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The Foundations:
Logic and Proofs

T he rules of logic specify the meaning of mathematical statements. For instance, these rules
help us understand and reason with statements such as “There exists an integer that is
not the sum of two squares” and “For every positive integer n, the sum of the positive integers
not exceeding n is n(n 4+ 1)/2.” Logic is the basis of all mathematical reasoning, and of all
automated reasoning. It has practical applications to the design of computing machines, to the
specification of systems, to artificial intelligence, to computer programming, to programming
languages, and to other areas of computer science, as well as to many other fields of study.

To understand mathematics, we must understand what makes up a correct mathematical
argument, that is, a proof. Once we prove a mathematical statement is true, we call it a theorem. A
collection of theorems on a topic organize what we know about this topic. To learn a mathematical
topic, a person needs to actively construct mathematical arguments on this topic, and not just
read exposition. Moreover, knowing the proof of a theorem often makes it possible to modify
the result to fit new situations.

Everyone knows that proofs are important throughout mathematics, but many people find
it surprising how important proofs are in computer science. In fact, proofs are used to verify
that computer programs produce the correct output for all possible input values, to show that
algorithms always produce the correct result, to establish the security of a system, and to create
artificial intelligence. Furthermore, automated reasoning systems have been created to allow
computers to construct their own proofs.

In this chapter, we will explain what makes up a correct mathematical argument and intro-
duce tools to construct these arguments. We will develop an arsenal of different proof methods
that will enable us to prove many different types of results. After introducing many different
methods of proof, we will introduce several strategies for constructing proofs. We will intro-
duce the notion of a conjecture and explain the process of developing mathematics by studying
conjectures.

Propositional Logic

Introduction

The rules of logic give precise meaning to mathematical statements. These rules are used to
distinguish between valid and invalid mathematical arguments. Because a major goal of this book
is to teach the reader how to understand and how to construct correct mathematical arguments,
we begin our study of discrete mathematics with an introduction to logic.

Besides the importance of logic in understanding mathematical reasoning, logic has numer-
ous applications to computer science. These rules are used in the design of computer circuits,
the construction of computer programs, the verification of the correctness of programs, and in
many other ways. Furthermore, software systems have been developed for constructing some,
but not all, types of proofs automatically. We will discuss these applications of logic in this and
later chapters.
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DEFINITION 7

EXAMPLE 12

EXAMPLE 13

Exercises

TABLE 9 Table for the Bit Operators OR,
AND, and XOR.

X y xXVy XAy xX®y
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Information is often represented using bit strings, which are lists of zeros and ones. When
this is done, operations on the bit strings can be used to manipulate this information.

A bit string is a sequence of zero or more bits. The length of this string is the number of bits
in the string.

101010011 is a bit string of length nine. |

We can extend bit operations to bit strings. We define the bitwise OR, bitwise AND, and
bitwise XOR of two strings of the same length to be the strings that have as their bits the OR,
AND, and XOR of the corresponding bits in the two strings, respectively. We use the symbols
V, A, and @ to represent the bitwise OR, bitwise AND, and bitwise XOR operations, respectively.
We illustrate bitwise operations on bit strings with Example 13.

Find the bitwise OR, bitwise AND, and bitwise XOR of the bit strings 01 10110110 and
110001 1101. (Here, and throughout this book, bit strings will be split into blocks of four
bits to make them easier to read.)

Solution: The bitwise OR, bitwise AND, and bitwise XOR of these strings are obtained by taking
the OR, AND, and XOR of the corresponding bits, respectively. This gives us

01 1011 0110
11 0001 1101

11 1011 1111 bitwise OR
01 0001 0100  bitwise AND
10 1010 1011  bitwise XOR <

1. Which of these sentences are propositions? What are the

d) 4+x=5.

truth values of those that are propositions?
a) Boston is the capital of Massachusetts.
b) Miami is the capital of Florida.

c) 2+3=5.
d) 5+7=10.
e) x+2=11.

f) Answer this question.

2. Which of these are propositions? What are the truth values

of those that are propositions?

a) Do not pass go.
b) What time is it?
¢) There are no black flies in Maine.

e) The moon is made of green cheese.
f) 2" > 100.
3. What is the negation of each of these propositions?
a) Mei has an MP3 player.
b) There is no pollution in New Jersey.
¢ 2+1=3.
d) The summer in Maine is hot and sunny.
4. What is the negation of each of these propositions?
a) Jennifer and Teja are friends.
b) There are 13 items in a baker’s dozen.
¢) Abby sent more than 100 text messages every day.
d) 121 is a perfect square.
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a) You get an A in this class, but you do not do every
exercise in this book.

b) You get an A on the final, you do every exercise in this
book, and you get an A in this class.

¢) To get an A in this class, it is necessary for you to get
an A on the final.

d) You get an A on the final, but you don’t do every ex-
ercise in this book; nevertheless, you get an A in this
class.

e) Getting an A on the final and doing every exercise in
this book is sufficient for getting an A in this class.

f) You will get an A in this class if and only if you either
do every exercise in this book or you get an A on the
final.

Let p, g, and r be the propositions

p : Grizzly bears have been seen in the area.
q : Hiking is safe on the trail.
r : Berries are ripe along the trail.

