2
W

Request scheduling policies

for 360° video applications
using QUIC

N. Naitis N. Fonseca C. Melo

Relatério Técnico - IC-PFG-23-50
Projeto Final de Graduagdo
2024 - Setembro

UNIVERSIDADE ESTADUAL DE CAMPINAS
INSTITUTO DE COMPUTACAO

O contetdo deste relatério é de tnica responsabilidade dos autores.

The contents of this report are the sole responsibility of the authors.

Request scheduling policies for 360° video applications using

QUIC

Nicolas Bissoli Nattis* Nelson Luis Saldanha da Fonsecal

César Augusto Viana Melo?

30,/09,/2024

Abstract

With the rising demand for high-quality 360° video driven by increasing adoption of
virtual reality technology, providing high visual quality for the user is crucial for a better
end-user experience. This paper investigates the use of server-side request scheduling
in order to mitigate visual degradation, especially tile missing ratio within the user’s
field of view. We evaluate three scheduling policies — first-in first-out (FIFO), strict
priority (SP), and weighted fair queuing (WFQ) — through simulations and measure
their effect, comparing benefits and drawbacks. These findings aim to provide insights
for the selection of scheduling policies in real-world QUIC applications, contributing to
ongoing development of immersive environment solutions.

1 Introduction

Recent advances in the market for virtual reality (VR) technologies are anticipated to further
popularize 360° video, used for creating immersive environments. As these applications gain
popularity, exploring techniques to enhance their efficiency in delivering a high-quality user
experience becomes crucial.

This study analyzes the use of server-side prioritization in the context of mitigating
visual degradation, particularly within the field of view, where the user is more likely to
notice artifacts. We specifically compare three scheduling policies: first-in first-out (FIFO),
strict priority (SP), and weighted fair queuing (WFQ), and assess the impacts of each on
service quality to identify drawbacks and benefits of each technique.

Our scope is an implementation utilizing the QUIC protocol, a modern and standardized
protocol for client-server communication. The results can then be interpreted in the context
of what benefits a real-world QUIC application might get. The techniques are also able
transferable to HTTP/3, which is built on top of QUIC.

*Instituto de Computagao, Universidade Estadual de Campinas, 13083-852 Campinas, SP.
Hnstituto de Computacéo, Universidade Estadual de Campinas, 13083-852 Campinas, SP.
Hnstituto de Computagdo, Universidade Federal do Amazonas, 69080-900 Manaus, AM.

2 Nattis, Fonseca and Melo

The remainder of this paper is organized as follows: Section 2 provides a theoretical
background on 360° video and immersive environments; Section 3 details the scheduling
policies; Section 5 presents the numerical results; and Section 6 concludes the study.

2 Theoretical background

This section provides an overview of immersive environments and the QUIC protocol, both
fundamental to the premise of this paper.

2.1 Immersive environments

In the context of this document, immersive environments are achieved by displaying 360°
video using virtual reality (VR) hardware, where users experience a 3D space through
stereoscopic displays. Users are able to rotate the field of view (or camera) to view different
parts of the environment, typically by rotating the head while using a head-mounted display
[1].

Multiple application domains currently exist for 360° video. For example, van der Hooft
et al. [1] cites healthcare (specifically for mental health therapies and training), education,
and entertainment. LaValle [2] cites immersive cinema, telepresence (live panoramic view
of locations), and the use of virtual reality for empathy focused projects, where the user
perceives the struggles of different people from their own perspective. As the technology
evolves and becomes more affordable and widespread, it is likely that new applications
across various domains will emerge.

The scope of this document focuses on the software aspects of delivering 360° video.
Specifically, the software can be fine-tuned to match hardware characteristics, but is not
necessarily constrained by them. This means that new or different technologies can benefit
as well from software optimizations in the 360° video delivery.

To deliver multiple spatial parts of the 360° video, the video is divided both temporally
(into segments of fixed duration) and spatially (into tiles of a certain dimension) that can
be assembled incrementally into a single contiguous 360° video [1]. An important aspect
of virtual reality playback is that, at any given time, the screens only show a portion of
the segment — the field of view. While the field of view can be rotated, large rotations are
assumed to occur infrequently in typical usage. Therefore, the quality of the video in the
field of view has a larger impact on the overall user experience compared to the quality of
the video outside it.

