
UNIVERSIDADE ESTADUAL DE CAMPINAS

INSTITUTO DE COMPUTAÇÃO

SQISign:
A Post-Quantum Signature

Scheme
D. Santos J. López

Relatório Técnico - IC-PFG-24-09

Projeto Final de Graduação

2024 - Julho

The contents of this report are the sole responsibility of the authors.
O conteúdo deste relatório é de única responsabilidade dos autores.



SQISign:

A Post-Quantum Signature Scheme

David Afonso Borges dos Santos∗ Julio López∗

Abstract

This work is a study about the post-quantum signature scheme SQISign, one of the can-
didates in the NIST Post-Quantum Cryptography Standardization contest. The SQISign al-
gorithm assumes the hardness of finding a path in supersingular isogeny graphs and uses the
Deuring correspondence to operate in the quaternion algebra world during signature and in the
elliptic curves world during verification. Among the other candidates in the same category,
SQISign has relatively small public key and signature sizes, which is an important advantage.
The recent SIDH attacks [CD22] showed new ways of efficiently representing isogenies. This fact,
resulted in some new variants of SQISign, now using 2, 4, and 8-dimension isogenies. Among the
available variants, we are going to discuss SQISign2D-West [Bas+24] and SQISignHD [Dar+23].

1 Introduction

Nowadays, cryptographic algorithms uses go beyond the traditional and most straightforward usage
of simply encrypting and decrypting information. They can be used to build up more complex
schemes, such as signature schemes, which can be used to prove the identity of a user [FS87].

The algorithms in use today can be divided into two groups, the symmetric algorithms, in which
the users share a secret piece of information prior to the use of the algorithm, and the asymmetric
algorithms, where such sharing of information is not needed. Usually, asymmetric algorithms are
based on mathematical problems, which are considered computationally hard, meaning that if a
solution is not available, it is still possible to use algorithms to find a valid solution, but the time
necessary using the most optimized algorithms would still be prohibitively long. This happens at
the RSA algorithm which assume factoring a large number is computationally hard and at the
elliptic curves based algorithms which have an equivalent assumption.

As of today, there has already been developed an algorithm, the Shor’s algorithm [Sho99],
which can factorize large numbers and compute discrete logarithms in polynomial time provided
the existence of a quantum computer. As a result, as soon as a quantum computer is commercially
available, the cryptographic algorithms which are based on the problem of factoring a large number
or on the problem of computing discrete logarithms and at equivalent problems will be efficiently
broken.

Since this possibility only increases over time, it is necessary to find new cryptographic algo-
rithms that would be resistant even against quantum computer attacks. With that in mind, the
National Institute of Standards and Technology (NIST) started the process to select, evaluate and
standardize post-quantum algorithms. In 2022, NIST selected some algorithms to become stan-
dard, among the selected digital signature algorithms, CRYSTALS-DILITHIUM and FALCON are
both lattice based algorithms. This dependence on lattices became a reason for an additional

∗Instituto de Computação, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil

1



2 D. Santos e J. López

call for digital signature algorithms, where the SQISign algorithm is taking part. SQISign is the
only isogeny based algorithm in this new call and has public key and signature sizes small when
compared to the other signature algorithms in the contest, which is a significant advantage.

In this work, we present a study about the SQISign algorithm. We gather the elements and
functioning principles that are necessary to understand how SQISign work. We talk about some
SQISign implementations, some of its weaknesses and how new algorithms using isogenies are being
built targeting these weaknesses.

In Section 2 there will be a brief introduction to the mathematical fundamentals necessary to
understand the algorithm, then in Section 3 there will be a discussion about some of SQISign’s
building blocks. In Section 4 the SQISign protocol and the key generation, signature and verification
will be discussed. The Section 5 talks about the standard implementation submitted to NIST. The
Section 6 mentions other implementations of SQISign. Finally, in Section 7 the SQISign algorithm
will be compared to some recent SQISign based digital signature schemes.

2 Mathematical Fundamentals

For the signature module, it is necessary some definitions from elliptic curves and quaternion algebra
theories and the Deuring Correspondence, which allows establishing a relation between elements in
both.

For the verification module, it is only necessary some definitions from the elliptic curves theory
and the isogeny path problem in a super singular elliptic curve, which is considered resistant to the
Shor’s algorithm [Sho99].

2.1 Preliminaries

Firstly, it is necessary some definitions. The definitions below are from [IHH91].

We say that an integer number a divides another integer number b and denote by a | b if exists
another integer number c, such that a× c = b. If a does not divide b we denote by a ∤ b, and there
exists an integer number r < a and an integer number d such that a× d+ r = b.

We denote by gcd(a, b) = (a, b) = g the greatest integer number g such that g simultaneously
divides a and b.

Given integers a, b and c, we say that a and b are congruent module c and denote by a ≡ b
(mod c) if c | (a− b).

We say that a set S = {x1, x2, ..., xm} is a complete residue system module m if, for all integers
a exists a unique element x in S such that a ≡ x (mod m). The set S is said to have cardinality
m if it has m elements.

The Chinese Remainder Theorem allows solving simultaneous congruences. For a set of integers
M = {m1,m2, ...,mn} relatively prime in pairs, and another set A = {a1, a2, ...an} it is possible to
find x ≡ ai (mod mi) for all i ∈ [1, n].

2.2 Finite Field Arithmetic

A finite set of elements with two operations, addition and multiplication, that satisfied certain
properties is called a finite field. Given a prime number, p, the set Fp = {0, 1, ..., p − 1} together
with the operations a+ b := a+ b (mod p) and a× b := a× b (mod p), for a and b in Fp is a finite
field.

For SQISign, specifically, there is interest in finite fields over p2 where p is a prime number. Since
the primes used in SQISign are all in the form p ≡ 3 (mod 4), an element c ∈ Fp2 can be represented



SQISign 3

by a complex number c = a + b × i where a ∈ Fp and b ∈ Fp. The operations performed on Fp2

using this representation are similar with usual complex number operations. After performing the
complex number operations, however, the residue modulo p is taken from both the real part a and
the complex part b of the resulting complex number to get the correspondent field element.

