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Abstract

The Linux kernel is one of the largest collaborative efforts of software development
in the world, powering a large majority of the infrastructure that runs computing work-
loads of all scales – from embedded systems to HPC clusters. As such, improving the
testing ecosystem for the Linux kernel is critical to ensure the longevity of the project.
The KernelCI project is a recent initiative that looks to provide a unified testing infras-
tructure for all the kernel subsystems; this work aims to improve the automatic evalu-
ation and labeling of test results for the kernel in the context of the KernelCI project,
through the use of modern clustering and data aggregation techniques; in particular, we
propose a frequency-based algorithm for filtering and labeling logs from kernel tests as
a way to facilitate their analysis by kernel maintainers, greatly improving the efficiency
of the review process.
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1 Introduction

The Linux kernel is the core part of the Linux operating system, responsible for managing
hardware resources and providing a foundation for software to interact with the computer’s
hardware. It acts as a bridge between the system’s applications and the underlying physical
hardware components, such as the processor, memory, and storage devices. It’s one of the
largest open source projects in the world with thousands of developers contributing code
and millions of lines of code changed for each release [7]. Leading to widespread adoption
and customization of the kernel for various devices.

Small incremental changes, also known as patches, add new features, make enhance-
ments, and fix bugs; this year there was approximately 1 patch being merged each 6,2
minutes [6]. A new released version of Linux Kernel comes out once every 10 to 11 weeks
and they are time-based rather than feature-based, and once a week several stable and
extended stable releases. The Linux kernel is the result of collaborative 24-hour, seven
days a week, and 365 days continuous development process from developers from diverse
companies or academia and all across the globe [11].

This collaborative effort, coupled with a fast development cycle, enables rapid updates
and improvements. Its customizability allows it to support a wide range of hardware and
hardware combinations, making it highly versatile and adaptable to diverse computing
environments. Additionally, the Linux kernel performs critical tasks such as process man-
agement, device management, and file system management. Ensuring efficient and reliable
system operation is therefore a significant challenge.

1.1 Kernel testing

Ensuring software is stable without regressions before the release helps avoid debugging
and fixing customer-found and user-found bugs after the release; after all, it is a lot more
costly, both in time and effort, to debug and fix issues found in production. Hence, testing
is very important when it comes to any software [11]. And the Linux Kernel brings many
challenges to testing, with several developers continuing to add new features, and fixing
bugs, continuous integration and testing is vital to ensure the kernel continues to work on
existing hardware as new hardware support and features get added [11]. Additionally, many
kernel functions cannot be tested independently of the building or booting process. As a
result, testing extends beyond unit tests or test cases typically found in simpler applications.
In kernel there are developer tests, integration tests, regression tests, stress tests, booting
tests and others.

Users and developers unfamiliar with new code may test it more effectively than the
original author by uncovering issues the author did not anticipate. While developer test-
ing is crucial for verifying functionality, it alone cannot identify interactions with other
code, features, or hardware configurations. User testing is vital for detecting unintended
regressions and ensuring broader compatibility [11].

Each kernel version must be tested across multiple systems to verify that it is capable of
building, booting, and behaving correctly, all while producing logs without anomalies [13],
ensuring proper operation on diverse hardware platforms. There are several types of tests,
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each one with different goals:

• Unit test using KUnit are largely used by developers to test small, self-contained parts
of the kernel, they are important to guarantee that, at least in an isolated scope, the
changes that developers make do not introduce regressions or change the expected
behavior of the kernel APIs [4].

• Integration tests (using the kselftest framework) are well-suited for more complex
tests of entire kernel subsystems, as these typically expose an interface to userspace.
Kselftest is limited in that it cannot directly invoke kernel functions; it can only test
kernel functionality exposed to userspace through system calls, devices, filesystems,
or similar interfaces. It provides a form of ”system” or ”end-to-end” testing, and all
new system calls should include corresponding kselftest cases [5].