This paper addresses the challenge of optimizing the order in which tiles are transmitted
to enhance perceived quality. In our study, we assume a fixed bitrate, meaning that if a
tile arrives too late to be displayed, it is considered missing during the playback. Quality
is measured by the missing ratio of tiles.

Some clients could pause the playback to wait for the tiles (increasing the buffering),
but this can be undesirable: buffering larger durations in 360° video increases memory
consumption significantly due to the larger data volume when compared to traditional video.
This can become prohibitive for memory-constrained devices or web content. Buffering also

Request Scheduling for 360° Video 3

introduces delays that are unacceptable in scenarios such as real-time interaction or live
streaming.

By measuring the missing ratio of tiles in high priority regions (inside the field of view)
and low priority regions (outside the field of view) it is possible to compare the different
techniques used for tile prioritization. Distinguishing between missing tiles inside and out-
side the field of view allows for a more accurate measurement of perceived video quality, as
missing tiles outside the field of view may go unnoticed by the user, whereas missing tiles
inside the field of view have a direct impact on the experience.

2.2 QUIC

The 360° video applications discussed in this document are evaluated within the context
of using QUIC as the transport protocol. QUIC (Quick UDP Internet Connections) is a
standardized protocol built on top of UDP, described in the RFC 9000 [3]. The adoption
of QUIC for delivery of 360° video has been suggested by van der Hooft et al. [1] as an
approach to reduce latency seen in traditional HTTP/2 or previous and TCP approaches.

The QUIC protocol is designed to offer speed, security, and reliability while addressing
some of the limitations of TCP. QUIC uses fewer messages for handshaking compared to
TCP with TLS, reducing connection establishment latency, and its ability to multiplex
streams mitigates head-of-line blocking.

In the context of web applications, QUIC is notable for its use in HTTP/3. Although
HTTP/3 is the primary use case for QUIC in web applications, this paper focuses on
applications that directly use QUIC, independent of the HTTP /3 protocol. The techniques
presented can also be adapted for use in an HTTP/3 context since they operate at the
application layer.

It is important to note that, while it is recommended that QUIC implementations pro-
vide means to control transport-level stream prioritization (described in the Section 2.3 of
the RFC 9000 [3]), not all implementation do so. This may also not be available if a higher
level protocol like HTTP/3 is being used. The techniques for prioritization provided in
this document work at the application-level, which enables them to function independently
of transport-level prioritization. In more sophisticated applications, these application-level
approaches could be layered on top of lower layer transport-level priority policies to further
optimize content delivery.

The client and server used by this document are implemented using the Go programming
language and use the quic-go [4] library for the implementation of the QUIC protocol.

2.2.1 Congestion control and reliable delivery

QUIC implements congestion control and loss detection mechanisms as detailed in the
RFC 9002 [5]. Loss detection is based on acknowledgements, where a packet is considered
lost if its acknowledgment is not received within a specific timeframe. Reliable delivery is
achieved by retransmitting lost packets. The congestion control adjusts the transmission
rate based on the observed loss ratio. Similar to TCP, after an initial slow start period, the

4 Nattis, Fonseca and Melo

transmission rate stabilizes around the detected channel capacity. Therefore, lost packets
cause both retransmissions and reduction in transmission rate.

Although the congestion mechanism relates packet loss to network congestion, packet
loss can also happen due to factors such as signal interference in wireless networks, which
the congestion control mechanism misinterprets as network congestion, resulting in reduced
transmission rates. However, reliable delivery is still achieved through retransmissions.

When packet loss occurs, retransmissions are implicitly prioritized within QUIC’s reli-
able delivery mechanisms, although this is not explicitly stated in the specifications. This
prioritization is essential to ensuring timely recovery of lost packets and maintaining relia-
bility guarantees.

3 Scheduling policies

This section has the goal to describe the three scheduling policies that will be explored:
First In, First Out (FIFO), Strict Priority (SP) and Weighted Fair Queuing (WFQ). These
are classic network scheduling policies with various applications. In order to contextualize
the policies within the application, traits that can be advantageous or disadvantageous for
the use-case of 360° video are presented for the policies.

3.1 First In, First Out (FIFO)

_______ a
& &
7 7
H H
New requests are added to the Requests are processed from
back of the single queue, the front of the single queue.
regardless of priority

Figure 1: Example of the FIFO scheduling policy

In the FIFO scheduling policy, all received requests are inserted into a single queue and
are dequeued in order of arrival to produce responses. As a result, the first request that

Request Scheduling for 360° Video 5

is received is the first one to be processed, and so on. This policy is also known as “first
come, first served”. Figure 1 provides an illustration of the FIFO policy as it receives and
processes requests.

