key Cryptography Theory and Practice, Dorling Kindersley, India, 2009.
[7] M. Fossorier, M. Mihaljevic, H. Imai, Reduced complexity iterative decoding of low density parity check codes based on

belief propagation, IEEE Trans. Commun. 47 (May 1999) 673–680.
[8] R.G. Gallager, Low Density Parity Check Codes, MIT Press, Cambridge, MA, 1963.
[9] B.A. LaMacchia, A.M. Odlyzko, Solving large sparse linear systems over finite fields, in: A. Menezes, S. Vanstone (Eds.),

Advances in Cryptology, CRYPTO ’90, in: Lecture Notes in Comput. Sci., vol. 537, Springer-Verlag, 1991, pp. 109–133.
[10] S. Lin, D.J. Costello Jr., Error Control Coding: Fundamentals and Applications, Prentice Hall, ISBN 0-13-283796-X, 1983.
[11] D.J.C. MacKay, R.M. Neal, Near Shannon limit performance of low density parity check codes, Electron. Lett. 32 (18) (1996)

1645–1646.
[12] R.M. Tanner, A recursive approach to low complexity codes, IEEE Trans. Inform. Theory 27 (1981) 533–547.
[13] D.H. Wiedemann, Solving sparse linear equations over finite fields, IEEE Trans. Inform. Theory 32 (1) (1998) 54–62.