Write these propositions using p, g, and r and logical
connectives (including negations).

a) Berries are ripe along the trail, but grizzly bears have
not been seen in the area.

b) Grizzly bears have not been seen in the area and hik-
ing on the trail is safe, but berries are ripe along the
trail.

c) If berries are ripe along the trail, hiking is safe if and
only if grizzly bears have not been seen in the area.

d) Itis not safe to hike on the trail, but grizzly bears have
not been seen in the area and the berries along the trail
are ripe.

e) For hiking on the trail to be safe, it is necessary but not
sufficient that berries not be ripe along the trail and
for grizzly bears not to have been seen in the area.

f) Hiking is not safe on the trail whenever grizzly bears
have been seen in the area and berries are ripe along
the trail.

Determine whether these biconditionals are true or

false.

a) 24+2=4ifandonlyif14+1=2.

b) 1+ 1=2ifandonlyif2 43 =4.

¢) 1+ 1 = 3if and only if monkeys can fly.

d) 0> lifandonlyif2 > 1.

Determine whether each of these conditional statements

is true or false.

a) If1+1=2,then2+2=>5.

b) If 1+ 1=3,then2 42 = 4.

¢c) If14+1=3,then2+2=>5.

d) If monkeys can fly, then 1 + 1 = 3.

Determine whether each of these conditional statements

is true or false.

a) If 1 + 1 = 3, then unicorns exist.

b) If 1 + 1 = 3, then dogs can fly.

c¢) If 1 4+ 1 = 2, then dogs can fly.

d) If24+2=4,then 142 =3.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

20.

21.

22,
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a) Coffee or tea comes with dinner.

b) A password must have at least three digits or be at
least eight characters long.

¢) The prerequisite for the course is a course in number
theory or a course in cryptography.

d) You can pay using U.S. dollars or euros.

For each of these sentences, determine whether an in-

clusive or, or an exclusive or, is intended. Explain your

answer.

a) Experience with C++- or Java is required.

b) Lunch includes soup or salad.

¢) To enter the country you need a passport or a voter
registration card.

d) Publish or perish.

For each of these sentences, state what the sentence means

if the logical connective or is an inclusive or (that is, a dis-

junction) versus an exclusive or. Which of these meanings

of or do you think is intended?

a) To take discrete mathematics, you must have taken
calculus or a course in computer science.

b) When you buy a new car from Acme Motor Company,
you get $2000 back in cash or a 2% car loan.

¢) Dinner for two includes two items from column A or
three items from column B.

d) School is closed if more than 2 feet of snow falls or if
the wind chill is below —100.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to ex-

press conditional statements provided in this section.]

a) Itis necessary to wash the boss’s car to get promoted.

b) Winds from the south imply a spring thaw.

¢) A sufficient condition for the warranty to be good is
that you bought the computer less than a year ago.

d) Willy gets caught whenever he cheats.

e) You can access the website only if you pay a subscrip-
tion fee.

f) Getting elected follows from knowing the right peo-
ple.

g) Carol gets seasick whenever she is on a boat.

Write each of these statements in the form “if p, then ¢”

in English. [Hint: Refer to the list of common ways to

express conditional statements. ]

a) It snows whenever the wind blows from the northeast.

b) The apple trees will bloom if it stays warm for a week.

¢) That the Pistons win the championship implies that
they beat the Lakers.

d) It is necessary to walk 8 miles to get to the top of
Long’s Peak.

e) To gettenure as a professor, it is sufficient to be world-
famous.

f) If you drive more than 400 miles, you will need to buy
gasoline.

g) Your guarantee is good only if you bought your CD
player less than 90 days ago.

h) Jan will go swimming unless the water is too cold.
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in English. [Hint: Refer to the list of common ways to ex-
press conditional statements provided in this section.]

a) I will remember to send you the address only if you
send me an e-mail message.

b) To be a citizen of this country, it is sufficient that you
were born in the United States.

¢) Ifyoukeep your textbook, it will be a useful reference
in your future courses.

d) The Red Wings will win the Stanley Cup if their goalie
plays well.

e) That you get the job implies that you had the best
credentials.

f) The beach erodes whenever there is a storm.

g) It is necessary to have a valid password to log on to
the server.

h) You will reach the summit unless you begin your climb
too late.

Write each of these propositions in the form “p if and

only if ¢” in English.

a) If it is hot outside you buy an ice cream cone, and if
you buy an ice cream cone it is hot outside.

b) For you to win the contest itis necessary and sufficient
that you have the only winning ticket.

¢) You get promoted only if you have connections, and
you have connections only if you get promoted.

d) Ifyou watch television your mind will decay, and con-
versely.

e) The trains run late on exactly those days when I take
1t.

Write each of these propositions in the form “p if and

only if ¢” in English.

a) For you to get an A in this course, it is necessary and
sufficient that you learn how to solve discrete mathe-
matics problems.

b) If you read the newspaper every day, you will be in-
formed, and conversely.

¢) Itrainsifitis a weekend day, and it is a weekend day
if it rains.

d) You can see the wizard only if the wizard is not in,
and the wizard is not in only if you can see him.

State the converse, contrapositive, and inverse of each of
these conditional statements.

a) If it snows today, I will ski tomorrow.

b) I come to class whenever there is going to be a quiz.

¢) A positive integer is a prime only if it has no divisors
other than 1 and itself.

State the converse, contrapositive, and inverse of each of

these conditional statements.

a) If it snows tonight, then I will stay at home.

b) I go to the beach whenever it is a sunny summer day.

c¢) When I stay up late, it is necessary that I sleep until
noon.