2.3 Elliptic Curves

The SQISign algorithm has special interest in Montgomery Elliptic curves. They can be defined
over finite fields Fq and are represented by equations in the form of

By2 = x3 +Ax2 + x, (1)

where A and B are field elements with B(A2 − 4) ̸= 0.
For SQISign specifically, the curves are defined over fields Fp2 . The points that satisfy equation

(1) congruent module p2, together with the point at infinity represented by ∞ is a finite set. It
is possible, then, to define operations over the elements of this set. More specifically, taking two
distinct points P and Q we can define the operation of point addition using the coordinates of both
points. We can also define the operation of point doubling using the coordinates of a point P in
the curve.

In order to gain efficiency, it is common to represent elliptic curves using projective coordinates
and to perform operations using only the x-coordinate of the points. The equations for point
addition and point doubling are explained in detail at [CS17]. The equation of point addition
from [CS17], where X⊕ and Z⊕ are the coordinates of the point P + Q and X⊖ and Z⊖ are the
coordinates of the point P −Q, is reproduced below

X⊕ = Z⊖[(XP − ZP )(XQ + ZQ) + (XP + ZP )(XQ − ZQ)]
2,

Z⊕ = X⊖[XP − ZP ](XQ + ZQ)− (XP + ZP )(XQ − ZQ)]
2,

and the equation of point doubling from [CS17], where XP and ZP are the coordinates of the point
and A is the A coefficient of the Montgomery Elliptic Curve where the point lies is reproduced
below

X[2]P = (XP + ZP )
2(XP − ZP )

2,

Z[2]P = (4XPZP )(XP − ZP )
2 + ((A+ 2)/4)(4XPZP ).

With point addition and point doubling, it is possible to multiply a point by a scalar using a
sequence of point additions and point doublings. The method chosen to perform the multiplication
by scalar in SQISign is the Montgomery ladder, described also at [CS17]. Finally, the operations
of point addition and multiplication by scalar together with the set of points that satisfy equation
one is a finite group.

Every elliptic curve has a unique associated value called j-invariant with equation as shown
below

j(EA,B) =
256(A2 − 3)3

A2 − 4
. (2)

2.4 Isomorphisms

It is possible, then, to create maps between elliptic curves. A non-constant map ϕ between two
different elliptic curves E1 and E2 such that j(E1) = j(E2) is called an isomorphism. Then, there
is a unique map ϕ−1 called the inverse of ϕ such that ϕ−1(ϕ(E1)) = E1.



4 D. Santos e J. López

2.5 Isogenies

If the map ϕ between two different curves E1 and E2 is such that ϕ(E1(∞)) = E2(∞) and j(E1) ̸=
j(E2), ϕ is called an isogeny. The set of points S = {P ∈ E1|ϕ(P ) = E2(∞)} is called the kernel
of ϕ.

The isogeny is said to be separable if the degree of the isogeny is equal to the number of elements
in its kernel [Feo+22]. We also have that for every finite subgroup G of E there is an associated
separable isogeny unique up to isomorphims with kernel G [Feo+22].

For every isogeny ϕ of degree n exists a map ψ, also with degree n, such that ψ(ϕ(E1)) is equal
to the multiplication by n map in E1. An isogeny with degree n prime is called an n-isogeny. If n is
a composite number, which means there exists a set S of prime numbers such that n =

∏
seii , it is

possible to build the isogeny ϕ as a composition of smaller degree isogenies, ϕ = ϕ1 ◦ ϕ2 ◦ ...ϕi with
degree ϕi = seii . This is an important feature for the computational aspect of evaluating isogenies,
which will be discussed later.

2.6 Torsion subgroup

In [Cha+23] is defined the m-torsion subgroup of an elliptic curve E, E[m], as the subset of points
P in E, such that [m]P = ∞. It is also said that there are non-unique points R and S that generate
E[m]. The SQISign algorithm has routines to find a deterministic basis for such groups.

2.7 Endomorphisms

There is, finally, the case where the map ϕ is from an elliptic curve E to itself, ϕ, in this case, is
called an endomorphism. From [Sil09] chapter III.4, we can define operations using endomorphism,
where, for two endomorphisms ϕ and Φ the sum is given by

(ϕ+Φ)(P ) = ϕ(P ) + Φ(P ),

and the multiplication is given by composition

(ϕΦ)(P ) = ϕ(Φ(P )).

The finite group with the endomorphisms of an elliptic curve E with the operations described
above is the endomorphism ring of E.

Then, as stated in [Sil09], for a curve E, the endomorphism ring of E can be equivalent to an
order in an imaginary quadratic field or an order in a quaternion algebra. If the latter holds, the
curve E is said to be supersingular. Since the SQISign algorithm uses supersingular curves, the
definition of a quaternion order will be given later.

In the rest of this document, as in [Cha+23] E0 will be used to refer to the curve y2 = x3 + x
which is supersingular since the prime numbers p used in the algorithm are such that p ≡ 3 (mod 4).

2.8 Quaternions

The SQISign uses quaternions to generate keys and generate signatures. Quaternions and their
properties are defined at [Voi21]. They are 4 dimension vectors generated by the elements {1, i, j, k}
with the following multiplication rules

i2 = a, j2 = b, ij = −ji = k,

where the values chosen for a and b are −1 and −p, respectively.



SQISign 5

It is also necessary some basic operations using quaternions. The conjugate of a quaternion
α = w + xi+ yj + zk is

ᾱ = w − xi− yj − zk,

the trace is

tr(α) = tr(ᾱ) = α+ ᾱ = 2w,

and the reduced norm is

nrd(α) = nrd(ᾱ) = αᾱ = w2 + x2 + p(y2 + z2).

The definitions of lattice, order, and ideal are all from [Cha+23]. A lattice is defined by a basis
of linear independent quaternions, and elements in the lattice are represented using vectors in this
basis, where the coefficients of these vectors are all integers. If the lattice is also a subring, it is an
Order and, for an order Oa, if it does not exist Ob such that Oa ⊂ Ob, we call Oa a maximal order.
From [Feo+22], an Eichler order is the intersection of two maximal orders.

