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A New Framework to Combine Descriptors for Content-based

Image Retrieval

Ricardo da S. Torres∗ Alexandre X. Falcão∗ Marcos André Gonçalves†

Baoping Zhang ‡ Weiguo Fan‡ Edward A. Fox‡

Abstract

Methods that combine image database descriptors have strong influence on the ef-
fectiveness of content-based image retrieval (CBIR) systems. Although there are many
combination functions described in the image processing literature, empirical evaluation
studies have shown that those functions do not perform consistently well across differ-
ent contexts (queries, image collections, users). Moreover, it is often very difficult for
human beings to identify optimal combination functions for a particular application. In
this paper, we propose a novel framework using Genetic Programming to combine image
database descriptors for CBIR. Our framework is validated through several experiments
involving two image databases and a specific domain, where the images are retrieved
based on the shape of their objects.

1 Introduction

Advances in data storage and image acquisition technologies have enabled the creation of
large image datasets. In order to deal with these data, it is necessary to develop appro-
priate information systems which can support different services. The focus of this paper is
on content-based image retrieval (CBIR) systems [9, 19]. Basically, CBIR systems try to
retrieve images similar to a user-defined specification or pattern (e.g., shape sketch, image
example). Their goal is to support image retrieval based on content properties (e.g., shape,
texture, and color). An image database can be indexed using different descriptors [24],
which are characterized by: (i) a feature extraction algorithm that encodes image properties
into a feature vector; and (ii) a similarity measure (distance function) that computes the
similarity between two images as a function of the distance between their corresponding
feature vectors. In the CBIR domain, a descriptor is considered more effective than another
one, when it increases the number of relevant images returned, given an input query defined
by a user.
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SP, Brasil.
†Department of Computer Science, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil.
‡Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA,
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2 Torres et. al

Different descriptors encoding different or even the same image properties have been
proposed to support image retrieval by content [24, 28]. These descriptors are commonly
chosen in a domain-dependent fashion, and, generally, are combined in order to meet users’
perception. For example, while one user may wish to retrieve images based on their color
feature, another one may wish to retrieve images according to their texture properties. At a
higher level, descriptors encoding different properties can be combined to support different
perception criteria of different users. Many of these combination strategies are based on
weights which assess the importance of each descriptor [16, 21].

This paper proposes a novel framework to combine image database descriptors, improv-
ing effectiveness in retrieval tasks. More specifically, we introduce a systematic and auto-
matic discovery framework to aid the combination of descriptors. This framework is based
on an artificial intelligence (AI) optimization technique, called Genetic Programming (GP),
which has been widely used in various design and data mining applications [5, 7, 13, 27].

Our solution relies on the creation of a composite descriptor, which is simply the com-
bination of pre-defined descriptors using a GP technique. We employ GP to combine the
similarity values obtained from each descriptor, creating a more effective fused similarity
function. As far as we know, this approach is original and opens a new and productive field
for investigation.

We validate the proposed framework in a specific domain, shape-based image retrieval,
through various experiments. The approach has shown to be flexible and powerful in the
search for optimal functions to combine descriptors.

The remainder of this paper is organized as follows. Section 2 describes the main AI
techniques to understand the proposed framework. Section 3 presents a generic model
for CBIR which includes the notion of a database descriptor and components. Section 4
presents a formal definition of the combination function discovery problem and describes
our framework based on Genetic Programming. Section 5 presents several experiments,
which validate our approach, while Sections 6 and 7 discuss the main achieved results and
related works, respectively. In Section 8 we conclude the paper, explaining implications of
this study and future research directions.

2 Background

2.1 Genetic Programming

Genetic algorithms (GAs) [11] and genetic programming (GP) [13] are a set of artificial
intelligence problem-solving techniques based on the principles of biological inheritance
and evolution. Each potential solution is called an individual (i.e., a chromosome) in a
population. Both GA and GP work by iteratively applying genetic transformations, such
as crossover and mutation, to a population of individuals to create more diverse and better
performing individuals in subsequent generations. A fitness function is available to assign
the fitness value for each individual.