How many rows appear in a truth table for each of these

compound propositions?

a) p—>—p

b) (pv—r)n(gV—s)

30.
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¢) gVpV-sNV-orV-otVu

d) (pArAt)<(@AL)

How many rows appear in a truth table for each of these
compound propositions?

a) (g —>—p)Vip—>—q)

b) (pVv—=t) A(pV —s)

¢ (p—>r)V(ms—> )V (—u—v)

d (pArAs)V(@At)V (rA-t)

Construct a truth table for each of these compound propo-
sitions.

a) pA—p b) pv—p

¢ (pV—q) —q d (pvag) —> (pnrg)

e) (p—>q) < (—g—> —p)

f) (p—>q) —(@—p)

Construct a truth table for each of these compound propo-
sitions.

a) p—>—p

¢ pd(PVy

e) (g—>—p < (peq)
) (peog@(po—g)
Construct a truth table for each of these compound propo-
sitions.

a) (pvq) = (p@q)

¢ (pvg)®(pArg)

e) (poq@®(-p <)
f) (p®9) —> (P®—q)
Construct a truth table for each of these compound propo-
sitions.

a) pdp

b) p < —p
d) (prg)—> (pVg)

b) (p®q)— (pAq)
d) (peg)®(—p< q)

b) p®—p

¢ pO—q d —p®—q

e (pe@gy)vipd—g) ) (p®PA(P&—q)
Construct a truth table for each of these compound propo-
sitions.

a) p—>—q

o (p—=>qV(Ep—q)
e (peoqV(itp<q)
f) (po—g) < (poq
Construct a truth table for each of these compound propo-
sitions.

a) (pvg)Vvr
¢ (prg)Vr d) (pAg)Ar

e (pvag)A—r £) (prg)v—r
Construct a truth table for each of these compound propo-
sitions.

a) p—>(—qVvr)

b) =p— (g —r)

¢ (p—>qV(Ep—>r)

d (p—>gA(Ep—>r1)

e) (pq)V(-g <r)

£) (=p o —q) < (g <)

Construct a truth table for ((p — g) — r) — s.

b) —p < ¢
d p—>g9Ar(p—9q)

b) (pvag)nr

Construct a truth table for (p <> q) < (r < ).



16

15”40,

Lo 41,

42.

43.

44.

1/ The Foundations: Logic and Proofs

Explain, without using a truth table, why (p vV —¢g) A
(g vV —r) A (rVv —p)is true when p, g, and r have the
same truth value and it is false otherwise.

Explain, without using a truth table, why (p Vg Vv r) A
(—=p Vv —q Vv —r) is true when at least one of p, ¢, and r
is true and at least one is false, but is false when all three
variables have the same truth value.

What is the value of x after each of these statements is
encountered in a computer program, if x = 1 before the
statement is reached?

a) ifx+2=3thenx :=x+1

b)) ifx+1=3)OR2x+2=3)thenx :=x+1

¢) ifQx +3=5AND 3x+4=7)thenx :=x +1
d) if(x+1=2)XOR (x+2=3)thenx :=x+1

e) ifx <2thenx:=x+1

Find the bitwise OR, bitwise AND, and bitwise XOR of
each of these pairs of bit strings.

a) 101 1110, 010 0001

b) 1111 0000, 1010 1010

¢) 0001110001, 100100 1000

d) 1111111111, 00 0000 0000

Evaluate each of these expressions.

a) 11000 A (01011 v 11011)

b) (01111 A 10101) v 0 1000

¢) (010106 11011) & 0 1000

d) (11011 v 01010) A (10001 v 11011)

Fuzzy logic is used in artificial intelligence. In fuzzy logic, a
proposition has a truth value that is a number between O and 1,
inclusive. A proposition with a truth value of 0 is false and one
with a truth value of 1 is true. Truth values that are between 0
and 1 indicate varying degrees of truth. For instance, the truth
value 0.8 can be assigned to the statement “Fred is happy,”

because Fred is happy most of the time, and the truth value
0.4 can be assigned to the statement “John is happy,” because
John is happy slightly less than half the time. Use these truth
values to solve Exercises 45—47.

45.

46.

47.

*48.
#49,

50.

The truth value of the negation of a proposition in fuzzy
logic is 1 minus the truth value of the proposition. What
are the truth values of the statements “Fred is not happy”
and “John is not happy?”

The truth value of the conjunction of two propositions in
fuzzy logic is the minimum of the truth values of the two
propositions. What are the truth values of the statements
“Fred and John are happy” and “Neither Fred nor John is
happy?”

The truth value of the disjunction of two propositions in
fuzzy logic is the maximum of the truth values of the two
propositions. What are the truth values of the statements
“Fred is happy, or John is happy” and “Fred is not happy,
or John is not happy?”

Is the assertion “This statement is false” a proposition?

The nth statement in a list of 100 statements is “Exactly
n of the statements in this list are false.”

a) What conclusions can you draw from these state-
ments?

b) Answer part (a) if the nth statement is “At least n of
the statements in this list are false.”

¢) Answer part (b) assuming that the list contains 99
statements.

An ancient Sicilian legend says that the barber in a remote

town who can be reached only by traveling a dangerous

mountain road shaves those people, and only those peo-

ple, who do not shave themselves. Can there be such a

barber?