Then, an ideal is a sublattice of an order. It is important to define the left-order of an ideal
OL(I) = {α|αI ⊂ I} and equivalently the right-order of an ideal OR(I). The ideal is called the
connecting ideal of OL and OR. An ideal has a norm equal to the greatest common divisor among
its elements. From [Cha+23] we always can represent an ideal I as I = OL(I)α + OL(I)nrd(I)
for some α ∈ OL(I) which has the following notation Oα + Onrd(I) = O⟨α, nrd(I)⟩, this is an
important aspect to be able to translate ideals into isogenies and will be mentioned again later on.
We say that two ideals I and J are equivalent if there exists β such that I = Jβ.

2.9 Deuring correspondence

From the definition of supersingular elliptic curves [Sil09], we have that the endomorphism ring of
an elliptic curve E is equivalent to a quaternion maximal order. For two elliptic curves E1 and E2

with endomorphism rings End(E1) and End(E2) and correspondent quaternion orders O1 and O2

there is also an equivalence between an isogeny ϕ : E1 → E2 of degree n and the ideal I with norm
n and left order O1 and right order O2.

2.10 Computationally Hard Problems

The SQISign algorithm security is based in two mathematical problems. The first one is the
endomorphism ring problem, the second is the isogeny path problem. As of today, both problems
are considered computational difficult for both traditional and quantum computers, taking a long
time to find a suitable answer using the known algorithms. [Wes22] proves that these problems are
equivalent under polynomial reduction and also are equivalent to the problem of finding an ideal
connecting two maximal Orders where the norm of the ideal is among the numbers of a set N .

2.10.1 Supersingular Isogeny Graph Path Problem

For a finite field Fp2 there is a limited number of different j-invariants where each of them represent
an isomorphism class. Among the available j-invariants,

⌊ p
12

⌋
+ ϵ where ϵ ∈ {0, 1, 2} represent

supersingular elliptic curves isomorphism classes. Choosing a prime l, different from p, then, it is
possible to construct a graph where, each vertex is a j-invariant representing a supersingular elliptic
curve isomorphism class and each edge is an l-isogeny from one class to another. The resulting



6 D. Santos e J. López

Figure 1: 2-isogeny graph for prime p=431, image from [Cos19]

graph is optimal expander [Wes22]. The problem is, given two vertexes in the graph, find a path
between them. An image illustrating an isogeny graph is shown in Figure 1.

2.10.2 Endomorphism Ring Problem

The Endomorphism Ring Problem, as stated in [Wes22] is, given an elliptic curve E, find four
endomorphisms that can generate the endomorphism ring End(E) as a lattice.

2.10.3 Quaternion Equivalent Problems

The Endomorphism ring problem and the isogeny graph path problems have equivalent quaternion
problems also discussed in [Wes22]. An expected polynomial solution to the quaternion equivalent
of the isogeny path problem is known and is described at [Koh+14]. This algorithm is known as
KLPT and some versions of it are used both in the key generation and signature steps of SQISign.

3 Algorithm Building Blocks

The SQISign algorithm uses the mathematical elements described in Section 2 in its modules, so
it is necessary to be able to represent and perform operations on them. In this section, we discuss
evaluating an isogeny on a curve point the algorithm for finding equivalent quaternions and how
to translate between ideals and isogenies.

3.1 Computing Isogenies in SQISign

In many steps of the algorithm, it is important to be able to evaluate an isogeny on a point of an
Elliptic Curve efficiently, as well as to obtain the isogeny codomain. In the algorithm specifica-
tion [Cha+23] they have formulas to compute 2-isogenies and 4-isogenies.

In the case of odd-prime degree isogenies, it was chosen to use the
√
V élu’s formula to evaluate

the image of a point. However, the complexity of this algorithm increases significantly as the size
of the prime also increases. As a result, it is only possible to use

√
V élu’s formula on isogenies with



SQISign 7

degree with sufficiently small prime factors (smooth). For an exposition about computing higher
degree isogenies refer to [Ber+20].

3.1.1 Computing Quaternions in SQISign

The equivalences between supersingular elliptic curves and quaternion algebras described by the
Deuring Correspondence allows performing part of the desired computations using quaternions.
Specially, the KLPT algorithm [Koh+14] used both in the key generation and in verification, has
as input an ideal I and allows obtaining an ideal J equivalent to I with different norms, this is done
basically solving norm equations in some special situations. More specifically, there is the need to
solve norm equations in p-extremal orders (defined in [Cha+23], here it is sufficient to know that
the O0 equivalent to E0 is one of this p-extremal orders), in Eichler orders and in a left O-ideal, the
last one can be performed combining the solutions of both the other situations using the Chinese
Remainder Theorem [Cha+23]. There are two versions of KLPT used in SQISign, the first one,
used in key generation is called KeyGenKLPT solves p-extremal order norm equations. The second
version, used in the signature, is called SigningKLPT and solves norm equations of left O-ideals.

3.2 Converting Between Ideals and Isogenies

Here we are going to discuss how to obtain the equivalence between ideals and isogenies, starting
from an ideal I connecting two orders O1 and O2. As stated in [Cha+23] an element α ∈ O1

corresponds to an endomorphism of the curve E1 where End(E1) is the endomorphism ring of E1,
equivalent to O1. It is possible then to evaluate α in the points of E1. The set of points in E1 that
evaluates to ∞ under all elements of I is the kernel of ϕI the isogeny associated with I. Since we
can represent I as O1⟨α, nrd(I)⟩ we have the following equation that allows us to translate from
an ideal I to E[I] the kernel isogeny ϕI

E[I] = kerα ∩ E[nrd(I)].

There are two possible situations. The first one, I is a left-O0 ideal. In this case, it is easier
to find the equivalent isogeny. After finding an element of O0 that generates this representation
O0⟨α, nrd(I)⟩, performing matrix operations using values that can be precomputed, it is possible
to find a vector that gives the coefficients to calculate a generator of the kernel of E[I] using the
basis of E[nrd(I)].