Being the simplest scheduling policy, FIFO is a reference point for other policies, but it
does not provide prioritization; all requests are treated equally. In the context of immersive
360° video, all regions of the visual field will be equally affected as a result of this lack of
prioritization. When there’s not enough time to receive all tiles, tiles will be missing from
both regions currently inside the field of view and those outside it, and at roughly equal
ratios.

3.2 Strict Priority (SP)

In the SP scheduling policy, received requests are placed into queues — referred to as priority
groups — corresponding to their priority levels, and elements are dequeued from the priority
group with the highest priority value first. Within each priority group, all requests have
the same priority and therefore a first-in first-out algorithm is used. The Figure 2 provides
an illustration of the SP policy receiving and processing requests.

[[rorpriormy]
r= oo A r———">==- l
L | L d
| I d l
If we are processing from the And the high priority queue Process packets from the high
low priority queue receives packets priority queue

Figure 2: Example of the SP scheduling policy

The SP policy explored in this document is a packet-level (or request-level) preemptive
variant, meaning the processing of a priority can be partially completed and interrupted in
order to respond to a higher priority packet. If the server receives a higher priority request,
the processing of low priority group is preempted (i.e., interrupted) in order for the higher
priority group to be processed.

While SP provides a relatively simple implementation and its behaviour is independent

6 Nattis, Fonseca and Melo

of dynamic run-time characteristics, it has a significant drawback: it can easily starve the
low priority group, as it has no fairness guarantees.

In the context of immersive 360° video, this means that the regions within the field of
view will usually not suffer from missing tiles unless network resources are very scarce. This
comes at the cost of high missing ratio outside the field of view. Although prioritizing the
field of view is a desired trait, the inherent strictness of the policy prevents finer adjustments.
For example, it may be desirable to maintain a lower missing ratio in the field of vision
without penalizing regions outside it too severely, to provide a smoother experience when
the user rotates the field of view.

3.3 Weighted Fair Queuing (WFQ)

In the WFQ scheduling policy, received requests are arranged into priority groups corre-
sponding to each priority level. Dequeuing is performed so that each priority group receives
a share of resources (i.e., network time) that is ideally proportional to the weight assigned
to it. The Figure 3 provides a graphical representation of the WFQ policy, with weight
distributions set at 2:1.

| LOW PRIORITY | | HIGH PRIORITY |
r———"""" L a
New requests are added to the Requests are processed from
back of their corresponding the queues according to the
queue weights

Figure 3: Example of the preemptive WFQ scheduling policy

WEFQ can guarantee fairness if correctly configured, unlike SP. Also, the weights can be
customised to achieve greater or lesser differentiation.

However, there are drawbacks to WFQ as well. Its implementation is not as straight-
forward as FIFO or SP, usually involving the usage of virtual time, where each processed
request corresponds to one share of virtual time. More critically, it requires proper weight
configuration. Ideal weights may vary depending on the packet distribution over priority

Request Scheduling for 360° Video 7

groups, which can be either static or a dynamic runtime characteristic, depending on the
application. In the latter case, it is more challenging to find optimal weights, and it may be
necessary to implement dynamic weight adjustments. For our application, for simplicity, it
is assumed that the packet distribution is static.

4 Experimentation setup

The goal of this section is to give an overview of the tools and the implementation used
for the experiments. Section 4.1 describes the Mininet tool used for simulating the network
environment, and Section 4.2 describes the implementation of the client and server.

4.1 Mininet

For the experimental setup, simulations were performed using the Mininet tool. Mininet
allows the creation of a network topology with multiple hosts connected together with
specified link parameters [6].

As the tests include a single client and a single server, the resulting network can be very
simple: two hosts connected via a switch, illustrated in Figure 4. An actual network would
likely be more complex, but the overhead added by routers and other equipment can be
effectively modeled simply with link delay and background traffic.

. 3

Host 0 Host 1
Client

Figure 4: Network topology

To simulate network usage by other applications, background traffic is generated using
the iPerf tool [7], which generates UDP traffic that occupies a provided bandwidth (in
bits/second) with constant packet rate (CPR).

The test scripts that start the simulation automatically invoke iPerf, which is done via
the Python API for the Mininet tool. Thus, the background traffic is consistently started
and stopped for each simulation without manual setup.