The main difference between GA and GP relies on their internal representation - or
data structure - of the individual. In general, GA applications represent each individual as
a fixed-length bit string, like (1101110 . . . ) or a fixed-length sequence of real numbers
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(1.2, 2.4, 4, . . . ). In GP, on the other hand, more complex data structures are used
(e.g., trees, linked lists, or stacks [14]). Furthermore, GP data structure length is not fixed,
although it may be constrained by implementation to be within a certain size limit. Because
of the intrinsic parallel search mechanism and powerful global exploration capability in a
high-dimensional space, both GA and GP have been used to solve a wide range of hard
optimization problems that oftentimes have no known best solution.

2.2 GP Components

In order to apply GP to solve a given problem, several required key components of a
GP system need to be defined. Table 1 lists these essential components along with their
descriptions.

Components Meaning

Terminals Leaf nodes in the tree structure.

Functions Non-leaf nodes used to combine the leaf nodes. Commonly
numerical operations: +, -, *, /, log.

Fitness Func-
tion

The objective function GP aims to optimize.

Reproduction A genetic operator that copies the individuals with the best
fitness values directly into the population for the next gener-
ation without going through the crossover operation.

Crossover A genetic operator that exchanges subtrees from two parents
to form two new children. Its aim is to improve the diversity
as well as the genetic fitness of the population.

Mutation A genetic operator that replaces a selected individual’s sub-
tree, whose root is a picked mutation point, with a randomly
generated subtree.

Table 1: Essential GP Components.

The entire combination discovery framework can be seen as an iterative process. Starting
with a set of training images with known relevance judgments, GP first operates on a
large population of random combination functions. These combination functions are then
evaluated based on the relevance information from training images. If a stopping criterion
is not met, it will go through the genetic transformation steps to create and evaluate the
population of the next generation iteratively.

3 CBIR Model

In this section, we formalize how a CBIR system can be modeled.

Definition 1: An image Î is a pair (DI , ~I), where:

• DI is a finite set of pixels (points in Z
2, that is, DI ⊂ Z

2), and
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• ~I : DI → D
′ is a function that assigns to each pixel p in DI a vector ~I(p) of values

in some arbitrary space D
′ (for example, D

′ = IR3 when a color in the RGB system is
assigned to a pixel).

Definition 2: A simple descriptor (briefly, descriptor) D is defined as a pair (ǫD, δD),
where:

• ǫD : Î → R
n is a function, which extracts a feature vector ~v

Î
from an image Î.

• δD : R
n × R

n → R is a similarity function (e.g., based on a distance metric) that
computes the similarity between two images as the inverse of the distance between
their corresponding feature vectors.

Definition 3: A feature vector ~v
Î

of an image Î is a point in R
n space: ~v

Î
=

(v1, v2, ..., vn), where n is the dimension of the vector. Examples of possible feature vectors
are a color histogram [26], a multiscale fractal curve [6], a set of Fourier coefficients [20].
They essentially encode image properties, such as color, shape, and texture. Note that
different types of feature vectors may require different similarity functions.

Figure 1 illustrates the use of a simple descriptor D to compute the similarity between
two images ÎA and ÎB. First, the extraction algorithm ǫD is used to compute the feature
vectors ~v

ÎA
and ~v

ÎB
associated with the images. Next, the similarity function δD is used to

determine the similarity value d between the images.

v Î
A

v Î
B

Î
B

Î
A

εD εD

δD

d

D:

Figure 1: The use of a simple descriptor D for computing the similarity between images.

Definition 4: A composite descriptor D̂ is a pair (D, δD) (see Figure 2), where:

• D = {D1,D2, . . . ,Dk} is a set of k pre-defined simple descriptors.

• δD is a similarity function which combines the similarity values obtained from each
descriptor Di ∈ D, i = 1, 2, . . . , k.
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δD1

d1 d2 dk

...

δδ

εεε ε εεD1 D1 D2 D2 Dk Dk

Dk

d

D2

δD

^ ^I IBA

D:

Figure 2: Composite descriptor.