The second one, O1 is an order different from O0 and I has a large norm le where e = fg
and l is a prime number. In this case, the conversion is performed in a series of g steps. In each
step, an ideal of norm lf is used to calculate an isogeny of degree lf using torsion groups basis and
elements from the ideal left-order. The coefficient used to obtain the generator of the isogeny of
the current step is used as part of the isogeny compression that is one of the algorithms output.
The parameters l and f are implementation choices, and they have influence on the algorithms’
performance.

In order to obtain the ideal equivalent to an isogeny we need a point P that generates the
isogeny and two endomorphisms. Since there is interest only in translating isogenies starting from
E0 the values of the endomorphisms are precomputed and the translation can be done using a
couple of matrix operations.



8 D. Santos e J. López

Figure 2: SQISign protocol, image from [Cha+23]

4 The SQISign algorithm

The SQISign algorithm can be divided in three modules. The first one allows generating a random
pair of public and private key. The second one allows using the private key to generate a signature.
The third one, given a message, a signature, and the correspondent public key, allows verifying the
authenticity of the signature.

4.1 SQISign protocol

The SQISign algorithm aims to allow an agent here named Prover to interacts with another agent,
the Verifier, and convince them about the Prover’s identity revealing the least amount of information
possible. In order to achieve this goal, first, the Prover randomly generates an isogeny ϕ from the
curve E0 to another curve EP and publishes EP as his public key. Then, he generates another
isogeny ψ from E0 to a random curve E1. In this step called commitment, the Prover sends the
Verifier the curve E1. Receiving this information, the Verifier generates an isogeny θ from E1 to
another randomly generated curve E2 and sends θ to the Prover as a challenge, the purpose of this
step is to prevent the Prover from cheating. In the final step, the Prover uses all the isogenies to
calculate ω = ϕ̂ ◦ ψ ◦ θ from EP to E2. The Verifier, finally, checks if ω is indeed an isogeny from
EP to E2 and if θ̂ ◦ ω is cyclic and accepts the signature if so, or rejects otherwise. In order to
remove the interaction between the Prover and the Verifier, it is possible to use the Fiat-Shamir
transform [FS87] where the Prover uses a function with random/pseudo-random output to generate
the challenge, here the function used isH(msg,E1)H being a hash function, E1 being the codomain
from the commitment isogeny and msg being the message to be signed. An image illustrating the
SQISign protocol is shown in Figure 2.

4.2 Key Generation Module

The key generation algorithm is described at [Cha+23] Algorithm 25 and a simplified version is
reproduced in Algorithm 1. As described in the algorithm, the steps necessary to generate the
pair secret key public key is, first randomly choose a prime number and generate an ideal with
norm equal to this prime number. Then, since this ideal cannot be used in the

√
V élu’s formula,

KeyGenKLPT is used to find a generator of an equivalent ideal that can be used. The generator is
used to calculate the ideal, and the ideal is used to compute the secret isogeny and the image curve.
Finally, using the secret isogeny it is possible to calculate a torsion basis in E2 and a point Q with
degree 2f . The resulting public key is the image curve and the private key will be the generator,
the torsion basis and the point Q.



SQISign 9

Algorithm 1 SQISign.KeyGen(1λ)

Input: 1λ where λ is the security parameter
Output: Secret signing key sk and public verification key pk
Output: A boolean value indicating whether computation succeeded

1: Set found := False counter := 0
2: while found = False and counter < SQISIGN keygen attempts do
3: counter := counter + 1
4: Select a random KLPT secret key prime size-bit prime Dsecret ≡ 3 (mod 4)
5: Set Isecret to be a random ideal of norm Dsecret

6: Use KeyGenKLPT to find α, generator of Jsecret ≃ Isecret
7: if not found then
8: Continue
9: end if

10: Use α to compute Jsecret
11: Use Jsecret and pre-computed parameters to obtain the secret isogeny φsecret with image

curve EA

12: end while
13: if found then
14: Use φsecret and pre-computed torsion basis information to compute torsion basis in EA

15: Use φsecret to find a point Q with degree 2f in EA

16: Use α, Q and the torsion basis in EA as secret key sk
17: Use EA as public key pk
18: end if
19: return sk, pk, found



10 D. Santos e J. López

4.3 Signature Module

The signature algorithm is described at [Cha+23] Algorithm 26 and a simplified version is repro-
duced in Algorithm 2. It is implemented in the function protocols sign which uses protocols commit
to generate an ideal correspondent to the commitment isogeny and uses protocols challenge to gen-
erate an ideal correspondent to the challenge isogeny. Then, both ideals are used to generate the
response. For the challenge isogeny and the response, the analysis will be about the Algorithm
26 [Cha+23].

The first step in protocols commit is to randomly generate two numbers a and b, these numbers
together with the values associated with computing endomorphism in E0 are used to calculate a gen-
erator of the commitment isogeny Icom, and then the function quat lideal make primitive then create
is used to find Icom.

The values a and b and other precomputed values are then used to generate an isogeny, and the
basis, which is part of the private key and was passed as a parameter, is evaluated in this isogeny.
The resulting curve is used to normalize E1 which is the codomain of the commitment isogeny.
Both E1 and Icom are then returned to protocols sign.

The function protocols challenge, as defined in the Algorithm 26 [Cha+23], starts generating
the kernel of the challenge isogeny using the curve E1 from the commitment stage and the message
that is going to be signed.

Then, the kernel is used to generate the isogeny ϕchall and the image curve E2. The kernel is
used to generate its coefficients in the basis (P1, Q1) generated in the commitment. Subsequently,
the coefficients are used to generate the ideal Ichall.

The next step is to generate a point P in E1 such that (Kernel, P ) is a basis of the torsion
subgroup E[Degreechallenge] and get the image of ϕchall(P ) through the challenge isogeny.

After, get a basis of the torsion subgroup E2[Degreechallenge]. Then use the basis and ϕchall(P )
to calculate b1, b2, s1 and s2.