• Boot tests in the Linux kernel are essential to ensure that the kernel initializes correctly
across various hardware platforms and configurations. These tests validate the kernel’s
compatibility and stability during the critical boot process. They also help identify
hardware or configuration-specific issues early in the development cycle, preventing
potential failures. Additionally, boot tests ensure that changes to the kernel do not
introduce regressions that could disrupt the boot process.

• Compilation/build tests are designed to verify that the kernel can be successfully built
across a variety of configurations, architectures, and toolchains. This ensures that
changes to the kernel source code do not introduce build failures or incompatibilities
and verifies that dependencies and build scripts are correctly configured.

Even though the developer may test their code locally (through any of the aforemen-
tioned methods), the majority of the kernel testing is done on specialized infrastructure,
such as build pipelines on the cloud that run cross-compilation and other build-related tests.
There are also various test labs provided by silicon vendors that offer access to a wide range
of hardware for testing. These setups enable testing the kernel build and boot process on
various various hardware platforms and configurations. Additionally, it allows for testing
the kernel behavior under heavy workloads, boot-time errors, and faulty hardware n in order
to effectively assess reliability and robustness.

2 State of the art

Today, there are numerous testing platforms and frameworks for the Linux kernel, with
some subsystems developing their own solutions. These independent testing solutions are de-
signed to evaluate specific subsystems without depending on centralized or general-purpose
testing frameworks. Tailored to the unique requirements of each subsystem, they enable fo-
cused validation and troubleshooting. Examples include testing various filesystems with the
xfstests tool, memory management with mmtests, block devices with blktests, networking
with packetdrill, and many others.
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Although these independent solutions are tailored to the specific needs of subsystems,
ensuring each is rigorously tested to meet its requirements, they can be time-consuming for
maintainers to set up and often involve redundant efforts across different subsystems.

While isolated testing is a crucial step in verifying the functionality of specific tools or
subsystems, it alone is insufficient to uncover interactions with other code, features, and
unintended regressions on configurations and/or hardware, the developer did not anticipate
and did not have the opportunity and resources to test [11]. Therefore, broader testing
strategies are essential due to the kernel’s complexity and the vast array of hardware and
configurations it supports.

2.1 Systematic testing projects

There are a few initiatives that attempt to address the problem of duplication of effort
in testing the kernel by employing a systematic, kernel-wide approach. One such initiative
is the 0-day Project, spearheaded by Intel; by recognizing that performance and scalability
are critical to the operating system kernel’s success, the project emerged in response to
discussions on the Linux Kernel Mailing List about significant performance regressions
between kernel versions. The project was designed to conduct patch-by-patch testing on
every changeset sent to the kernel mailing lists (including non-merged patches); it performs
boot, functional, and performance tests across various platforms in hardware labs, though
it is limited to the Intel processor architecture [16].

In a similar fashion, but with the idea of covering unusual edge-cases in the interaction
between kernel and userspace, the syzkaller project was created; it is a kernel testing bot
designed to detect bugs and vulnerabilities by generating and executing random system calls
uncovering subtle bugs in kernel interfaces and subsystems. Syzkaller generates randomized
test programs which invoke one or more system calls (or generally interact with the kernel
in other ways, such as injecting network packets) that are purposefully faulty, and then run
them, trying to see if this causes a crash or an error of some sort (e.g. a kernel panic). It also
has the autonomy of collecting kernel code coverage information and deciding whether to
try iterating upon the previous semi-random test programs, or start anew. Upon detecting a
crash, it collects information about the issue and tries to discover a minimal test case (called
a reproducer) that triggers the crash, and then informs the relevant developers about it in
the mailing lists [12].

Syzkaller, as a coverage-guided fuzzer, can “trace” the code paths executed when pro-
cessing a given input, and use that information to try and generate inputs which uncover
previously unexecuted code by leveraging software instrumentation facilities. Fuzzers use
this technique to achieve high levels of test coverage very efficiently, and indeed, the afore-
mentioned fuzzers have been used to find thousands of severe bugs in all sorts of parts of
the Linux kernel, even those considered mature and well-tested [12].