Applications of Propositional Logic

Introduction

Logic has many important applications to mathematics, computer science, and numerous other
disciplines. Statements in mathematics and the sciences and in natural language often are im-
precise or ambiguous. To make such statements precise, they can be translated into the language
of logic. For example, logic is used in the specification of software and hardware, because these
specifications need to be precise before development begins. Furthermore, propositional logic
and its rules can be used to design computer circuits, to construct computer programs, to verify
the correctness of programs, and to build expert systems. Logic can be used to analyze and
solve many familiar puzzles. Software systems based on the rules of logic have been developed
for constructing some, but not all, types of proofs automatically. We will discuss some of these
applications of propositional logic in this section and in later chapters.

Translating English Sentences

There are many reasons to translate English sentences into expressions involving propositional
variables and logical connectives. In particular, English (and every other human language) is
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qVN —r

—-r

_\ (pV=r)A(=pV(gV -r) .
L/ g

by

—pV(qV —r)

FIGURE 3 The circuit for (p Vv =r) A (=p VvV (q V =r)).

Exercises

In Exercises 1-6, translate the given statement into proposi-
tional logic using the propositions provided.

1. You cannot edit a protected Wikipedia entry unless you

2

3

are an administrator. Express your answer in terms of e:
“You can edit a protected Wikipedia entry” and a: “You
are an administrator.”

You can see the movie only if you are over 18 years old
or you have the permission of a parent. Express your an-
swer in terms of m: ‘““You can see the movie,” e: “You are
over 18 years old,” and p: “You have the permission of a
parent.”

You can graduate only if you have completed the require-
ments of your major and you do not owe money to the
university and you do not have an overdue library book.
Express your answer in terms of g: “You can graduate,”
m: “You owe money to the university,” r: “You have com-
pleted the requirements of your major,” and b: “You have
an overdue library book.”

To use the wireless network in the airport you must pay
the daily fee unless you are a subscriber to the service.
Express your answer in terms of w: “You can use the wire-
less network in the airport,” d: “You pay the daily fee,”
and s: “You are a subscriber to the service.”

You are eligible to be President of the U.S.A. only if you
are at least 35 years old, were born in the U.S.A, or at the
time of your birth both of your parents were citizens, and
you have lived at least 14 years in the country. Express
your answer in terms of e: “You are eligible to be Pres-
ident of the U.S.A.,” a: “You are at least 35 years old,”
b: “You were born in the U.S.A,” p: “At the time of your
birth, both of your parents where citizens,” and r: “You
have lived at least 14 years in the U.S.A.”

You can upgrade your operating system only if you have
a 32-bit processor running at 1 GHz or faster, at least
1 GB RAM, and 16 GB free hard disk space, or a 64-
bit processor running at 2 GHz or faster, at least 2 GB
RAM, and at least 32 GB free hard disk space. Express
you answer in terms of u#: “You can upgrade your oper-
ating system,” b32: “You have a 32-bit processor,” bea:

9

“You have a 64-bit processor,” g1: “Your processor runs
at 1 GHz or faster,” g»: “Your processor runs at 2 GHz or
faster,” r1: ““Your processor has at least 1 GB RAM,” r;:
“Your processor has at least2 GB RAM,” h1¢: ““You have
at least 16 GB free hard disk space,” and /3,: “You have
at least 32 GB free hard disk space.”

. Express these system specifications using the proposi-

tions p “The message is scanned for viruses” and g “The
message was sent from an unknown system” together
with logical connectives (including negations).

a) “The message is scanned for viruses whenever the
message was sent from an unknown system.”

b) “The message was sent from an unknown system but
it was not scanned for viruses.”

¢) “Itis necessary to scan the message for viruses when-
ever it was sent from an unknown system.”

d) “When a message is not sent from an unknown system
it is not scanned for viruses.”

Express these system specifications using the proposi-
tions p “The user enters a valid password,” g “Access is
granted,” and r “The user has paid the subscription fee”
and logical connectives (including negations).

a) “The user has paid the subscription fee, but does not
enter a valid password.”

b) “Access is granted whenever the user has paid the
subscription fee and enters a valid password.”

¢) “Accessis denied if the user has not paid the subscrip-
tion fee.”

d) “If the user has not entered a valid password but has
paid the subscription fee, then access is granted.”
Are these system specifications consistent? “The system
is in multiuser state if and only if it is operating normally.
If the system is operating normally, the kernel is func-
tioning. The kernel is not functioning or the system is
in interrupt mode. If the system is not in multiuser state,
then it is in interrupt mode. The system is not in interrupt

mode.”
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Are these system specifications consistent? “Whenever
the system software is being upgraded, users cannot ac-
cess the file system. If users can access the file system,
then they can save new files. If users cannot save new
files, then the system software is not being upgraded.”

Are these system specifications consistent? “The router
can send packets to the edge system only if it supports the
new address space. For the router to support the new ad-
dress space it is necessary that the latest software release
be installed. The router can send packets to the edge sys-
tem if the latest software release is installed, The router
does not support the new address space.”

Are these system specifications consistent? “If the file
system is not locked, then new messages will be queued.
If the file system is not locked, then the system is func-
tioning normally, and conversely. If new messages are not
queued, then they will be sent to the message buffer. If
the file system is not locked, then new messages will be
sent to the message buffer. New messages will not be sent
to the message buffer.”

What Boolean search would you use to look for Web
pages about beaches in New Jersey? What if you wanted
to find Web pages about beaches on the isle of Jersey (in
the English Channel)?

What Boolean search would you use to look for Web
pages about hiking in West Virginia? What if you wanted
to find Web pages about hiking in Virginia, but not in West
Virginia?