4.2 Go client and server

For this study, both the server and the test client were implemented using the Go program-
ming language and the quic-go library. This section focuses mostly on the server, where the
scheduling logic resides.

The server uses a single stream handler thread for every connection, which handles
the requests which are received asynchronously. The main thread continually listens for
incoming connections, spawning a new stream acceptor thread and a stream handler thread

8 Nattis, Fonseca and Melo

Client .
Main thread
connected ‘

-
Creates thread for
each connection created

MNew stream Stream acceptor
—_—

received thread TCreates single

stream handler

thread

Creates thread for
each stream accepted

requests thread 1

| 1
QUIC library [
Enqueues requests
Application StreTﬁer;adndler
fesponses (Task scheduler) Filesystem

Figure 5: Server architecture overview

Application lewvel Stream listener ‘ ‘ ‘

for every connection. The stream acceptor listens for incoming streams, spawning a stream
listener thread for each. Each stream listener enqueues the requests into the stream handler
thread. Figure 5 shows a diagram of the server architecture.

A sequence diagram shown in Figure 6 exemplifies the interaction between the server
components. The server receives a connection, followed by a stream, and then two requests
on that stream. The requests are then enqueued for handling and processed later, producing
responses which are sent to the client. After this, the stream and connections are closed by
the client.

The test client is designed with the goal of testing the scheduling policies. It simulates
playback by generating requests in intervals of one second, which correspond to the time
the playback of a single segment takes, and collects statistics to allow plotting.

Each request contains information for locating which tile to serve — the segment number
and tile number —, the priority group to use — high or low —, and the request timeout.

The request timeout is provided by the client to prevent the server from responding to a
request which is no longer valid: if the playback of a segment has already began, the client
no longer accepts tiles for the segment, and transmitting these would be unnecessary. In our
implementation, the server optimistically assumes that the time between the client sending
a request and the server receiving it is significantly smaller than the request timeout. This
allows the server to implement the timeout by simply comparing it to the time elapsed since
the request was received in the server side. A more sophisticated approach could estimate
the client-server latency to compensate for this time.

Request Scheduling for 360° Video 9

)
(@)
Net MainThread |
' —_—
I I
' Receiving connection_ |
—_—

Createsthread _ | StreamAcceptor ‘
)
| Creates thread | streamistener
|
|
.
7

| Receiving stream

Creates thread

! StreamHandler

I

! .
Engueue request 1
Enqueue request 2

| Receiving request 1

' Receiving request 2

Handle request 2

|
| Send response 2

Handle request 1

| Send response 1

| Closing stream

| Closing connection) | !
' e T !) |
r”‘lf\l | MainThread | | StreamAcceptor ‘ | StreamListener | | StreamHandler |

Figure 6: Sequence diagram for sending responses

5 Numerical results

This section presents the numerical study carried out to assess scheduling policies deployed
to manage queues fed by immersive video content.

We emulated an immersive video application using the client-server architecture. The
client-side emulates a video player that deals with tile-based immersive content, i.e., it
requests, stores and stitches tiles of video segments and buffers them in a finite queue.
Stitched segments are dequeued accordingly and their completeness is assessed, i.e., the
missing ratio of each segment is recorded.

The server-side emulates a video server that manages all files related to the content. This
server enqueues incoming requests and processes them accordingly. Each request carries a
playback deadline that turns them disposable at the server-side.

Two hosts are created and connected through a dedicated link that receives the appli-
cation and background traffic. The background traffic emulates other applications’ traffic,
generated on both ends. In the following, we present the networking factors and their setups
to establish the resources used to move requests and data in both directions.

10 Nattis, Fonseca and Melo

5.1 Scenarios

This subsection describes the numeric results obtained when running the simulations using
the scenarios presented in the Table 1. These scenarios were defined with the goal of
approximating last mile content delivery and are referenced in later subsections. In each
scenario, the channel has a constant 100 Mbps bandwidth, which is shared between the 360°
video application communication and an emulated background load. Each scenario defines
a background load, either 10% or 30% of the total bandwidth.

The link delay, which is defined as either 10 ms, 16 ms, or 24 ms, models a near-instant
communication scenario, an intermediate scenario, and a scenario where the equipment is
busy and therefore the communication has greater latency. Link loss rate is 2% for the
results presented in this document unless noted otherwise.