4 GP Framework for CBIR

The present framework uses GP to combine simple descriptors. This decision stemmed from
three reasons: (i) the large size of the search space for combination functions; (ii) previous
success of using GP in information retrieval and image processing; and (iii) little prior work
on applying GP to image retrieval.

The corresponding CBIR system can be characterized as follows. For a given large image
database and a given user-defined query pattern (e.g., a query image), the system retrieves
a list of images from the database which are most “similar” to the query pattern, according
to a set of image properties. These properties may take into account shape, color, and/or
texture of the image objects, and are represented by simple descriptors. These simple
descriptors are combined using a composite descriptor DGP , where δDGP

is a mathematical
expression uniquely represented as an expression tree, whose non-leaf nodes are numerical
operators (see Table 1) and the leaf node set is composed of the similarity values di, i =
1, 2, . . . , k. Figure 3 shows a possible combination (obtained through the GP framework) of
the similarity values d1, d2, and d3 of three simple descriptors.

sqrt

+

/

*

1 2

1 3

d d

d d

Figure 3: Example of a GP-based similarity function represented in a tree.

The overall retrieval framework is as follows:

Algorithm 1:

1. Generate an initial population of random “similarity trees”.
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2. Perform the following sub-steps on training images for Ngen generations:

2.1. Calculate the fitness of each similarity tree.

2.2. Record the top Ntop similarity trees.

2.3. Create a new population by:

2.3.1. Reproduction

2.3.2. Crossover

2.3.3. Mutation

3. Apply the “best similarity tree” (i.e., the first tree of the last generation) on a set of
testing (query) images.

The GP framework for the image retrieval problem is considered “global”, as it tries
to find the best descriptor combination (represented as just one tree), which optimizes the
number of relevant images returned. “Local” strategies, which are suitable to determine
the best descriptor combination for a given class, would be useful in classification problems
(e.g., [27]). Ongoing work addresses this research topic.

5 Experiments

Even though the proposed framework has been specified in a generic way, allowing the
combination of descriptors that encode different properties (i.e., color, texture, etc), the
experiments described below were carried out for shape-based descriptors.

5.1 Shape Descriptors

This section presents a brief overview of the shape descriptors used in our experiments. This
list includes widely used descriptors for comparison purposes [10] and recently proposed
ones [2, 6]. Here, the GP framework is used to combine them in a suitable way, taking
advantage of the fact that they encode different shape properties (frequency and spatial
features, local and global information, etc.).

Many versions of these methods have been presented, but this work considers their
conventional implementations.

Beam Angle Statistics (BAS): The BAS [2] is a novel shape descriptor which has
been compared with several others. In [2], it is shown that BAS functions (with 40 and
60 samples) outperform all of them. The experiments of the present paper used the BAS
descriptor with both 40 and 60 samples. Basically, the BAS descriptor is based on the beams
originated from a contour pixel. A beam is defined as the set of lines connecting a contour
pixel to the rest of the pixels along the contour. At each contour pixel, the angle between a
pair of lines is calculated, and then the shape descriptor is defined by using the third-order
statistics of all the beam angles in a set of neighborhood systems. The similarity between
two BAS moment functions is measured by an optimal correspondent subsequence (OCS)
algorithm as shown in [2].
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Moment Invariants: For Moment Invariants, each object has been represented by a
14 dimensional feature vector, including two sets of normalized Moment Invariants [10], one
from the object boundary and another from a solid silhouette. The Euclidean distance was
used as similarity measure.

Fourier Descriptors: We have implemented the method described in [10, 20] to rep-
resent a shape with Fourier Descriptors applied to a contour. Each original object and its
transformed versions have been represented by the most significant 126 components. Again,
the Euclidean distance was used as similarity function.

Contour Multiscale Fractal Dimension or shortly, MS Fractal Dimension: We
have implemented the method described in [6] (with degree of the multiscale fractal poly-
nomial equal to 25 and generating a 25-bin representation) to extract multiscale fractal
values for a contour. Again, the Euclidean distance has been used to measure the similarity
between two multiscale fractal dimension representations.