2.2 KernelCI project

KernelCI is a community-driven, open-source test automation system dedicated to up-
stream Linux kernel development. It provides extensive hardware and configuration testing,
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ensuring broad compatibility, stability, and long-term maintainability of the Linux kernel.
With a focus on open testing practices, KernelCI consolidates existing testing initiatives,
improves LTS kernel testing and validation, and expands testing resources and hardware
coverage. Its wide scope and comprehensive coverage make it an essential tool in ensuring
the quality and reliability of the Linux kernel across diverse platforms [9].

Figure 1: KernelCI architecture [8]

The figure 1 shows the inner details of the architecture of KernelCI and the interac-
tions between its components [8]. The KernelCI project aggregates results from various
test sources, acting as an orchestrator for several different test methods. Any continuous
integration (CI) ecosystem can upload its results to the KernelCI database (kcidb), enabling
even small ecosystems to contribute their data to a larger, more generalized project. This
centralized approach allows for comprehensive analyses based on the collected data and
encourages small groups to develop their own CI lab projects to contribute to the kernel
testing.

A centralized approach minimizes redundant work caused by independent testing and
promotes extensive test coverage. Additionally, CI systems with reliable test results and
effective triage significantly alliviates the pressure on maintainers by enabling a progres-
sively more automated testing process with broader coverage. However, KernelCI is still a
relatively new tool, leaving room for improvements in test triage and the development of
analysis tools.

The tests on KernelCI project database provide one of the following possible outcomes:

• PASS (no error was detected);

• MISS (The test was not executed due to some infrastructure error);

• SKIP (The test wasn’t executed, probably due to failures in its dependencies, e.g.,
checkout or build);

• FAIL (The test was executed and failed);

• ERROR (The test started executing but didn’t complete) [3].
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In this project, we will focus on the status ”ERROR”, which, as it’s possible to see in
figure 2 is responsabily of the developers.

Figure 2: Workflow of test execution and responsability of its status [2].

To ease the analysis for the data, there is a dashboard named Grafana dashboard [9]
intended for kernel and test maintainers/developers. It reads data from the KCIDB database
and presents it in various formats for analysis. The maintainer is capable to filter: origin
of the data (CI lab that generate the result); git tree and branch from kernel; the path of
the tests performed (e.g., ”kselftest.dt”, ”baseline”, etc.); the platform (used for non-build
tests); the configuration and the period data to show [3].

The dashboard presents an overall statistics useful for understanding the last time data
arrived in KCIDB and identifying which tree has errors. It also separate errors of building,
named: ”build” and errors non related to build, named: ”tests”. Also, detected infrastruc-
ture errors are filtered out (except in the tables that show all nodes) [3]. The dashboard
displays various data points for each test, including the log document—a file containing all
log messages generated by the kernel during building, booting, and other testing processes.
This document will serve as the primary source for analysis in this project.

The ”Issues” section is designed to facilitate the triage of similar errors by grouping them
based on a common root cause. Its primary goal is to consolidate all errors that stem from
the same problem into a single issue. Currently, developers must manually create issues and
link them to the corresponding errors, a process that is both time-consuming and prone
to inefficiencies. This inefficiency not only wastes developers’ time but also distorts the
perception of the actual number of problems, as the total error count does not accurately
reflect the number of underlying issues, leaving developers and maintainers without a clear
understanding of the system’s true state 1.

3 Objectives

Tools are being developed to automate the process of matching errors with issues by ap-
plying regular expressions to log messages. However, this solution still requires maintainers

1The information presented here was gathered by the author through participation in the weekly inter-
national kernel CI meetings and talks with maintainers of the tool.
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to manually create the issues and define the associated regular expressions2.
This project introduces a new idea: clustering errors of similar nature based on log mes-

sage information and highlighting shared characteristics within each cluster. This method
enables developers and maintainers to instantly identify the number of issues detected based
on their selected filters. Additionally, it allows maintainers to address each issue indi-
vidually, armed with comprehensive data collected during testing. With clusters already
organized and triaged, the investigation process becomes significantly more efficient.