Next, use ϕchall(P ) to compute the dual isogeny ˆϕchall, use the values of b1, b2, s1 and s2 and
ϕchall(P ) to compute a basis of the torsion subgroup E2[Degreechallenge]. Then get the image of
the second point in the basis through the dual isogeny and use this image to calculate r.

In the response, the ideals ¯Isecret, Icom and Ichall are used to calculate K, an ideal J equivalent
to K is calculated and if J has desired properties, J is converted to a compressed isogeny zip and
the values b1, b2, s1 and s2, r and zip are returned as the signature.

4.4 Verification Module

The algorithm for the verification is described in the SQISign specification [Cha+23] Algorithm 27
and reproduced in Algorithm 3. The function responsible for doing the verification is protocols verif
which receives as parameters a signature, a public key, a message, and an unsigned integer. The
function protocols verif first calls protocols verif unpack chall (Algorithm 28 [Cha+23]) and then
calls protocols verif from chall (Algorithm 29 [Cha+23]).

The function protocols verif unpack chall deterministically generates a basis for the elliptic
curve in the public key Epk it receives as a parameter, using the function ec curve to basis 2.

For NIST-I, signature zip has 14 10-byte integers, this values and the basis are used to calcu-
late an isogeny chain. First start with a curve E, a basis ⟨P,Q⟩ for E and one of the integers i.
Calculate a point of the kernel K = p + i × Q using the function ec ladder3pt. Use the function



SQISign 11

Algorithm 2 SQISign.Sign(sk, msg)

Input: Secret signing key sk and message msg
Output: Signature σ
Output: A boolean value indicating whether computation succeeded

1: Use sk to recompute secret isogenies Isecret and Jsecret
2: Commitment.
3: Randomly generate a secret ideal Icom
4: Use Icom to generate the kernel of the commitment isogeny
5: Use the kernel to generate the commitment isogeny φcom and image curve E1

6: Use precomputed basis and φcom to generate challenge basis
7: Challenge.
8: Use a hash function to generate Kchall the kernel of the challenge isogeny.
9: Use Kchall to generate φchall and the image curve E2

10: Use Kchall to generate the corresponding ideal Ichall
11: Find a point P such that (Kchall, P ) is a torsion basis in E1

12: Compute P ′ = φchall(P )
13: Use P ′ to compute b1, b2 and the coefficients s1 and s2 that will help the Verifier compute ˆφchall

14: Find Q′ such that ⟨P ′, Q′⟩ is a torsion basis in E2

15: Compute Q = ˆφchall(Q′) and r such that Kchall = [r]Q
16: Response.
17: Compute K = ¯Isecret · Icom · Ichall the response ideal
18: Find an ideal J equivalent to K such that J · ¯Ichall is cyclic
19: Compute the compressed isogeny zip corresponding to J
20: return (zip, r, (b1, s1, b2, s2))



12 D. Santos e J. López

ec eval even to compute the image curve of the isogeny and the image of the point P in the basis.
Finally, use the function ec complete basis 2 to generate a new basis for the image curve. This
process is repeated for each one of the 14 integers and then, in the end, the resulting image curve is
normalized generating a new curve E′ through an isomorphism θ and the point θ(P ) is calculated.
The function then returns E′ and θ(P ).

The function protocols verif from chall uses the image curve from the isogeny chain E′ and the
point P in E′ generated by the protocols verif unpack chall function to perform the verification.
First it calculates the basis of two isogenies, for NIST-I one of the isogenies, ϕ3, has degree 336

and the other, ϕ2, one has degree 275 , both starting in E′. Then, using the basis, it calculates the
kernel of both isogenies using ec ladder3pt. Then, it tests if ϕ2 is different from the curve received
as a parameter. It evaluates ϕ2, then evaluates an isogeny of degree 336 from ϕ2’s image curve,
the result is an isogeny of degree 275 × 336. The next step is to calculate a basis for this resulting
isogeny. Then the function calculates the challenge isogeny and its kernel K. Finally, calculate
Q× r and check if it is equal to the challenge isogeny kernel, if it is, the signature is valid and if it
is not, the signature is invalid.

Algorithm 3 SQISign.Verify(msg, σ, pk)

Input: A message msg, signature σ and pk the public key
Output: A boolean value indicating whether the verification passed

1: zip, r, s := σ
2: E2, Q2 := Decompressresp(zip,pk)
3: verified := DecompressAndCheckchall(s, E2, Q2,r,msg)
4: return verified

5 Implementation Aspects

5.1 Prime number choice

The SQISign algorithm has quite a few restrictions on the prime numbers that can be used. First,
in order to be able to use the elliptic curve E0 : y2 = x3 + x and its correspondent quaternion
order O0 = Z⊕ iZ⊕ i+j

2 Z⊕ 1+k
2 Z in the algorithm, E0 must be a supersingular elliptic curve. To

guarantee this property, it is necessary that p ≡ 3 (mod 4).

Then, in order to be able to use the
√
V élu’s formula discussed in Section 3, as mentioned in

the standard implementation [Cha+23], there is a slightly stricter restriction which imposes that
(p2−1) has sufficiently many smooth prime factors, which means they have sufficiently small prime
factors.

In order to be able to use 2 as the prime number in the ideal to isogeny translation, it is necessary
to have a large power of 2 dividing p2 − 1 [Cha+23]. All these restrictions makes it significantly
hard to find suitable primes to use in SQISign and to scale it to higher degrees of security.

5.2 Failure Cases

Some routines used in the Key Generation and Signature phases of the SQISign protocol are non-
deterministic, some of them can be made deterministic as mentioned in [Feo+20]. In special,
Algorithms 8, 9, 10, 13, 14, 15, 16, 17, 19, 20, 25 and 26 described at [Cha+23] all return a boolean
value indicating if the algorithm succeeded and in special, Algorithms 8, 10, 14, 15, 16, 17, 25 and



SQISign 13

26 all have loops with variables limiting the maximum number of iterations, assuming a solution
still has not been found. For the later case, the values limiting the number of iterations the loops
can have, are choices made during the implementation and represent a tradeoff between success
rate and time necessary to execute.