5.2 GP System

The following is a detailed description of our implementation of the above framework.

List of terminals: As pointed out in Section 4, our terminals are composed of the
similarity functions defined by each descriptor presented in Section 5.1.

Functions: The following functions were used in our implementation: +,×, /, sqrt.
Subtraction is not used, to avoid handling negative results. This function set is widely used
in common GP experiments and is suitable to validate our ideas. We plan to use more
complex functions in future experiments.

Initial Population Generation: The initial set of trees, constrained to have a maxi-
mum depth of 4 levels, were generated by the ramped half-and-half method [13]. This method
stipulates that half of the randomly-generated trees must be generated by a random pro-
cess which ensures all branches of the maximum initial depth. The remaining randomly
generated trees require branches whose lengths do not exceed this depth. These constraints
have been found to generate a good initial sample of trees [13].

Fitness Functions: The fitness function plays a very important role in guiding GA/P
to obtain the best solutions within a large search space. By considering our problems, a
fitness function measures how effective a combination function represented by an individual
tree is for ranking images. Good fitness functions will help GA/P to explore the search
space more effectively and efficiently. Bad fitness functions, on the other hand, can easily
make GA/P get trapped in a local optimum solution and lose the discovery power.

The next paragraphs present a formal definition of the chosen fitness functions:

FFP1 [7]: FFFP1 =
|D|
∑

i=1
r(di) × k1 × ln−1(i + k2), where r(d) ∈ {0, 1} is the relevance

score assigned to an image, it being 1 if the image is relevant and 0 otherwise. |D| is the
total number of retrieved images. k1, k2 are scaling factors. After exploratory analysis we
set k1 = 6 and k2 = 1.2 in our experiments.

FFP2 [7]: FFFP2 =
|D|
∑

i=1
r(di) × k3 × log10(1000/i). k3 is a scaling factor. We set k3 = 2

in our experiments.
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FFP3 [7]: FFFP3 =
|D|
∑

i=1
r(di) × k−1

4 × (e−k5×ln(i)+k6 − k7). k4, k5, k6, k7 are scaling

factors that are set to 3.65, 0.1, 4, and 27.32, respectively.

FFP4 [7]: FFFP4 =
|D|
∑

i=1
r(di)× k8 × ki

9. Two scaling factors, k8 and k9, are set to 7 and

0.982, respectively.

PAVG@10 [3]: FPAV G@10 =

10
P

i=1

0

B

B

@

r(di)×

( i
P

j=1
r(dj)

i

)

1

C

C

A

TRel
, where r(d) ∈ {0, 1} is the relevance

score assigned to an image, being 1 if the image is relevant and 0 otherwise. TRel is the
total number of relevant images in a collection.

CHK [17]: FCHK = 1
|D|

|D|
∑

i=1

(

r(di) ×
|D|
∑

j=i

1
j

)

LGM [17]: FLGM =

(

|D|
∑

i=1

(

rB(di) ×
1
A

(

A−1
A

)i−1
))

×

|D|
P

i=1
r(di)

|D| , where rB(d) ∈ {1,−1}

is a function returning the relevance of image d, being +1 if d is relevant, -1 otherwise. A
is a user-defined parameter. We set A to 2.

The fitness functions defined above were evaluated under the GP framework. PAVG@10,
or average precision after 10 images are returned, is a common measure used in information
retrieval evaluations [3]. Functions FFP1, FFP2, FFP3, FFP4, CHK, and LGM were used
since they follow the principles of utility theory [7, 8]. According to utility theory, there
exists a utility function (a user’s preference function) that assigns a utility value (the gained
value from a user’s perspective) for each item. These values vary from item to item. The
item can be a book, a product, or an image, as in our case. In general, we assume the
utility of a relevant image decreases with its ranking order. More formally, given a utility
function U(x), and two ranks x1, x2, with x1 < x2, according to this assumption, we expect
the following condition to hold: U(x1) > U(x2). The question is how to define the utility
function. There are many possible functions that can be used to model this utility function
satisfying the order-preserving condition given above. We decided to use FFP1, FFP2,
FFP3, FFP4, CHK, and LGM, since most of them presented a good result in previous work
on using GP for the ranking discovery problem [7].