• Clustering the data in meaningful groups of tests fails relate to the same issue

• Retrieve information from the cluster that contains the log lines the error

Effective clustering of errors can significantly reduce the time developers and maintainers
spend organizing issues. It simplifies the investigation process for identifying possible root
causes of errors and provides immediate insight into the number of issues or problems
introduced by a specific version. Consequently, this tool may become more appealing to
developers and maintainers by centralizing kernel test management and encouraging broader
contributions to the process. By minimizing duplicated efforts caused by isolated solutions
in various subsystems, it fosters a more streamlined and collaborative workflow.

4 Methodology

To utilize information from log messages, this project focuses on two main steps: vector-
izing the log messages, converting each one into a set of values; and clustering them based
on their similarities (with or without a previous dimensionality reduction of the features
extracted).

4.1 Feature extraction

The first step of this project was to extract useful information from each test failure.
As previously mentioned, each test failure is associated with a document containing log
messages from the kernel. To achieve this, an information retrieval approach was employed,
representing each document as a set of parameters derived from its content. The method
used was Term Frequency-Inverse Document Frequency (TF-IDF), a statistical technique
widely utilized in text mining and Natural Language Processing. Term Frequency and
Inverse Document Frequency are two distinct components that are multiplied together to
calculate the final TF-IDF value for each term in a document. This value reflects the term’s
importance within the document, emphasizing those frequent in a document but uncommon
across the collection [17].

The Term Frequency (TF) measures how often a term appears in a document, assuming
frequent terms are more significant. In kernel execution, if a routine fails, it logs a problem
diagnosis, making it crucial to identify terms and their frequencies. Significant terms are
often highlighted in logs, offering insightsinto the issue.

2Information was gathered through discussions with the community.
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While the Inverse Document Frequency (IDF) measures a term’s importance across doc-
uments, deeming frequent terms less important while giving more weight to rarer terms.
This is crucial for identifying key log messages, as many common messages during build-
ing and booting add little value, while rare messages like ”kernel panic” are critical for
diagnosing errors and understanding their causes.

The TF-IDF is expressed formally by eq. (1) below:

TF(t, d) =
Number of times of term t appears in a document i

Total number of terms in document i

IDF(t) = log

(
Total number of documents

Number of documents containing the term t

) (1)

Other alternative approaches were initially considered but ultimately dismissed. One
critical aspect of log analysis is weighing the rarity of terms across all logs, making the IDF
component essential for vectorizing logs in alignment with the project objectives. Because
of this requirement, the Bag of Words method, which lacks this weighting mechanism, was
discarded.

Since log messages typically lack semantic relationships between lines, lighter approaches
were favored over models that encode semantics. Consequently, more advanced models,
such as word embeddings (e.g., Word2Vec) and natural language models (e.g., BERT,
LLaMA [15]), were deemed unnecessary, at least for this project.

It’s worth mentioning that while projects requiring NLP often lean toward LLM (Large
Language Models) alternatives [15] to meet their demands, the author chose a simpler and
lighter tool. The potential use of LLaMA (Large Language Model Meta AI) combined
with RAG (Information Retrieval with Text Generation) was considered and discussed
with community members. However, using an LLM would would significantly increase the
processing demands, restricting execution to powerful servers. This approach would make
it impossible for developers to run the tool locally and would complicate its personalization.

Although there is no unanimous agreement on the matter, it was surmised that a sim-
pler, customizable tool that is lightweight enough to run locally would be more accepted
and widely used by the community. Moreover, a TF-IDF-based solution can be combined
with other tools and further developed by the community into a powerful test triage tool.
Consequently, the LLM-based approach was abandoned. The author believes that such an
approach would benefit the LLM more by gathering valuable information than effectively
addressing the problem itself, which is better served by a simpler and lighter solution, even
if it does not fully resolve the issue.

The complexity analysis for this method is: O(n·m), where n is the number of documents
and m the quantity of distinct terms throughout all documents.