Each inhabitant of a remote village always tells the truth
or always lies. A villager will give only a “Yes” or a “No”
response to a question a tourist asks. Suppose you are a
tourist visiting this area and come to a fork in the road.
One branch leads to the ruins you want to visit; the other
branch leads deep into the jungle. A villager is standing
at the fork in the road. What one question can you ask the
villager to determine which branch to take?

An explorer is captured by a group of cannibals. There are

two types of cannibals—those who always tell the truth

and those who always lie. The cannibals will barbecue

the explorer unless he can determine whether a particu-

lar cannibal always lies or always tells the truth. He is

allowed to ask the cannibal exactly one question.

a) Explain why the question “Are you a liar?” does not
work.

b) Find a question that the explorer can use to determine
whether the cannibal always lies or always tells the
truth.

When three professors are seated in a restaurant, the host-
ess asks them: “Does everyone want coffee?”” The first
professor says: “I do not know.” The second professor
then says: “I do not know.” Finally, the third professor
says: “No, not everyone wants coffee.” The hostess comes
back and gives coffee to the professors who want it. How
did she figure out who wanted coffee?

When planning a party you want to know whom to in-
vite. Among the people you would like to invite are three
touchy friends. You know that if Jasmine attends, she will
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become unhappy if Samir is there, Samir will attend only
if Kanti will be there, and Kanti will not attend unless Jas-
mine also does. Which combinations of these three friends
can you invite so as not to make someone unhappy?

Exercises 19-23 relate to inhabitants of the island of knights
and knaves created by Smullyan, where knights always tell
the truth and knaves always lie. You encounter two people,
A and B. Determine, if possible, what A and B are if they
address you in the ways described. If you cannot determine
what these two people are, can you draw any conclusions?

19. A says “Atleast one of us is a knave” and B says nothing.

20. A says “The two of us are both knights” and B says “A
is a knave.”

21. Asays “Iamaknaveor B is aknight” and B says nothing.
22. Both A and B say “I am a knight.”

23. A says “We are both knaves” and B says nothing.

Exercises 24-31 relate to inhabitants of an island on which
there are three kinds of people: knights who always tell the
truth, knaves who always lie, and spies (called normals by
Smullyan [Sm78]) who can either lie or tell the truth. You
encounter three people, A, B, and C. You know one of these
people is a knight, one is a knave, and one is a spy. Each of the
three people knows the type of person each of other two is. For
each of these situations, if possible, determine whether there
is a unique solution and determine who the knave, knight, and
spy are. When there is no unique solution, list all possible
solutions or state that there are no solutions.

24. A says “C is the knave,” B says, “A is the knight,” and C
says “I am the spy.”

25. A says “I am the knight,” B says “I am the knave,” and
C says “B is the knight.”

26. A says “l am the knave,” B says “I am the knave,” and C
says “I am the knave.”

27. A says “I am the knight,” B says “A is telling the truth,”
and C says “I am the spy.”

28. A says “I am the knight,” B says, “A is not the knave,”
and C says “B is not the knave.”

29. A says “I am the knight,” B says “I am the knight,” and
C says “I am the knight.”

30. A says “I am not the spy,” B says “I am not the spy,” and
C says “A is the spy.”

31. A says “Tam not the spy,” B says “I am not the spy,” and
C says “I am not the spy.”

Exercises 32-38 are puzzles that can be solved by translating

statements into logical expressions and reasoning from these

expressions using truth tables.

32. The police have three suspects for the murder of Mr.
Cooper: Mr. Smith, Mr. Jones, and Mr. Williams. Smith,
Jones, and Williams each declare that they did not kill
Cooper. Smith also states that Cooper was a friend of
Jones and that Williams disliked him. Jones also states
that he did not know Cooper and that he was out of town
the day Cooper was killed. Williams also states that he
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saw both Smith and Jones with Cooper the day of the
killing and that either Smith or Jones must have killed
him. Can you determine who the murderer was if

a) one of the three men is guilty, the two innocent men
are telling the truth, but the statements of the guilty
man may or may not be true?

b) innocent men do not lie?

Steve would like to determine the relative salaries of three

coworkers using two facts. First, he knows that if Fred

is not the highest paid of the three, then Janice is. Sec-
ond, he knows that if Janice is not the lowest paid, then

Maggie is paid the most. Is it possible to determine the

relative salaries of Fred, Maggie, and Janice from what

Steve knows? If so, who is paid the most and who the

least? Explain your reasoning.

Five friends have access to a chat room. Is it possible to

determine who is chatting if the following information is

known? Either Kevin or Heather, or both, are chatting.

Either Randy or Vijay, but not both, are chatting. If Abby

is chatting, so is Randy. Vijay and Kevin are either both

chatting or neither is. If Heather is chatting, then so are

Abby and Kevin. Explain your reasoning.

A detective has interviewed four witnesses to a crime.

From the stories of the witnesses the detective has con-

cluded that if the butler is telling the truth then so is the

cook; the cook and the gardener cannot both be telling the
truth; the gardener and the handyman are not both lying;
and if the handyman is telling the truth then the cook is
lying. For each of the four witnesses, can the detective de-
termine whether that person is telling the truth or lying?

Explain your reasoning.

Four friends have been identified as suspects for an unau-

thorized access into a computer system. They have made

statements to the investigating authorities. Alice said

“Carlos did it.” John said “I did not do it.” Carlos said

“Diana did it.” Diana said “Carlos lied when he said that

Ididit”

a) If the authorities also know that exactly one of the
four suspects is telling the truth, who did it? Explain

your reasoning.
b) If the authorities also know that exactly one is lying,

who did it? Explain your reasoning.