5.3 Constant Time

Functions where the execution time depend on the input can leak information about some secret
data. In particular, in SQISign, multiplication of a point in an elliptic curve by a scalar is im-
plemented using montgomery ladder. At each step, the use of masking helps keeping the time of
execution independent of the points and scalars that are being multiplied.

6 Standard Implementation

An implementation of the SQISign algorithm using the C programming language was submitted to
NIST together with the algorithm specification and is available in [Cha+23]. In this section, some
details about this implementation will be discussed. The NIST-I level of security parameters will
be used when convenient to illustrate some details of the implementation.

6.1 Parameters used in the algorithm

In Section 4.B.3 of its call for additional digital signature schemes 1, NIST defines five levels of
security for the algorithms which would be proposed. SQISign [Cha+23] implements levels 1, 3
and 5. The parameters used can be derived from the prime number p over which the elliptic curves
used in the algorithm will be defined and B the bound on the prime factors of T , which represents
the accessible torsion and is used for choosing some torsion basis and consequently isogenies that
are used in the algorithm. The values of p, in hexadecimal, and B for each level of security used in
the standard implementation are reproduced below

NIST I:

p =0x34e29e286b95d98c33a6a86587407437252c9e49355147ffffffffffffffffff

B =2000

NIST III:

p =0x3df6eeeab0871a2c6ae604a45d10ad665bc2e0a90aeb751c722f669356ea4684c

6174c1ffffffffffffffffffffffff

B =48000

NIST V:

p =0x255946a8869bc68c15b0036936e79202bdbe6326507d01fe3ac5904a0dea65faf0a

29a781974ce994c68ada6e1ffffffffffffffffffffffffffffffffffff

B =320000
1The NIST additional call for digital signature schemes is available at

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/call-for-proposals-dig-sig-sept-2022.pdf



14 D. Santos e J. López

6.2 Performance and Sizes

Regarding performance of the SQISign standard implementation, there is a benchmark script in
the files submitted to NIST which can be used to measure performance. In the algorithm specifi-
cation [Cha+23] they also performed some tests, the results are reproduced in Table 1.

Parameter set KeyGen Sign Verify

Reference implementation (with default GMP installation)
NIST-I 2′834 4′781 103
NIST-III 21′359 38′884 687
NIST-V 84′944 160′458 2’051

Reference implementation (with GMP –disable-assembly)
NIST-I 3′728 5′779 108
NIST-III 23′734 43′760 654
NIST-V 91′049 158′544 2′177

Assembly-optimized implementation for Intel Broadwell or later
NIST-I 1′661 2′370 37

Table 1: Performance achieved using the SQISign standard implementation, the unity of the values
shown is 106 CPU cycles on an Intel Xeon Gold 6338 CPU (Ice Lake), compiled on Ubuntu with
clang version 14. The table is reproduced from [Cha+23]

The key and signature sizes for levels of security I, III and V are also mentioned in [Cha+23]
and reproduced in Table 2.

7 Other Implementations

Implementations beyond the standard one were really hard to find. Being more specific, it was
found a paper with a C implementation using NIST I level of security [Lin+23] and a Sagemath
implementation with more educational purpose2. Since the performance of the Sagemath imple-
mentation is expected to be much worse than the standard one, it is not going to be mentioned.
The performance for [Lin+23] is shown in Table 3.

8 SQISign Based Algorithms

Besides SQISign, some other algorithms were proposed based on the same problems, but with dif-
ferent purposes. Among them there was Supersingular isogeny Diffie–Hellman key exchange (SIDH
or SIKE) which is an algorithm that allows two parties to agree on a secret piece of information.
For a friendly introduction to how SIKE works, refer to [Cos19].

2The Sagemath implementation is available at https://learningtosqi.github.io/

Parameter set Public key Secret key Signature

NIST-I 64 782 177
NIST-III 96 1138 263
NIST-V 128 1509 335

Table 2: Key sizes for NIST I, III and V level of security. Table reproduced from [Cha+23]



SQISign 15

Phase
Previous
work

This work
without precomp. Speedup with precomp. Speedup

Keygen 1491.4 1409.8 5.47% 1525.3 -2.27%
Sign 2371.4 2162.7 8.80% 1944.0 18.02%
Verify 36.7 27.4 25.34% 27.4 25.34%

Table 3: Performance achieved using the SQISign implementation of [Lin+23]. The unity of the
values shown is 106 CPU cycles on Intel(R) Core(TM) i9-12900K 3.20 GHz with TurboBoost and
hyperthreading features disabled. The table is reproduced from [Lin+23]

For the context of SIKE, however, the information exchanged between the two agents during
the protocol, together with higher extension fields, which allow representing efficiently arbitrary
isogenies could speed up the process of recovering the key. As a consequence, an attack such
as described at [CD22] was able to completely break SIKE and recover the secret information in
feasible time with everyday use computers.

The idea was later further developed and allowed the creation of new algorithms based on
SQISign using higher extension field mathematics. One of the new algorithms based in SQISign
is called SQISignHD [Dar+23] it has two versions, one using four dimension isogenies, which is
faster, and the other using eight dimension isogenies, which is more secure. Even though, as
mentioned by the authors of SQISignHD, as the dimension of the isogenies increase, computing
them also becomes exponentially costly, an algorithm using two dimension isogenies was not yet
proved secure. Recently, two algorithms SQISign2D-West [Bas+24] and SQISign2D-East [NO24]
were simultaneously proposed by different authors, both using two dimension isogenies. Since both
algorithms have similar properties, we will focus on one of them, SQISign2D-West.

In this section we discuss some differences between the SQISign specification submitted to
NIST in the Post-Quantum Cryptography Standardization [Cha+23], SQISignHD [Dar+23] and
SQISign2D-West [Bas+24]. For SQISignHD, as in the proposing paper, we say FastSQISignHD to
refer to the 4 dimension isogenies version.