4.2 Dimensionality Reduction

The TF-IDF method generates a set of features and corresponding values for each log.
One approach explored in this project was dimensionality reduction. Two different methods
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were tested, each with distinct objectives, alongside clustering applied directly to the TF-
IDF distance matrix. For this, cosine distance was used instead of Euclidean distance, as
it aligns better with the nature of the TF-IDF calculation.

The first method tested was Singular Value Decomposition (SVD) a mathematical tech-
nique used to factorize a matrix into three simpler matrices, it is simple and versatile. Its
mathematical decomposition is explain on equation (2), given a A matrix of features.

A = U · Σ · V T (2)

where U is an n × n orthogonal matrix, Σ is an n × m diagonal matrix containing the
singular values and V T is an m×m orthogonal matrix (right singular vectors transposed).
For dimensionality reduction, it is considered the first k rows and columns of the Σ matrix
and consequentialy reducing the dimention of the other two.

It’s complexity is O(min(n,m) · k ·max(n,m)), where n and m are the number of logs
and terms respectively and k is the number of final dimensions is intended.

Another method tested was Non-Negative Matrix Factorization (NMF). This technique
is especially valuable in scenarios where interpretability and adherence to non-negativity
constraints are critical, such as in text mining. NMF decomposes a given non-negative
matrix A into two smaller non-negative matrices W and H, enabling the discovery of la-
tent patterns (k) while maintaining meaningful, non-negative representations, exposed in
equation (3).

An,m ≈ Wn,k ·Hk,m (3)

It’s complexity is O(n ·m · k · t), where t is the number of iterations to converge

4.3 Clusterization

One of the most popular and straightforward clustering algorithms is k-means. Mathe-
matically, the k-means algorithm approximates a normal mixture model, where the mixture
components are estimated through maximum likelihood. In mixture models, cluster mem-
bership is represented probabilistically for each data point, based on the means, covariances,
and sampling probabilities of the clusters. These models describe data as a combination of
distributions (e.g., Gaussian, Poisson), with each distribution representing a sub-population
or cluster. The k-means algorithm is a special case of this approach, assuming that all clus-
ters have spherical covariance matrices and equal sampling probabilities. Additionally, the
algorithm treats cluster membership for each data point as an independent parameter to
be estimated [14].

The k-means algorithm minimizes the sum of variances within clusters, as expressed
in equation (4), where ni represents the number of cases in cluster k, and the variance
minimization objective is fundamental to its operation. This makes k-means a variance-
minimization technique [14].

E =
k∑

i=1

ni∑
j=1

||xij − ci||2 (4)
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In this application, cosine distance—a widely used approach in text mining—will be
employed, as defined in equation (5). Additionally, the silhouette score will be used to
determine the optimal number of clusters, as shown in equation (6).

dCos =
c · x

||c|| · ||x||
(5)

where dCos is the cosine distance between poins c and x.

S(i) =
b(i)− a(i)

max{a(i), b(i)}
AverageSilhouette = mean{S(i)}

(6)

where S(i) is the silhouette coefficient of the data point i; a(i) is the average distance
between i and all the other data points in the cluster to which i belongs; and b(i) is the
average distance from i to all clusters to which i does not belong.

One of the most popular and straightforward clustering algorithms is K-Means. The
primary goal of K-Means is to minimize the within-cluster variance, defined as the sum of
squared distances between data points and their cluster centroid. A centroid represents the
mean position of all data points within a cluster. In this application, cosine similarity is
used as the distance metric.