Table 1: Experimentation scenarios

Scenario Background load Delay

#1 10% 24 ms
#2 30% 24 ms
#3 10% 16 ms
44 30% 16 ms
#5 10% 10 ms
#6 30% 10 ms

Another parameter that affects the policies’ behavior is the distribution of priorities
across the packets. In Figure 7 the tile missing ratios for high and low priorities are shown,
where 50% of packets are low priority and 50% of packets are high priority.

high priority o low priority
Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5 Scenario #6

go{ % 1 & %]]]]
3 60+ 1 . . - . .
8 %
g | : i ;
.§4o-] 1] | |
: 3 : ¢ # +
© +
"] F ;¥ 1 . . § . Q
& t % &=
2 E - -
04 i i i i &] Fy

FIFO SP WFQ FIFO SP WFQ FIFO SP WFQ FIFO SP WFQ FIFO SP WFQ FIFO SP WFQ

Figure 7: Tile missing ratios for each scenario when 50% of packets are high priority

Request Scheduling for 360° Video 11

In Figure 8 the tile missing ratios are shown when 70% of packets are low priority and
30% of packets are high priority. The WFQ weights have been compensated due to the
difference in the packet distribution: this is explained further in Section 5.5.

high priority o low priority
Scenario #1 Scenario #2 Scenario #3 Scenario #4 Scenario #5 Scenario #6

80 -

5@ %é]

(=2}
o
L

Py
o
L

Tile missing ratio (%)

N
o
i
@ .
(]
L

¥ 3 B -

0 i 4 = i L] i & 4 &

FIFO SP WFQ FIFO SP WFQ FIFO SP WFQ FIFO SP WFQ FIFO SP WFQ FIFO SP WFQ

Figure 8: Tile missing ratios for each scenario when 30% of packets are high priority

It is important to note that in the given scenarios, there’s a strong correlation between
the link delay and the tile missing ratio. On the order hand, the increase of background
load from 10% to 30% does not result in a measurable increase in the tile missing ratio.
From this, it is possible to conclude that the link delay is the bottleneck for the tile missing
ratio in the given scenarios.

The Table 2 shows the combined tile missing ratio, which takes into account all packets
regardless of priority. Neither the distribution of packet priority nor the applied policy
has a measurable impact on the combined tile missing ratio; although intuitive, this result
is important for demonstrating that the connection quality does not degrade from the
implemented policies.

Table 2: Combined tile missing ratio summary

50% high priority packets 30% high priority packets

Scenario FIFO SP WFQ FIFO SP WFQ
#1 52% 52% 53% 54% 52% 53%
#2 54% 52% 52% 54% 52% 53%
#3 34% 33% 33% 34% 33% 33%
#4 34% 33% 33% 34% 33% 33%
#5 16% 15% 15% 15% 16% 16%
#6 15% 14% 15% 16% 14% 15%

12 Nattis, Fonseca and Melo

5.2 Impact of initial playback latency

When simulating a playback, the time between the first request and the start of the playback
is defined by a parameter. This section evaluates the impact of this parameter, called initial
playback latency, over the experimental results.

A small initial playback latency corresponds to an increased tile missing ratio of the
first segment: a lower latency provides a shorter time window for the communication before
the segment is played back — less time to buffer segment —, therefore allowing less tiles to
be received. Figure 9 shows the relation between initial playback latency and tile missing
ratio when a single segment is played.

—— fifo, high priority sp, high priority —— wfq, high priority
— . fifo, low priority sp. low priority == wfq, low priority

1004

80

60 1

40

Tile missing ratio (%)

201

0 200 400 600 800 1000
Initial playback latency (ms)

Figure 9: Impact of initial playback delay, single segment

All simulations in this section use the Scenario 3 defined in Section 5.1. 50% of tiles are
low priority, and 50% high priority.

However, this only affects the first segment. The time to receive other segments is
determined by the time that the playback of the previous segment takes, which in the case
of the simulations is fixed at 1000 ms, as the buffering always includes only a single segment
due to drawbacks caused by buffering of large durations, as discussed in the Section 2.1.

Because the total tile missing ratio is an average of the tile missing ratios of the segments,
the impact of the initial playback latency on the total tile missing ratio diminishes as the
number of segments increases.