8.1 Prime number choice

The SQISignHD algorithm also uses the elliptic curve E0 in its implementation, so it is necessary
to have p ≡ 3 (mod 4).

As mentioned in [Dar+23], the usage of higher dimension isogenies allows describing an isogeny
by listing only the image of a few well-chosen points. This improvement over SQISign allow the
choice of primes of the form p = clf l′f

′ − 1 with l ̸= l′ two primes, c ∈ N∗ small. In practice, l = 2
and l′ = 3. An example of prime used in FastSQISignHD for NIST-I is p = 13× 2126 × 378 − 1.

Among the other algorithms discussed in this section, SQISign2D-West has the most relaxed
restrictions on primes to be chosen. As SQISignHD [Dar+23] and SQISign [Cha+23] it also needs
that p ≡ 3 (mod 4) again, to make sure that the elliptic curve E0 is supersingular. This time,
however, the prime only has to be of the form p = c × 2e − 1 where c is a small cofactor, scaling
really well for higher security levels.

8.2 Output Sizes and Execution Times

As mentioned in [Dar+23], for the NIST-I level of security, the size of the signature generated by
the algorithm FastSQISignHD is 109 bytes, versus 177 bytes from the standard implementation of
SQISign is a significant improvement.



16 D. Santos e J. López

Regarding execution time, in the FastSQISignHD it was chosen to use the chain of isogenies
φ ◦ τ ◦ ψ̂ : E1 → E2 in the signing phase, where the isogenies represent the challenge isogeny, the
secret isogeny and the dual of the commitment isogeny, respectively. Then, during the verification
phase, it is necessary to compute the 4 dimension isogeny equivalent to this chain. As a result, the
verification time is significantly longer than the signing time. The implementation for the NIST-I
level of security in [Dar+23] achieved in average 28ms on an Intel(R) Core(TM) i5-1335U 4600MHz
CPU using C-language for the signing phase and around 600ms using SageMath for the verification
phase. There is space for improvement in both processes.

As mentioned in [Bas+24], for the NIST-I level of security, the size of the signature generated
by the algorithm is 148 bytes, a little longer than the SQISignHD signatures, but still shorter than
the SQISign 177 bytes ones. It was still mentioned by the authors that efficiency was prioritized
over signature size.

Regarding execution time, the authors of [Bas+24] ran benchmarks on an Intel Xeon Gold 6338
(Ice Lake) CPU clocked at 2 GHz with turbo boost disabled. For the stricter security proof version
we have, in 106 clock cycles, 290 for the signature in NIST-I and 25 for the verification, also in
NIST-I. Both modules show a very relevant increase in performance versus SQISign. The signing
is still slower than the SQISignHD signature, and for the verification it was chosen not to compare
since SQISignHD only has the SageMath implementation of the verification. For the heuristic
security version of SQISign2D-West, the numbers shown in [Bas+24] are even better, surpassing
the other two algorithms in every module.

8.3 Security Assumptions

The algorithms mentioned in this section all rely on the hardness of the endomorphism ring prob-
lem, which is equivalent under polynomial reduction to the path-finding problem in the l-isogeny
graph. As mentioned in [Cha+23] the best known solutions to these problems have time complexity

proportional to Õ(
√
p) in classical computers and proportional to Õ(p

1
4 ) in quantum computers,

where p is the prime number used in the algorithm.

There are some additional security features that are desirable for signature schemes, this features
will be discussed below. They might differ from one algorithm to another. We use the definition of
witness w, the secret information that is known only by the respective Prover. We call a statement
x some public information that is associated with a witness.For the algorithms in this section, the
witness is the secret key and the statement is the public key. Finally, a transcript is a tuple with
the commitment isogeny, the challenge isogeny and the response isogeny.

8.3.1 Correctness

The correctness property states that a Prover with a valid proof and behaving honestly always has
his proof accepted by the Verifier, this property is aimed by all the algorithms.

8.3.2 Special Soundness

We then say that a signature scheme has special soundness if someone who only knows a statement
x cannot generate a valid proof for it.

8.3.3 Honest-verifier zero-knowledge

Maybe the biggest difference between the security assumptions of the algorithms discussed in this
section is the honest-verifier zero-knowledge, which uses a different type of oracle proof in each of



SQISign 17

the algorithms.
In the SQISign specification [Cha+23] it is assumed that an adversary A has access to a random

transcript generation oracle (equivalent to eavesdrop communications between the Prover and the
Verifier), and then uses the transcripts generated by this oracle to try to generate valid proofs
without the knowledge of the secret information (the witness w).

In the SQISignHD algorithm [Dar+23] the adversary is given access to a random uniform good
degree isogeny oracle (RUGDIO) which, given a supersingular elliptic curve E can generate an
efficient representation of a le-good degree prime to l′ isogeny from E to another random elliptic
curve E′. An adversary with access to this oracle is believed not able to generate valid proofs
without knowing the Prover’s witness w.

In the SQISign2d-West algorithm [Bas+24] the property is proven in two ways, the first one
giving the adversary access to a uniform target oracle (UTO) and the second one giving them access
to a fixed degree isogeny oracle (FIDIO). The first one takes as input an elliptic curve E and an

integer N ≥ 2
√
2p
π and outputs an efficient representation of a random isogeny to another random

curve E′. This isogeny has degree d ≤ N . The second one also takes as input an elliptic curve E
and an integer N and outputs an efficient representation of a random isogeny to another random
curve E′. This isogeny has degree d = N .