This method is especially effective for large datasets, where computational efficiency is
crucial. It’s complexity is a combination of K-Means with cosine distance: O(k · n ·m · t),
where k is the number of clusters n number of documents, m dimentionality, t iterations
for convergion; with the silhouette O(k · n2 · m), added and multiplied by the maximum
number of clusters searched: O(kmax · (k · n ·m · t+ k · n2 ·m))

Another tested clustering algorithm was Density-Based Spatial Clustering of Applica-
tions with Noise (DBSCAN). It is a density-based clustering algorithm. It groups points
into clusters based on their proximity and density, while identifying outliers as noise. Unlike
partition-based algorithms like K-Means, DBSCAN doesn’t require you to specify the num-
ber of clusters beforehand, and it works well with non-globular cluster shapes and datasets
containing noise [10]. It’s complexity is O(n2) In this project, we employed HDBSCAN
(Hierarchical Density-Based Spatial Clustering of Applications with Noise), that enhances
traditional DBSCAN by performing clustering across varying epsilon values and integrating
the results to identify clusters with the highest stability. This capability makes HDBSCAN
more versatile than DBSCAN, as it can detect clusters with varying densities and is less
sensitive to parameter selection [1].

4.4 Choice of dataset

With the program’s logic theory developed, a dataset must be selected for testing.
Test fails already associated with an issue by maintainers were chosen for this purpose.
However, it is important to note that such cases are limited because maintainers, who must
manually identify issues, often do not populate the kcidb with this information. Doing so
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would require additional effort solely to support the development of the clustering feature.
Instead, they tend to address these issues directly without adding them to the database.

The selected data for this project consists of logs generated by test fails linked to the
issues:

• build issue: ”netdev errors”

• build issue: ”struct svm range error”

• boot issue: ”usb kill anchored urbs panic during boot”

• boot issue: ”RIP: 0010:usercopy abort+0x74/0x76 kernel panic”

At the beginning of this research project, a fifth issue (group of errors) was considered:
”kern :crit : acpi LNXTHERM:00: Resources present before probing”. However, during
the early stages of the project, the log files from the errors related to this issue were deleted
from the maestro’s database, making it impossible to include this data in the follow-up
tests. Consequently, the author decided to exclude this data and proceed the research using
only the four groups mentioned above, as well as downloading the data from the groups to
prevent further data loss.

Figure 3: Log messages with the build errors: ”netdev” and ”struct svm range”.

Figure 3 show some log lines that may be helpfull to identify the source of the errors for
the two build issues presented3. For the first issue: ”netdev error” it is possible to see that it
is a compilation error throught the messages: make[4]: *** [scripts/Makefile.build:244:

3Logs downloaded from Grafana KernelCI through ”netdev errors” issue link and ”struct svm range error”
issue link. Nowadays it is not possible to download these logs from this database because they expired, but
they are on the gitlab page of this project.

https://grafana.kernelci.org/d/issue/issue?var-version=0&var-id=kernelci_api:c9bd2592bddae3134ea04695e14ce300c8c65db9&var-datasource=edqupth5xi8e8b
https://grafana.kernelci.org/d/issue/issue?var-version=0&var-id=kernelci_api:2332e9b1c291805aa5e26a7574a52b9f77d4f47f&var-datasource=edqupth5xi8e8b
https://grafana.kernelci.org/d/issue/issue?var-version=0&var-id=kernelci_api:2332e9b1c291805aa5e26a7574a52b9f77d4f47f&var-datasource=edqupth5xi8e8b
https://gitlab.com/gbittencourt0/log-clustering
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fs/netfs/buffered read.o] Error 1, also it shows that is a problem in fs/netfs/buffered read.o,
in the lines above the log says that a variable may be being used without inialization:
fs/netfs/buffered read.c:304:7: error: variable ’slice’ is used uninitialized

whenever ’if’ condition is false [-Werror,-Wsometimes-uninitialized]. These
are not the only lines in the log that provide information about the issue, but they are
very straightforward. In the same figure 3, it is possible to make a similar analysis regard-
ing the ”struct svm range”.

Figure 4: Log messages with the boot error: ”RIP: 0010:usercopy abort+0x74/0x76 kernel
panic”.

For booting errors, the log messages tend to vary more compared to the build error
log messages. The figure 4 displays a portion of the log messages related to the issue
”RIP: 0010:usercopy abort+0x74/0x76 kernel panic”. These lines reveal that a traceback
occurred, making them a good starting point for finding useful information. Notably, the
message usercopy abort appears multiple times within the traceback section (separated
by [ cut here ] and [ end trace ] messages.