Figure 10 displays the relationship between initial playback latency and tile missing
ratio for playback with multiple segments. With 20 segments, the tile missing ratio is less
correlated with the initial playback latency than seen with one segment, although there is
still some correlation visible for SP and WFQ using high priority, where the tile missing
ratio slightly drops as the initial playback latency increases. With 76 segments, there is no
apparent correlation.

Therefore, when a test spans 76 segments, the initial playback latency can be chosen
arbitrarily without significantly affecting the overall experimental results. Unless otherwise
noted, the simulations on this document will use an arbitrary fixed value for initial playback
latency.

Request Scheduling for 360° Video 13

—— fifo, high priority ~—— sp, high priority —— wfq, high priority —— fifo, high priority —— sp, high priority ~—— wfq, high priority
— - fifo, low priority - sp, low priority —— wfq, low priority — = fifo, low priority ~ —~—- sp, low priority —— wfq, low priority
1001 1004
80 1 80
g - g .
° - Rl S o i P Pad
g ol N N e, SO0 e -
e S L N o \ , e e DO,
o -, o SN N - o .~ e
£ - 2 S — NPT L] 2 ~— e
a e’ - a
‘E 40 ‘E 40
@ 2 === ==
E = = TN E = ==
S
201 w]
—_— . — .
0 T T T T T T 0 T T T T T T
0 200 400 600 800 1000 0 200 400 600 800 1000
Initial playback latency (ms) Initial playback latency (ms)
(a) 20 segments (b) 76 segments

Figure 10: Impact of initial playback delay, multiple segments

5.3 Impact of loss rate

This section evaluates the impact of the link loss rate over the tile packet missing ratio.
It is important to note that, because of QUIC’s reliable delivery mechanism (see Section
2.2.1), a lost IP packet does not immediately correspond to a missing application packet.
Instead, the correlation is caused by an increase in latency, as the packet is only received
when a retransmission is, at a later time, received.

The correlation between link loss rate and tile missing ratio is shown in the Figure 11.
The Scenario 3 of Section 5.1 is used. 50% of tiles are low priority, and 50% high priority.
The figure is shown zoomed out, with the loss rate in the interval 0-25%, and zoomed in,
with the loss rate in the interval 0-5%.

—— fifo, high priority —— sp, high priority —— wfq, high priority —— fifo, high priority —— sp, high priority —— wfq, high priority
——. fifo, low priority —~—- sp, low priority ==+ wfq, low priority ——. fifo, low priority ——- sp, low priority ==+ wfq, low priority
100 P 1004
At
/f/
80 1
S S
2 o0 2
g g
= =
£ £
a @
£ 404 £
2@ <L
S S
20
ol
0 5 10 15 20 25 0 1 2 3 4 5
Loss rate (%) Loss rate (%)
(a) Zoomed out: 0-25% (b) Zoomed in: 0-5%

Figure 11: Impact of loss rate

It is possible to see that the correlation between link loss rate and tile missing ratio is not

14 Nattis, Fonseca and Melo

linear. The low priority tile missing ratio initially has a much steeper increase for the SP and
WEFQ policies: as a result, an increase in loss rate exacerbates the priority differentiation.
However, after a certain point — about 5% —, the low priority tile missing ratio starts to
increase more slowly as it approaches 100%. From this point on, an increase in the missing
ratio actually reduces the priority differentiation (assuming SP or WFQ policies are being
used).

The phenomenon that happens with lower link loss rates, where priority differentiation
is greater, can be explained by the order in which packets are sent over the wire: SP and
WEFQ transmit high priority packets early (near the start of the transmission) — in the case of
SP all high priority packets are sent early, and in the case of WFQ there are proportionally
more early high priority packets —, and early packets have a larger time window for being
eventually retransmitted. If a QUIC packet is submitted near the start of the reception
time window, it is more likely for there to be enough time for a retransmission to succeeded
in the future than if it were lost near the end of the reception time window. Figure 12 is a
visual representation of this phenomenon.

In this case, we consider that the attempt to transmit the packet always occurs earlier
than the start of the playback. This means that, in the case where there is “not enough
time to retransmit”, it actually means that the retransmission still causes a missing ratio:
in fact, the retransmission happens anyways — because once a submission is made, QUIC
will retransmit until everything is acknowledged. If a packet is so late that its transmission
is scheduled after its playback instant, however, the packet will not be transmitted, as the
server automatically detects the timeout and prevents the tile from unnecessarily using
network resources.