The GP Operators:

Reproduction. Reproduction copies the top rate r×P trees in the current generation to
the next, directly without undergoing any genetic transformation. The reproduction rate,
rate r, is generally 0.1 or less, and P is the population size. In our case, rate r = 0.05.

Crossover. Crossover ensures variety by creating trees that differ from their parents.
For crossover, a method called tournament selection [13] is used. Tournament selection
works by first selecting, with replacement, k (we use 6) trees at random from the current
generation. The two trees with the highest fitness are paired and exchange subtrees.

Mutation. In this case, an individual is selected, and a mutation point picked (a subtree
of the individual). The subtree of the mutation point is deleted and replaced by a randomly
generated subtree. Our experiments considered 0.25 as the percentage of individuals selected
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for mutation (the mutation rate).

Stopping Criterion: We stop the GP discovery process after 50 generations. First, the
simulation is highly computationally intensive. Second, our pilot experiments with sample
queries indicated that 50 generations was a sufficient period to generate high-performing
trees.

5.3 Image Databases

Two different databases have been used to compare the proposed GP-based shape descrip-
tors.

Fish Shape Database: This shape database contains one thousand images created
by using one hundred fish contours chosen randomly from the data set available from [23].
Since there is no semantic definition of classes for the fish contours in this database, we
defined a class as consisting of 10 different manifestations of each contour by rotation and
scaling. Then, the problem consists of 100 classes with 10 shapes each. In this case, each
original image is considered as query image, and its manifestations are taken as relevant
images.

Experiments using this database will assess the invariance of the GP-based descriptor
regarding rotation and scaling transformations.

MPEG-7 Part B: This is the main part of the Core Experiment CE-Shape-1 [15]. The
total number of images in the database is 1400: 70 classes of various shapes, each class with
20 images.

We follow a two data-sets design in our experiments. We randomly split the data
into training and test parts. The training set used a random 50% sample for each class.
Furthemore, we considered two different samples for each data set in order to show that
our approach is sample invariant.

6 Results

As mentioned earlier, the objective of an image retrieval system is to match images to a
user’s query and place them in descending order of their predicted relevance to the user’s
information requirement.

6.1 Comparison Criterion and Baselines

We used Precision after 10 images are returned as our comparison criterion.

Table 2 shows the average precision for each similarity evidence (shape descriptor). Note
that the BAS60 shape descriptor presents the best result in both the MPEG-7 and Fish
Shapes collections.

We also compare the effectiveness of our GP approach with a GA-based composite
descriptor. The GA-based descriptor uses fixed-length sequence of real numbers (weights)
to indicate the importance of each

descriptor. In this case, given a set of similarity functions δi of pre-defined descriptors, a
GA-based similarity function is defined as δGA(δ1, δ2, . . . , δk) = w1δ1+w2δ2+. . . wkδk, where
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wi are weights defined by the GA framework. In our GA implementation, we considered a
population of 100 individuals and 30 generations.

Descriptor
MPEG-7

Precision@10

Fish Shapes
Precision

@10
Sample 1 Sample 2 Sample 1 Sample 2

BAS40 65.35 64.84 83.35 81.10

BAS60 66.27 65.37 93.25 92.30

Contour Multiscale Fractal Dimension 40.71 40.05 71.35 68.85

Fourier Descriptors 20.25 20.44 24.20 23.75

Moment Invariants 34.68 35.02 63.20 61.45

Table 2: Average Precision after 10 images are returned, considering the evidences in iso-
lation.

6.2 GP Results

Table 3 presents the average precision of the GP-based shape descriptors, using different
fitness functions.

With regard to the MPEG-7 collection, GP-based descriptors outperform the BAS60
baseline. For the first sample, FFP1 was the best fitness function, while LGM was the best
for the second sample. Note also that GP presents a better result when compared to the
GA-based descriptor, except for the CHK fitness function when applied to sample 2.

