Lista 7

MC358— Fundamentos Matemáticos para Computação Prof. Pedro J. de Rezende 2º Semestre de 2013

- 1. Use o método da diagonalização para provar que o problema da parada não tem solução.
- 2. Dados dois números racionais a e b, com a < b, denote por $[a,b]_{\mathbb{Q}}$ o conjunto $\{x \in \mathbb{Q} : a \leq x \leq b\}$ que denominamos de intervalo racional. Definimos o tamanho de $[a,b]_{\mathbb{Q}}$ como b-a. Dados dois intervalos racionais não disjuntos $[a,b]_{\mathbb{Q}}$ e $[c,d]_{\mathbb{Q}}$, sua união é o intervalo racional $[\min\{a,c\},\max\{b,d\}]_{\mathbb{Q}}$ cujo tamanho é, portanto, $\max\{b,d\}-\min\{a,c\}$.

Entretanto, dados dois intervalos racionais disjuntos $[a,b]_{\mathbb{Q}}$ e $[c,d]_{\mathbb{Q}}$, sua união $[a,b]_{\mathbb{Q}} \cup [c,d]_{\mathbb{Q}}$ não é um intervalo racional. Mas ainda assim podemos calcular o tamanho de sua união como (b-a)+(d-c).

Uma cobertura de um subconjunto $I\subset \mathbb{Q}$ por intervalos racionais é uma coleção de tais intervalos cuja união contém I.

Considere $I = [0, 1]_{\mathbb{Q}}$. Descreva uma cobertura de I cujo tamanho total é apenas $\frac{1}{2}$.

Dica:
$$\sum_{i=2}^{\infty} \frac{1}{2^i} = \frac{1}{2} \cdot$$

- 3. Prove por indução que $2^n > n^2$ para todo inteiro n > 4.
- 4. Prove por indução que $\sum_{i=1}^{n} (a_i a_{i-1}) = a_n a_0$ para todo $n \ge 1$.
- 5. Prove por indução que $\sum_{i=1}^n \frac{1}{2^i} < 1$ para todo $n \geq 1.$