L1 .
U %, o, ke, %
o, " 0% e e,
/0% /};:S‘/ ?9@ fsf) 0[((?,7
W T, o, D &
S, KPR
% 2
(®)
Y%
(a) Early packet
) I
L]
%, %y, kA /VOzG
%, “ %,
K2 % %, Py,
% ’ Z 2
’
Sy (o]
/%@ ’f’oe
)
i

(b) Later packet

Figure 12: Visualization of differentiation exacerbated by loss rate

With a higher loss ratio this breaks down: while at first only low priority packets are too

Request Scheduling for 360° Video 15

late, eventually the higher latency caused by the early packets being retransmitted makes
it so that packets are initially submitted later, and even high priority packets are way too
late to have successful transmissions.

5.4 Impact of choice of WFQ weights

Choosing appropriate WFQ weights is important to the performance of that policy. As the
weight values get close to each other — close to 1:1 —, the policy approaches FIFO behaviour,
and as the weight values get farther apart, the policy approaches SP behaviour.

With the goal of measuring the impact of the weight selection, simulations were executed
with varying values of high priority weight. The low priority weight is fixed at 100. In each
simulation, the link has 100 Mbps of bandwidth, 10% of background load and 14 ms of link
delay. 50% of tiles are low priority, and 50% high priority.

The Figure 13 shows the results of the simulations. In one extreme, the 100:100 ratio
the policy performs as a FIFO, where there is no difference in tile missing ratio across the
priorities. As the difference increases, the tile missing ratio raises for the low priority and
lowers for the high priority.

60 1

50 q

404

—— high priority
=== low priority

Tile missing ratio (%)

201

7
K

LAATWARLS AL L It
104 SONPAMNAM 4] :.y,/\ A S /\J‘m\/,»

100 120 140 160 180 200
High priority weight

Figure 13: Impact of WFQ weights

The weights 120:100 (i.e., 6:5), unless otherwise noted, were chosen for the results in the
rest of the document: under the circumstances of this simulation, these are not too close to
either extremes, and therefore produce results distinct from both FIFO and SP policies.

It is necessary to note that some changes in circumstances may require adjusting WFQ
weights to keep the same relative fairness. In particular, Section 5.5 shows that fixed
WEFQ weights vary their behaviour as the distribution of requests across priorities changes,
requiring compensation.

5.5 Impact of request distribution across priorities

When requesting a segment, some tiles are allocated low priority, and some are allocated
high priority. This distribution affects both SP and WFQ.

16 Nattis, Fonseca and Melo

In SP, a lesser amount of high priority tiles allows the high priority tiles to be quickly
received at the start of the reception window. Any retransmissions then have a large window
to be received, reducing loss rate (a phenomenon similar to seen in what’s seen on Section
5.3).

In WFQ, the behaviour is more complicated. Each priority group is treated as a single
entity which is served by the WFQ scheduler. As such, if a group has less packets than
another, the actual time allocated per packet of the first priority group is increased.

For example, let’s consider a simplified scenario, where the scheduler splits up a deter-
mined duration of time between tiles, ignoring retransmissions. Consider the weights are
2:1, and there are 10 tiles of low priority, and 10 tiles of high priority. Also consider that
the total transmission time to be scheduled between the tiles is 30 ms.

In this example, 20 ms will be scheduled for the high priority group, and 10 ms for
the low priority group. This means that each high-priority tile is allocated 2 ms, and each
low-priority tile is allocated 1 ms.

However, if we change the distribution from 10 tiles of low priority and 10 tiles of high
priority (a 0.5 high priority ratio) to 15 tiles of low priority and 5 tiles of high priority (a
0.25 high priority ratio), these figures change. 20 ms are still allocated for the high priority
group, and 10 ms are still allocated for the low priority group. However, now each high
priority tile is allocated around 2.3 ms, and each low priority tile is allocated 4 ms.

By changing the distribution of priorities, now each low priority tile is being allocated
more time than a high priority tile. This effectively means a priority inversion happens.

Although the example is a very simplified model of reality, this behavior is still seen
in practice. Figure 14 shows how the WF(Q behaviour changes drastically as the priority
distribution changes. On the simulations presented in this section, the Scenario 3 of Section
5.1 is used.