For the Fish Shapes collection, the BAS60 shape descriptor yields a high precision value,
since the relevant image set is composed of similar images obtained by affine transformations
(rotation and scaling). However, despite the high effectiveness of the baseline, the results
based on the GP approach are better. For this collection, the best results were obtained
for the FFP2 fitness function with regard to both samples (Sample 1 and Sample 2).

Figure 4 presents the best tree obtained by the GP framework, considering the FFP2
fitness function on Sample 1 of the MPEG-7 collection. Note that the BAS60 descriptor
appears in several nodes. This is an expected result since this is the best descriptor in
isolation (see Table 2). Note also that this tree includes Moment Invariants and MS Frac-
tal Dimension descriptors and does not consider the Fourier Descriptor (the worst one in
isolation – see Table 2).

Figure 5 presents the precision versus recall curves of the best GP-based descriptor, the
GA-based descriptor, and the best evidence by taking into account the two samples of the
MPEG-7 and fish shapes collections. Note that the GP-based descriptor has the best curve
in all cases, except for Sample 1 of the fish shapes data set. In this case, the GA-based
descriptor outperforms the GP one for recall values lower than 0.47.

It is worth mentioning that the training step took 30 minutes, on average, for the the
Fish Shapes data set (considering the two samples), running on a 3.2GHz Pentium 4 with
2G RAM. For the MPEG-7 data set, training took 40 minutes, on average.
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(+ (+ (+ ContourMSFractal 0_0) 1)
    (+ (+ (+ ContourMSFractal 0_0)
          (+ (sqrt 0_5)
             (sqrt (* BAS60 0_5))))
       (* (* BAS60 BAS60)
          (* (* BAS60 BAS60)
             (* (* (* BAS60 BAS60)
                   (* (+ (/ BAS60
                            (/ (+ ContourMSFractal MomentInvariants)
                               (sqrt (+ 0_0 BAS60))))
                         (sqrt (+ BAS40 0_0))) BAS40))
                (+ (+ (sqrt (* (* BAS60 BAS60)
                               (* (* (* BAS60 BAS60)
                                     (+ (* BAS60 BAS60)
                                        (* 1 BAS60))) BAS40)))
                      (sqrt 0_0)) BAS60))))))

Figure 4: Best GP tree using the FFP2 fitness function on Sample 1 of the MPEG-7
collection.

Descriptor
MPEG-7

Precision @10
Fish Shapes

Precision @10
Sample 1 Sample 2 Sample 1 Sample 2

BAS60 66.27 64.84 93.25 92.30

GP with PAVG@10 70.56 (6.47%) 69.21 (6.74%) 93.75 (0.54%) 92.75 (0.49%)

GP with FFP1 70.92 (7.02%) 69.59 (7.33%) 94.20 (1.02%) 93.30 (1.08%)

GP with FFP2 70.79 (6.82%) 69.76 (7.59%) 94.30 (1.13%) 93.35 (1.14%)

GP with FFP3 70.75 (6.76%) 69.44 (7.09%) 94.05 (0.86%) 93.30 (1.08%)

GP with FFP4 70.40 (6.23%) 68.97 (6.37%) 94.05 (0.86%) 93.30 (1.08%)

GP with CHK 70.73 (6.73%) 66.78 (2.99%) 94.20 (1.02%) 93.30 (1.08%)

GP with LGM 70.86 (6.93%) 70.90 (9.35%) 94.15 (0.97%) 93.20 (0.98%)

GA 69.37 (4.68%) 68.30 (5.38%) 93.40 (0.16%) 92.55 (0.27%)

Table 3: Average Precision after 10 images are returned, considering the GP-based descrip-
tors.

7 Related Work

7.1 Descriptors Combination

In general, approaches for descriptors combination rely on assigning weights to indicate the
importance of a descriptor [16, 21]. Basically, the higher the weight the more important a
descriptor is assumed to be.

The main drawback of these approaches is the fact that it is not easy to define good
weight values for a given application, or even for a given user in advance. Therefore, several
techniques (such as [18] and [22]) based on user feedback have been proposed to assist weight
assignment for descriptors in retrieving images by content. In general, these methods are
based on user judgments with regard to the relevance of previously returned images.
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Figure 5: Precision versus recall curves of the best GP descriptor, GA-based descriptor,
and the best evidence.