Suppose there are signs on the doors to two rooms. The
sign on the first door reads “In this room there is a lady,
and in the other one there is a tiger”’; and the sign on the
second door reads “In one of these rooms, there is a lady,
and in one of them there is a tiger.” Suppose that you
know that one of these signs is true and the other is false.
Behind which door is the lady?

Solve this famous logic puzzle, attributed to Albert Ein-
stein, and known as the zebra puzzle. Five men with
different nationalities and with different jobs live in con-
secutive houses on a street. These houses are painted dif-
ferent colors. The men have different pets and have dif-
ferent favorite drinks. Determine who owns a zebra and

39.

40.

41

42

43.

whose favorite drink is mineral water (which is one of the
favorite drinks) given these clues: The Englishman lives
in the red house. The Spaniard owns a dog. The Japanese
man is a painter. The Italian drinks tea. The Norwegian
lives in the first house on the left. The green house is
immediately to the right of the white one. The photogra-
pher breeds snails. The diplomat lives in the yellow house.
Milk is drunk in the middle house. The owner of the green
house drinks coffee. The Norwegian’s house is next to the
blue one. The violinist drinks orange juice. The fox is in
a house next to that of the physician. The horse is in a
house next to that of the diplomat. [Hint: Make a table
where the rows represent the men and columns represent
the color of their houses, their jobs, their pets, and their
favorite drinks and use logical reasoning to determine the
correct entries in the table.]

Freedonia has fifty senators. Each senator is either honest
or corrupt. Suppose you know that at least one of the Free-
donian senators is honest and that, given any two Free-
donian senators, at least one is corrupt. Based on these
facts, can you determine how many Freedonian senators
are honest and how many are corrupt? If so, what is the
answer?

Find the output of each of these combinatorial circuits.

a) P

b)

Find the output of each of these combinatorial circuits.

a) »

b

Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
(p A —r) V (—q A r) from input bits p, g, and r.
Construct a combinatorial circuit using inverters,
OR gates, and AND gates that produces the output
((=p Vv =r)A=—g)V (—pAl(gVr)) from input bits p,
q,andr.
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Solving Satisfiability Problems

A truth table can be used to determine whether a compound proposition is satisfiable, or equiv-
alently, whether its negation is a tautology (see Exercise 60). This can be done by hand for
a compound proposition with a small number of variables, but when the number of variables
grows, this becomes impractical. For instance, there are 220 — 1,048,576 rows in the truth ta-
ble for a compound proposition with 20 variables. Clearly, you need a computer to help you
determine, in this way, whether a compound proposition in 20 variables is satisfiable.

When many applications are modeled, questions concerning the satisfiability of compound
propositions with hundreds, thousands, or millions of variables arise. Note, for example, that
when there are 1000 variables, checking every one of the 2'°°° (a number with more than 300
decimal digits) possible combinations of truth values of the variables in a compound proposition
cannot be done by a computer in even trillions of years. No procedure is known that a com-
puter can follow to determine in a reasonable amount of time whether an arbitrary compound
proposition in such a large number of variables is satisfiable. However, progress has been made
developing methods for solving the satisfiability problem for the particular types of compound

links propositions that arise in practical applications, such as for the solution of Sudoku puzzles.
Many computer programs have been developed for solving satisfiability problems which have
practical use. In our discussion of the subject of algorithms in Chapter 3, we will discuss this
question further. In particular, we will explain the important role the propositional satisfiability
problem plays in the study of the complexity of algorithms.

Exercises
1. Use truth tables to verify these equivalences. b) (pAg)Ar=pA(gAr).
a) pAT=p b) pvF=p 5. Use a truth table to verify the distributive law
¢ pAF=F d pvT=T pA@V)=(PAQV(pAr).
e) pVp=p f) pAp=p 6. Use a truth table to verify the first De Morgan law
2. Show that —=(—p) and p are logically equivalent. —~(pAg)=—-pV —q.
3. Use truth tables to verify the commutative laws 7. Use De Morgan’s laws to find the negation of each of the
a) pvg=qVp. b) pAg=gqnp. following statements.
4. Use truth tables to verify the associative laws a) Jan is rich and happy.
a) (pvgvr=pvigVvr). b) Carlos will bicycle or run tomorrow.
Links
= HENRY MAURICE SHEFFER (1883-1964) Henry Maurice Sheffer, born to Jewish parents in the western

Ukraine, emigrated to the United States in 1892 with his parents and six siblings. He studied at the Boston Latin
School before entering Harvard, where he completed his undergraduate degree in 1905, his master’s in 1907,
and his Ph.D. in philosophy in 1908. After holding a postdoctoral position at Harvard, Henry traveled to Europe
on a fellowship. Upon returning to the United States, he became an academic nomad, spending one year each
at the University of Washington, Cornell, the University of Minnesota, the University of Missouri, and City
College in New York. In 1916 he returned to Harvard as a faculty member in the philosophy department. He
— remained at Harvard until his retirement in 1952.

. Sheffer introduced what is now known as the Sheffer stroke in 1913; it became well known only after its use
in the 1925 edition of Whitehead and Russell’s Principia Mathematica. In this same edition Russell wrote that Sheffer had invented
a powerful method that could be used to simplify the Principia. Because of this comment, Sheffer was something of a mystery man
to logicians, especially because Sheffer, who published little in his career, never published the details of this method, only describing
it in mimeographed notes and in a brief published abstract.

