Lista 9

MC358 — Fundamentos Matemáticos para Computação Prof. Pedro J. de Rezende 2º Semestre de 2013

- 1. Seja b um número real. Calcule a somatória $\sum_{k=0}^{n-1} b^k$. Dica: Considere casos: b=0, $b=1,\,0\neq b\neq 1$, e observe que $b^k=(b^{k+1}-b^k)/(b-1)$.
- 2. Encontre uma fórmula para $\sum_{k=0}^{m} \lfloor \sqrt[3]{k} \rfloor$, onde m é um inteiro positivo. Dica: use a fórmula fechada de $\sum_{k=1}^{n} k^3$.
- 3. Prove que o conjunto de números reais que são soluções das equações quadráticas $ax^2 + bx + c = 0$, com $a, b, c \in \mathbb{Z}$, é contável.
- 4. Dado um número natural n, considere o conjunto F_n de todas as funções de $\{k \in \mathbb{N} \mid k \leq n\}$ no conjunto $\{0, 1, 2, 3, \dots, 9\}$. Prove que F_n é contável.
- 5. Dado um número natural n, considere o conjunto F_{n^*} de todas as funções de $\{k \in \mathbb{N} \mid k \geq n\}$ no conjunto $\{0, 1, 2, 3, \dots, 9\}$. Prove que F_{n^*} é não contável.
- 6. Prove que, se A e B são conjuntos de mesma cardinalidade, então P(A) e P(B) também possuem a mesma cardinalidade, onde $P(\bullet)$ é o conjunto das partes de \bullet . Dica: considere separadamente os casos finito e infinito.
- 7. Dado $n \in \mathbb{N}$, denote por I_n o conjunto $\{x \in \mathbb{N} \mid x < n\}$. Dizemos que um conjunto é finito se tem a mesma cardinalidade que I_n para algum $n \in \mathbb{N}$, e infinito caso contrário. Prove que se X é um conjunto infinito, então para **todo** $n \in \mathbb{N}$ existe um subconjunto de X de mesma cardinalidade que I_n .
- 8. Considere a sequência de Fibonacci, dada por $F_0=0,\ F_1=1$ e $F_n=F_{n-1}+F_{n-2}$. Prove que $F_n=(\varphi^n-\psi^n)/\sqrt{5}$, onde $\varphi=(1+\sqrt{5})/2$ e $\psi=(1-\sqrt{5})/2$.
- 9. Seja x um número real tal que $x \neq 0$ e x + 1/x é um inteiro. Prove que para todo inteiro $n \geq 1$, $x^n + 1/x^n$ é um inteiro.
- 10. Prove que $2^{n-1}(a^n + b^n) \ge (a+b)^n$, onde $a, b \in n$ são inteiros positivos.
- 11. Prove que $x^n y^n$ é divisível por x y, para $x, y \in \mathbb{R}$ com $x \neq y$, e $n \in \mathbb{N}$.
- 12. Prove que todo número natural n > 0 pode ser escrito como soma de **distintas** potências de 2.

13. Considere o seguinte jogo para duas pessoas. Coloca-se um número arbitrário de moedas sobre a mesa, e cada jogador, alternadamente, retira no mínimo 1 e no máximo 4 moedas da pilha. Quem retirar a última moeda perde o jogo.

Defina f(n) como 1 se existe uma estratégia ganhadora para o jogador da vez quando há n moedas na mesa, e 0 se existe uma estratégia ganhadora para seu adversário. Isto é, f(n) = 1 se, diante de n moedas, o jogador da vez consegue sempre vencer o jogo com alguma sequência de jogadas, independentemente das jogadas do adversário e f(n) = 0 se, diante de n moedas, o jogador da vez é incapaz de vencer por melhor que ele escolha suas jogadas.

Por exemplo, f(1)=0, por definição; mas f(5)=1, pois, diante de 5 moedas, o jogador da vez consegue ganhar tirando 4 moedas.

Determine uma fórmula para f(n) e prove-a por indução.

- 14. Prove que todo número natural n>1 é divisível por algum primo. Dica: use indução forte.
- 15. Considere a sequência a_0, a_1, a_2, \ldots definida por: $a_0 = 1, a_1 = 2, a_2 = 3$ e $a_k = a_{k-1} + a_{k-2} + a_{k-3}$ para $k \geq 3$. Prove que $a_n \leq 2^n$ para todo $n \geq 0$. Dica: use indução forte.