9 Conclusion

Signature schemes are relevant to a wild range of applications, and the Shor’s algorithm [Sho99]
will be able to break the currently most used schemes based on factoring or computing discrete
logarithms as soon as a large-scale quantum computer is available. In order to keep providing secu-
rity to the users, without compromising usability, it is necessary to explore new ways to implement
signature schemes that could be resistant to quantum computers. These solutions cannot rely on
the hardness of factoring large numbers and equivalent problems and, instead, have to find new
cryptographic premises. In this context, the problem of finding a l-path in an isogeny graph is still
considered a computationally hard problem for quantum computers to solve, but algorithms using
isogenies in the cryptography context lack the same amount of expertise of algorithms using elliptic
curves, as an example. Among the candidates in the NIST Post-Quantum Standardization Contest,
SQISign is the only one which uses isogenies between elliptic curves as its cryptographic premise.
SQISign, being the only one of its kind, has a lot of potential, specially for devices with limited
resources, since it has very short key and signature sizes, but, as it is currently implemented, the
signature times are still long, and the primes that can be used are restricted which makes it not
scale well to higher levels of security. The new variants created after [CD22] show that maybe using
higher dimension isogenies is a way to achieve performance improvements and overcome the prime
number restrictions of the original SQISign proposal, however these variants still need time to have
their security and functioning better understood. Maybe there are other ways to make isogeny al-
gorithms more viable, such as exploring hardware specific implementations, exploring parallelism.
This could lead to lower execution times, even smaller keys and different security proofs. For now,
we have to wait and hope that the future of isogenies is as bright as it seems.

Acknowledgement

The author thanks the Cryptography Research Centre at the Technology Innovation Institute for
financial support during the development of this work.



18 D. Santos e J. López

References

[FS87] Amos Fiat and Adi Shamir. “How To Prove Yourself: Practical Solutions to Identifi-
cation and Signature Problems”. In: Advances in Cryptology — CRYPTO’ 86. Ed. by
Andrew M. Odlyzko. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987, pp. 186–194.
isbn: 978-3-540-47721-1.

[IHH91] Niven I., Zuckerman H., and Montgomery H. An Introduction to the Theory of Numbers.
https://books.google.com.br/books?id=V52HIcKguJ4C: Wiley, 1991.

[Sho99] Peter W. Shor. “Polynomial-Time Algorithms for Prime Factorization and Discrete Log-
arithms on a Quantum Computer”. In: SIAM Review 41.2 (1999), pp. 303–332. doi: 10.
1137/S0036144598347011. eprint: https://doi.org/10.1137/S0036144598347011.
url: https://doi.org/10.1137/S0036144598347011.

[Sil09] J.H. Silverman. The Arithmetic of Elliptic Curves. Graduate Texts in Mathematics.
Springer New York, 2009. isbn: 9780387094946. url: https://books.google.com.
br/books?id=Z90CA_EUCCkC.

[Koh+14] David Kohel et al.On the quaternion ℓ-isogeny path problem. Cryptology ePrint Archive,
Paper 2014/505. https://eprint.iacr.org/2014/505. 2014. url: https://eprint.
iacr.org/2014/505.

[CS17] Craig Costello and Benjamin Smith. Montgomery curves and their arithmetic: The
case of large characteristic fields. Cryptology ePrint Archive, Paper 2017/212. https:
//eprint.iacr.org/2017/212. 2017. url: https://eprint.iacr.org/2017/212.

[Cos19] Craig Costello. Supersingular isogeny key exchange for beginners. Cryptology ePrint
Archive, Paper 2019/1321. https://eprint.iacr.org/2019/1321. 2019. url: https:
//eprint.iacr.org/2019/1321.

[Ber+20] Daniel J. Bernstein et al. Faster computation of isogenies of large prime degree. Cryp-
tology ePrint Archive, Paper 2020/341. https://eprint.iacr.org/2020/341. 2020.
url: https://eprint.iacr.org/2020/341.

[Feo+20] Luca De Feo et al. SQISign: compact post-quantum signatures from quaternions and
isogenies. Cryptology ePrint Archive, Paper 2020/1240. https://eprint.iacr.org/
2020/1240. 2020. url: https://eprint.iacr.org/2020/1240.

[Voi21] J. Voight. Quaternion Algebras. Graduate Texts in Mathematics. Springer International
Publishing, 2021. isbn: 9783030566944. url: https://books.google.com.br/books?
id=Gro1EAAAQBAJ.

[CD22] Wouter Castryck and Thomas Decru. An efficient key recovery attack on SIDH. Cryp-
tology ePrint Archive, Paper 2022/975. https://eprint.iacr.org/2022/975. 2022.
url: https://eprint.iacr.org/2022/975.

[Feo+22] Luca De Feo et al. New algorithms for the Deuring correspondence: Towards practical
and secure SQISign signatures. Cryptology ePrint Archive, Paper 2022/234. https:
//eprint.iacr.org/2022/234. 2022. url: https://eprint.iacr.org/2022/234.

[Wes22] Benjamin Wesolowski. “The supersingular isogeny path and endomorphism ring prob-
lems are equivalent”. In: 2021 IEEE 62nd Annual Symposium on Foundations of Com-
puter Science (FOCS). 2022, pp. 1100–1111. doi: 10.1109/FOCS52979.2021.00109.



SQISign 19

[Cha+23] Jorge Chavez-Saab et al. SQIsign. Technical report, National Institute of Standards and
Technology. Available at https://csrc.nist.gov/Projects/pqc-dig-sig/round-
1-additional-signatures. 2023.

[Dar+23] Pierrick Dartois et al. SQISignHD: New Dimensions in Cryptography. Cryptology ePrint
Archive, Paper 2023/436. https://eprint.iacr.org/2023/436. 2023. url: https:
//eprint.iacr.org/2023/436.

[Lin+23] Kaizhan Lin et al. A Faster Software Implementation of SQISign. Cryptology ePrint
Archive, Paper 2023/753. https://eprint.iacr.org/2023/753. 2023. url: https:
//eprint.iacr.org/2023/753.

[Bas+24] Andrea Basso et al. SQIsign2D-West: The Fast, the Small, and the Safer. Cryptology
ePrint Archive, Paper 2024/760. https://eprint.iacr.org/2024/760. 2024. url:
https://eprint.iacr.org/2024/760.

[NO24] Kohei Nakagawa and Hiroshi Onuki. SQIsign2D-East: A New Signature Scheme Us-
ing 2-dimensional Isogenies. Cryptology ePrint Archive, Paper 2024/771. https://
eprint.iacr.org/2024/771. 2024. url: https://eprint.iacr.org/2024/771.