Sheffer was a dedicated teacher of mathematical logic. He liked his classes to be small and did not like auditors. When strangers
appeared in his classroom, Sheffer would order them to leave, even his colleagues or distinguished guests visiting Harvard. Sheffer
was barely five feet tall; he was noted for his wit and vigor, as well as for his nervousness and irritability. Although widely liked, he
was quite lonely. He is noted for a quip he spoke at his retirement: “Old professors never die, they just become emeriti.” Sheffer is
also credited with coining the term “Boolean algebra” (the subject of Chapter 12 of this text). Sheffer was briefly married and lived
most of his later life in small rooms at a hotel packed with his logic books and vast files of slips of paper he used to jot down his
ideas. Unfortunately, Sheffer suffered from severe depression during the last two decades of his life.
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¢) Mei walks or takes the bus to class.
d) Ibrahim is smart and hard working.

. Use De Morgan’s laws to find the negation of each of the

following statements.

a) Kwame will take a job in industry or go to graduate
school.

b) Yoshiko knows Java and calculus.

¢) James is young and strong.

d) Rita will move to Oregon or Washington.

. Show that each of these conditional statements is a tau-

tology by using truth tables.
a) (pAg) = p

¢ —p—>(p—>q)

e ~(p—>q)—>p

b) p—> (pVva)
d) (prg)—> (p—>q)
f) =(p—q) = —q

. Show that each of these conditional statements is a tau-

tology by using truth tables.

a) [-pA(pVPl—gq

b) [(p = q) A (g —1)]— (p—71)

o) [pA(p—>q@l—q

D pVvaOA(p—>r)n(g—>r)]—r

Show that each conditional statement in Exercise 9 is a
tautology without using truth tables.

Show that each conditional statement in Exercise 10 is a
tautology without using truth tables.

Use truth tables to verify the absorption laws.

a) pv(pAg)=p by pA(pVg)=p
Determine whether (—p A (p — q)) — —q is a tautol-
ogy.

Determine whether (—g A (p — ¢)) — —p is a tautol-
ogy.

Each of Exercises 1628 asks you to show that two compound
propositions are logically equivalent. To do this, either show
that both sides are true, or that both sides are false, for exactly
the same combinations of truth values of the propositional
variables in these expressions (whichever is easier).

16.
17.
18.
19.
20.
21.
22,
23.
24,
25.
26.
27.

28.

Show that p <> g and (p A q) V (—=p A —gq) are logically
equivalent.

Show that =(p <> ¢) and p <> —q are logically equiva-
lent.

Show that p — g and —~g — —p arelogically equivalent.
Show that —p <> g and p <> —gq are logically equivalent.
Show that —=(p @ ¢) and p <> ¢ are logically equivalent.
Show that —(p <> ¢) and —p < ¢ are logically equiva-
lent.

Show that (p — ¢) A (p — r)and p — (g A r) arelog-
ically equivalent.

Show that (p — r) A (g — r)and (p Vv q) — r are log-
ically equivalent.

Show that (p — ¢q) V (p — r)and p — (g V r) arelog-
ically equivalent.

Show that (p — r) vV (g — r)and (p A q) — r are log-
ically equivalent.

Show that—p — (¢ — r)andg — (p V r) arelogically
equivalent.

Show that p <> g and (p — q) A (¢ — p) are logically
equivalent.

Show that p <> g and —p <> —q are logically equivalent.

29.
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Show that (p — g) A (g — r) — (p — r) is a tautol-
ogy.

Show that (p V q) A (—p vV r) — (g Vv r) is atautology.
Show that (p — g) — r and p — (¢ — r) are not log-
ically equivalent.

Show that (p A g) — r and (p — r) A (¢ — r) are not
logically equivalent.

Show that (p > ¢q)—> (r—s) and (p —>r)—
(g — s) are not logically equivalent.

The dual of a compound proposition that contains only the
logical operators V, A, and — is the compound proposition
obtained by replacing each Vv by A, each A by Vv, each T
by F, and each F by T. The dual of s is denoted by s*.

34.

35.

36.
. Show that (s*)*
38.
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Find the dual of each of these compound propositions.
a) pV—q b) pA(gV(rAT))

¢ (pA—q)V (g AF)

Find the dual of each of these compound propositions.
a) pA—g A-r b) (pAgATF)VsS

¢ (pvE)A(@VvT

When does s* = s, where s is a compound proposition?

s when s is a compound proposition.

Show that the logical equivalences in Table 6, except for
the double negation law, come in pairs, where each pair
contains compound propositions that are duals of each
other.

Why are the duals of two equivalent compound proposi-
tions also equivalent, where these compound propositions
contain only the operators A, Vv, and —?

Find a compound proposition involving the propositional
variables p, g, and r that is true when p and ¢ are true
and r is false, but is false otherwise. [Hint: Use a con-
junction of each propositional variable or its negation.]

Find a compound proposition involving the propositional
variables p, g, and r that is true when exactly two of p, ¢,
and r are true and is false otherwise. [Hint: Form a dis-
junction of conjunctions. Include a conjunction for each
combination of values for which the compound proposi-
tion is true. Each conjunction should include each of the
three propositional variables or its negations.]

. Suppose that a truth table in n propositional variables is

specified. Show that a compound proposition with this
truth table can be formed by taking the disjunction of
conjunctions of the variables or their negations, with one
conjunction included for each combination of values for
which the compound proposition is true. The resulting
compound proposition is said to be in disjunctive nor-
mal form.