—— fifo, high priority sp. high priority —— wfq, high priority
—— fifo, low priority sp, low priority == wfq, low priority

80 1
60

401
>

Tile missing ratio (%)

204

..
0 . ’ N o e en g g o

T T T T T T T
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
High priority ratio

Figure 14: Impact of priority distribution ratio
In order to counteract the influence of the priority distribution, it is possible to compen-

sate the WFQ weights. This keeps the actual ”time per packet” ratios fixed, however this
means it is necessary to coordinate WFQ weight selection with priority distribution. The

Request Scheduling for 360° Video 17

compensation works by adjusting the WFQ high priority weight, Wj(z), according to the
ratio of high priority tiles over all tiles, x, while the WFQ low priority weight, Wy, remains
constant.

The ratio of Wi(x) over (Wy + Wi(x)) is called the weight ratio, ¢1(x), as shown in
Equation 1. By starting from a known ¢(0.5), which is the weight ratio of high priority
when 50% of tiles are high priority, it is possible to calculate ¢ () for any given z, as shown
in Equation 2.

p1(r) = W/ow—f(ﬂa;l)(x) (1)
p1(z) =2z - 1(0.5) (2)

From ¢1(x), it is then possible to get Wi (z) for any = by solving Equation 3, derived
from Equation 1. By doing that, we adjust the weight ratio in proportion to the ratio of
high priority packets.

p1(z) - Wo
1 —p1(x)

For this section, Wy = 100 and ¢1(0.5) = <, which produces W1(0.5) = 120. We can
derive Wi (z) from these values, arriving in Equations 4 and 5.

Wi(a) = (3)

o) = =)

100 - 1 () 1200z
W = p—
) == " o1

()

The Figure 15 shows the behaviour with the WFQ compensation. The curves for other
priorities are the same for Figures 14 and 15.

—— fifo, high priority —— sp, high priority —— wfg, high priority
~— fifo, low priority sp, low priority == wfq, low priority

80

el s WLV O R N L YA e
30 A
. M
104

0

] 7 1

70 T
AT

60 \ A N TN e

—_ v

X v v e

< 'l‘\ A SV

.g VA

© % ‘,'\,../ *

o 4 2 /n hack

2400 Ly ‘\, N3

@

@

€

2

E

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
High priority ratio

Figure 15: Impact of priority distribution ratio with compensated WFQ weights

18 Nattis, Fonseca and Melo

It is possible to see that the compensated WFQ behaves much better, without priority
inversion. The cost for this compensation comes as either the requirement for a fixed
priority distribution known by the server beforehand — as done in our case —, or additional
complexity by implementing some form of dynamic weight calculation.

6 Conclusion

The results presented in this paper allow a comparison of advantages and drawbacks of
each of the three scheduling policies — FIFO, SP, and WFQ — in the context of 360° video
applications. These results show that both SP and WFQ outperform FIFO when delivery
time of regions inside the field of view is preferred: they better utilize the channel to deliver
content of higher significance to the user.

When comparing SP and WFQ), the greater flexibility of WFQ can be seen as the weights
are adjusted, but the need to tune these weights introduces complexity. While SP does not
require further configuration, WFQ needs to either know the ratio of the priorities across
request beforehand to use static weights, or to be extended with a more complex dynamic
weight adjustment.

References

[1] J. van der Hooft, H. Amirpour, M. T. Vega, et al., “A tutorial on immersive video
delivery: From omnidirectional video to holography,” IEEE Communications Surveys
& Tutorials, vol. 25, no. 2, pp. 1336-1375, 2023. DOI: 10.1109/COMST.2023.3263252.

[2] S. LaValle, Virtual Reality. Cambridge University Press, 2019. [Online]. Available:
https://msl.cs.uiuc.edu/vr/web.html.

[3] J. Iyengar and M. Thomson, QUIC: A UDP-Based Multiplexed and Secure Transport,
RFC 9000, May 2021. DOI: 10.17487/RFC9000. [Online|. Available: https://www.rfc-
editor.org/info/rfc9000.

[4] M. Seemann, The quic-go protocol suite. [Online]. Available: https://quic-go.net/
docs/.

[5] J.Iyengar and I. Swett, QUIC Loss Detection and Congestion Control, RFC 9002, May
2021. por: 10.17487/RFC9002. [Online|. Available: https://www.rfc-editor.org/
info/rfc9002.

[6] M. P. Contributors, Mininet overview. [Online]. Available: http://mininet . org/
overview/.

[7] iPerf Contributors, iPerf - The ultimate speed test tool for TCP, UDP and SCTP.
[Online]. Available: https://iperf.fr/.