Regarding the ”usb kill anchored urbs panic during boot” issue on figure 5 there is a
bigger diversity of information to analyze. There is a traceback evident on line 9358 on the
figure and in the lines surronding the Call trace: there are the informations on a BUG:

spinlock, on line 9353; and the hardware booting the kernel, on line 9356. Furthermore,
the log contains details about an unhandled paging request and pc and lr values on the
moment of the traceback.
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Figure 5: Log messages with the boot error: ”usb kill anchored urbs panic during boot”.

4.5 Implementation

Log messages follow many standards and structures, so understanding them can signifi-
cantly aid in preprocessing the data(on the scope on this project the data were cleaned). An
effictive preprocessing of the data can substantially increase the program efficiency. In the
dataset used for this project, certain lines were removed, along with all numerical values,
as shown on the code 1.

Minimal cleaning was performed on the data, as the dataset was very limited, and
excessive cleaning could risk overfitting. It is worth mentioning that the TF-IDF algorithm
is more effective when applied to larger datasets.

Listing 1: Preprocessing content from log

# remove wa i t ing l i n e s o f the compi la t ion
l og = ”\n” . j o i n ( l for l in l og . s p l i t l i n e s ( ) i f ’ . . . . . . . . . . ’ not in l )
# remove numbers
l og = re . sub ( r ’ \d+’ , ’ ’ , l og )
# remove empty l i n e s
l og = ”\n” . j o i n ( l . s t r i p ( ) for l in l og . s p l i t l i n e s ( ) i f l . s t r i p ( ) )

For the TF-IDF implementation, the term was defined as the whole line as shown on
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the code 2. For the dimensionality reduction and clusterization it was used known python
libraries.

Listing 2: TF-IDF function

from s k l e a rn . f e a t u r e e x t r a c t i o n . t ex t import Tf i d fVe c t o r i z e r
# token i z e the whole l i n e
Tf i d fVe c t o r i z e r ( token pat te rn=r ” (?u ) .∗\ n” )
# f ind sparse matrix
t f i d f ma t r i x = v e c t o r i z e r . f i t t r a n s f o rm ( l o g s )

5 Results and discussions

The results of the KMeans clustering with cosine distance on the TF-IDF matrix and
no dimensionality reduce algorithm applied are shown on figure 6 and figure 74. In gen-
eral, it can be concluded that even with the simplest clustering method (KMeans without
dimensionality reduction), the clustering results are reasonably satisfactory. Five clusters
were produced instead of the expected four. All ’netdev’ elements are grouped in cluster
3, all ’svm range’ elements are in cluster 0, all ’usb kill’ elements are in cluster 2, while
’usercopy abort’ elements are distributed between clusters 1 and 4.

While clustering alone can assist maintainers and developers in examining sets of er-
rors associated with the same issue, providing more detailed information from the logs can
further enhance their understanding. Thus, figure 6 and figure 7 also displays the most valu-
able terms in each cluster—terms that are both frequent within the cluster and infrequent
outside of it.

Analyzing figure 6, in the ’netdev’ cluster, the algorithm provides 15 lines. Based
solely on the information in these lines, it is possible to conclude that the error occurred
during compilation (make[]: *** waiting for unfinished jobs....), and that | if

(source == netfs invalid read) is a promising direction for further investigation. Al-
though the critical line (line 5450 of figure 3, which directly indicates the problem) is not
included, the provided lines may still offer valuable guidance to maintainers and developers.

For the ’struct svm range’ issue, the error is directly indicated by the third most valuable
term presented in the cluster, the line drivers/gpu/drm/amd/amdgpu/../amdkfd/kfd queue.c:::

error: invalid use of undefined type ’struct svm range’. Additionally, it is no-
ticeable that several lines immediately following an important line, such as | ^~~~~~~~~~

were included. This observation could be considered in future work by adding a prepro-
cessing step that assigns higher value to the lines immediately preceding those containing
| ^~~~~~~~~~.