7.2 AI Techniques in Image Processing

AI techniques, such as GA and GP, have been successfully used in several image processing
applications: object recognition [12, 25], object detection [4, 5], image classification [1], etc.

Howard et al. [12] investigated the use of GP to support automatic ship detectors in
SAR (synthetic aperture radar) imagery. They use pixel statistics associated with pixel
windows as terminals. Unfortunately, they do not compare their method with any other
approach. Bhanu and Lin [5] applied GP to combine image processing operations for object
detection. In their framework, composite operators are represented by binary trees where
internal nodes represent the pre-specified primitive operators and the leaf nodes represent
the original image or primitive (pre-defined) image features. They also worked on selecting
appropriate features for target detection using GA [4]. A similar approach based on GA was
used by Sun et al. [25] to select features for object detection. In image classification, Agnelli
et al. [1] used the a GP-based framework to find out the best combination of image scalar
features. They used a small database (102 images) for validation and did not compare their
GP-based method with any other evolutionary approach.
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8 Conclusions

We considered the problem of combining simple descriptors for content-based image re-
trieval. Our solution uses Genetic Programming to discover an optimal combination func-
tion. The proposed framework was validated for shape-based image retrieval, through sev-
eral experiments involving two image databases, and many simple descriptors and fitness
functions.

We conclude that the new framework is flexible and powerful to the design of optimal
combination functions. The effectiveness results demonstrate that the GP framework can
find better similarity functions than the ones obtained from the individual descriptors. Our
experiments also show better results with GP than using a GA approach. In fact, even
compared to outstanding baselines (BAS60 on Fish shapes data set), GP was able to find
out a better result.

We also evaluated a set of fitness functions based on utility theory to find the best
combination function for the image search problem. The experiments showed that several
of the used fitness functions are very effective in guiding the GP search. Among the various
fitness functions we tested, FFP1, FFP2, and LGM are the ones we recommend for the the
image retrieval problem.

Future work will focus on evaluating the use of validation sets to select combination func-
tions that generalize well for unseen images, and thus avoiding the effect of over-training [27].
We also plan to devise an automatic mechanism to incorporate the GP-based descriptors
in searching engines.

Acknowledgements

The authors thank the Microsoft Escience Project, FAPESP (Proc. 03/14096-8), and CNPq
(Proc.302427/04-0).

This work was also supported by AOL (through a fellowship to Marcos Andre Goncalves)
and by NSF grants DUE-0121679, DUE-0333531, IIS-0307867, and IIS-0325579. Marcos
Andre Goncalves is currently supported by CNPq.

References

[1] D. Agnelli, A. Bollini, and L. Lombardi. Image Classification: an Evolutionary Ap-
proach. Pattern Recognition Letters, 26(1-3):303–309, January 2002.

[2] N. Arica and F. T. Y. Vural. BAS: A Perceptual Shape Descriptor Based on the Beam
Angle Statistics. Pattern Recognition Letters, 24(9-10):1627–1639, June 2003.

[3] R. A. Baeza-Yates, R. Baeza-Yates, and B. Ribeiro-Neto. Modern Information Re-
trieval. Addison-Wesley Longman Publishing Co., Inc, Boston, MA, USA, 1999.

[4] B. Bhanu and T. Lin. Genetic Algorithm based Feature Selection in SAR Images.
Image and Vision Computing, 21(7):591–608, 2003.



14 Torres et. al

[5] B. Bhanu and Y. Lin. Object Detection in Multi-Modal Images Using Genetic Pro-
gramming. Applied Soft Computing, 4(2):175–201, May 2004.

[6] R. da S. Torres, A. X. Falcão, and L. da F. Costa. A Graph-based Approach for
Multiscale Shape Analysis. Pattern Recognition, 37(6):1163–1174, June 2004.