4The results for other setups are provided in the appendices.
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Figure 6: Clusters of ”netdev” and ”struct svm range” errors and 15 of most scored terms,
using KMeans with cosine distance matrix.

The results from the boot errors, in figure 7, were less obvious and direct compared to the
build errors analyzed cases. Although the clustering was relatively accurate, the information
provided by the valuable terms could have been better focused to aid in identifying the
underlying issues.

This may be explored through more focused preprocessing of the data, which may
include cleaning noisy parts, adjusting the weighting in the TF-IDF function to give more
importance to rarer messages, or prioritizing lines containing specific keywords such as
’BUG’ or ’kernel panic’.
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Figure 7: Clusters of ”usb kill anchored urbs panic during boot” and ”RIP: 0010:user-
copy abort+0x74/0x76 kernel panic” errors and 15 of most scored terms, using KMeans
with cosine distance matrix.
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After exploring various algorithms, it became evident that simpler alternatives often
provided comparable or even superior performance. This insight highlighted the value of
prioritizing a deep understanding of log structures and refining pre-processing techniques,
which ultimately emerged as a more effective and reliable strategy compared to the appli-
cation of overly complex data processing methods.

6 Conclusions and Future Works

In conclusion, this project demonstrated that it is possible to significantly reduce labor-
intensive tasks with a a straightforward yet effective approach. A valuable next step would
involve deepening the understanding of log structures and experimenting with alternative
pre-processing methods. The flexibility of the TF-IDF algorithm presents opportunities
for customization; for instance, increasing the weight of the IDF component could enhance
the value assigned to rare terms, as these are more likely to carry critical information
compared to frequently occurring terms. Additionally, investigating common patterns and
terms within log messages, particularly those associated with errors or issues, could provide
further insights and improve the effectiveness of future implementations. TF-IDF algorithm
can also be used for anomaly detector, a scope not approached by this project.

An alternative approach worth exploring would involve applying an initial rough cluster-
ing technique to partition the data into broad groups. This preliminary step could facilitate
a more focused and refined analysis within each cluster, allowing for tailored processing
and potentially uncovering patterns or insights that might be overlooked in a more uniform
approach.
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Appendices

A KMeans Clustering results

A.1 SVD - dimentionality reduction to 31 components

Figure 8: Clusters of ”netdev” and ”struct svm range” errors and 15 of most scored terms.



Figure 9: Clusters of ”usb kill anchored urbs panic during boot” and ”RIP: 0010:user-
copy abort+0x74/0x76 kernel panic” errors and 15 of most scored terms.



A.2 NMF - dimentionality reduction to 31 components

Figure 10: Clusters of ”netdev” and ”struct svm range” errors and 15 of most scored terms.



Figure 11: Clusters of ”usb kill anchored urbs panic during boot” and ”RIP: 0010:user-
copy abort+0x74/0x76 kernel panic” errors and 15 of most scored terms.



Figure 12: Cluster mixed.



B HDBSCAN Clustering results

B.1 No dimentionality reduction

Figure 13: Clusters of ”netdev” and ”struct svm range” errors and 15 of most scored terms.



Figure 14: Clusters of ”usb kill anchored urbs panic during boot” and ”RIP: 0010:user-
copy abort+0x74/0x76 kernel panic” errors and 15 of most scored terms.



B.2 SVD - dimentionality reduction to 31 components

Figure 15: Clusters of ”netdev” and ”struct svm range” errors and 15 of most scored terms.



Figure 16: Clusters of ”usb kill anchored urbs panic during boot” and ”RIP: 0010:user-
copy abort+0x74/0x76 kernel panic” errors and 15 of most scored terms.



B.3 NMF - dimentionality reduction to 31 components

Figure 17: Clusters of ”netdev” and ”struct svm range” errors and 15 of most scored terms.



Figure 18: Clusters of ”usb kill anchored urbs panic during boot” and ”RIP: 0010:user-
copy abort+0x74/0x76 kernel panic” errors and 15 of most scored terms.

Figure 19: Cluster mixed.
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