[7] W. Fan, E. A. Fox, P. Pathak, and H. Wu. The Effects of Fitness Functions on Genetic
Programming-Based Ranking Discovery for Web Search. Journal of the American
Society for Information Science and Technology, 55(7):628–636, 2004.

[8] P. C. Fishburn. Non-Linear Preference and Utility Theory. Johns Hopkins University
Press, Baltimore, 1988.

[9] M. Flickner, H. Sawhney, W. Niblack, Q. H. J. Ashley, B. Dom, M. Gorkani, J. Hafner,
D. Lee, D. Petkovic, D. Steele, and P. Yanker. Query by Image and Video Content:
the QBIC System. IEEE Computer, 28(9):23–32, Sep 1995.

[10] R. C. Gonzalez and R. E. Woods. Digital Image Processing. Addison-Wesley, Reading,
MA, USA, 1992.

[11] J. H. Holland. Adaptation in Natural and Artificial Systems. MIT Press, Cambridge,
MA, 1992.

[12] D. Howard, S. C. Roberts, and R. Brankin. Target Detection in SAR Imagery by
Genetic Programming. Advances in Engineering Software, 30(5):303–311, May 1999.

[13] J. R. Koza. Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[14] W. B. Langdon. Data Structures and Genetic Programming: Genetic Programming +
Data Structures = Automatic Programming! Kluwer, 1998.

[15] L. J. Latecki and R. Lakamper. Shape Similarity Measure Based on Correspondence
of Visual Parts. IEEE Transactions on Pattern Analysis and Machine Intelligence,
22(10):1185–1190, 2000.

[16] M. S. Lew, editor. Principles of Visual Information Retrieval – Advances in Pattern
Recognition. Springer-Verlag, London Berlin Heidelberg, 2001.

[17] C. Lopez-Pujalte, V. P. G. Bote, and F. de Moya Anegon. Order-based fitness functions
for genetic algorithms applied to relevance feedback. Journal of the American Society
for Information Science and Technology, 54(2):152–160, 2003.

[18] S. D. MacArthur, C. E. Brodley, A. C. Kak, and L. S. Broderick. Interactive Content-
Based Image Retrieval Using Relevance Feedback. Computer Vision and Image Un-
derstanding, 88(2):55–75, 2002.

[19] V. E. Ogle and M. Stonebraker. Chabot: Retrieval from Relational Database of Images.
ieee Computer, 28(9):40–48, Sep 1995.



A New Framework to Combine Descriptors for Content-based Image Retrieval 15

[20] E. Persoon and K. Fu. Shape Discrimination Using Fourier Descriptors. IEEE Tran-
sanctions on Systems, Man, and Cybernetics, 7(3):170– 178, 1977.

[21] K. Porkaew, S. Mehrotra, M. Ortega, and K. Chakrabarti. Similarity Search Using
Multiple Examples in MARS. In Visual Information and Information Systems, LNCS,
volume 1614, pages 68–75, Amsterdam, 1999.

[22] Y. Rui, T. S. Huang, M. Ortega, and S. Mehrotra. A Power Tool in Interactive Content-
Based Image Retrieval. IEEE Tran on Circuits and Systems for Video Technology,
8(5):644–655, 1998.

[23] ShapeDB. www.ee.surrey.ac.uk/research/vssp/imagedb/ demo.html, May 2005.

[24] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain. Content-Based
Image Retrieval at the End of the Years. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 22(12):1349–1380, December 2000.

[25] Z. Sun, G. Bebis, and R. Miller. Object detection using feature subset selection. Pattern
Recognition, 37(11):2165–2176, 2004.

[26] M. Swain and D. Ballard. Color Indexing. International Journal of Computer Vision,
7(1):11–32, 1991.

[27] B. Zhang, M. A. Gonçalves, W. Fan, Y. Chen, E. A. Fox, P. Calado, and M. Cristo.
Combining structural and citation-based evidence for text classification. In Proceedings
of the 13th ACM Conference on Information and Knowledge Management, pages 162–
163, 2004.

[28] D. Zhang and G. Lu. Review of Shape Representation and Description. Pattern
Recognition, 37(1):1–19, Jan 2004.