A collection of logical operators is called functionally com-
plete if every compound proposition is logically equivalent to
a compound proposition involving only these logical opera-

tors.
43.

Show that —, A, and Vv form a functionally complete col-
lection of logical operators. [Hint: Use the fact that every
compound proposition is logically equivalent to one in
disjunctive normal form, as shown in Exercise 42.]
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Show that — and A form a functionally complete col-
lection of logical operators. [Hint: First use a De Mor-
gan law to show that p Vv g is logically equivalent to
—(=p A —q).]

Show that — and Vv form a functionally complete collec-
tion of logical operators.

The following exercises involve the logical operators NAND
and NOR. The proposition p NAND g is true when either p
or g, or both, are false; and it is false when both p and ¢ are
true. The proposition p NOR q is true when both p and g are
false, and it is false otherwise. The propositions p NAND g
and p NOR q are denoted by p | ¢ and p | g, respectively.
(The operators | and | are called the Sheffer stroke and the
Peirce arrow after H. M. Sheffer and C. S. Peirce, respec-
tively.)

46.
47.
48.
49.
50.
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Predicates and Quantifiers

Construct a truth table for the logical operator NAND.

Show that p | g is logically equivalent to —=(p A q).

Construct a truth table for the logical operator NOR.

Show that p | g is logically equivalent to =(p V ¢q).

In this exercise we will show that {]} is a functionally

complete collection of logical operators.

a) Show that p | p is logically equivalent to —p.

b) Show that (p | ¢) | (p | ¢) is logically equivalent
topVyg.

¢) Conclude from parts (a) and (b), and Exercise 49, that
{l} is a functionally complete collection of logical
operators.

Find a compound proposition logically equivalent to

p — q using only the logical operator |.

Show that {|} is a functionally complete collection of log-

ical operators.

Show that p | ¢ and g | p are equivalent.

Show that p | (¢ | ) and (p | ¢) | r are not equivalent,

so that the logical operator | is not associative.

How many different truth tables of compound proposi-

tions are there that involve the propositional variables p

and ¢?

Show that if p, g, and r are compound propositions such

that p and ¢q are logically equivalent and g and r are log-

ically equivalent, then p and r are logically equivalent.

The following sentence is taken from the specification of

a telephone system: “If the directory database is opened,

then the monitor is put in a closed state, if the system is

not in its initial state.” This specification is hard to under-

58.
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stand because it involves two conditional statements. Find
an equivalent, easier-to-understand specification that in-
volves disjunctions and negations but not conditional
statements.

How many of the disjunctions p vV —q, =pVv g, qVr,
q Vv —r, and —g V —r can be made simultaneously true
by an assignment of truth values to p, g, and r?

How many of the disjunctions pVv—-gVvs, —-p V
—rvs, —pV-orv-s, —pVgV-s, gVrV-s,
gV —rNV=s,mpV—ogV-os,pVrVvs,andp VrVv-s
can be made simultaneously true by an assignment of
truth values to p, g, r, and s?

Show that the negation of an unsatisfiable compound
proposition is a tautology and the negation of a compound
proposition that is a tautology is unsatisfiable.

Determine whether each of these compound propositions

is satisfiable.

a) (pV—=g)AN(=pVg)A(=pV—q)

b) (p =) A(p—=> =) N(=p—=> @) N(=p—>—q)

¢ (peogA(-poq)

Determine whether each of these compound propositions

is satisfiable.

a) (pvgV-r)A(pPV—gV-s)A(pV-rV-s)A
(=P V=gV o) A(pVgVTs)

b) (=pV =g Vr)A(=pVgV=s)A(pV—qV
—S)AN(=pVrVvas)A(pvVgyV-r)A(pV
—=r Vo —s)

¢) (pvgVvr)yA(pV—gV—-s)A(@V-rvVvs) A
(=pVrVsS)A(—pVgV=s)A(pV—gV—r) A
(=pV—=gVs)A(—pV-rV-s)

Show how the solution of a given 4 x 4 Sudoku puzzle

can be found by solving a satisfiability problem.

Construct a compound proposition that asserts that ev-
ery cell of a 9 x 9 Sudoku puzzle contains at least one
number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that every col-
umn of a 9 x 9 Sudoku puzzle contains every number.

Explain the steps in the construction of the compound
proposition given in the text that asserts that each of the
nine 3 x 3 blocks of a 9 x 9 Sudoku puzzle contains ev-
ery number.

Introduction

Propositional logic, studied in Sections 1.1-1.3, cannot adequately express the meaning of all
statements in mathematics and in natural language. For example, suppose that we know that

“Every computer connected to the university network is functioning properly.”
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. Let P(x) denote the statement “x < 4.” What are these

truth values?

a) P(0) b) P(4) ¢) P(6)

. Let P(x) be the statement “the word x contains the

letter a.” What are these truth values?

a) P(orange) b) P(lemon)

¢) P(true) d) P(false)

. Let Q(x, y) denote the statement “x is the capital of y.”

What are these truth values?

a) Q(Denver, Colorado)

b) Q(Detroit, Michigan)

¢) Q(Massachusetts, Boston)

d) O(New York, New York)

. State the value of x after the statementif P (x) thenx := 1

is executed, where P (x) is the statement “x > 1,” if the

value of x when this statement is reached is

a) x =0. b) x =1.

c) x =2.

. Let P(x) be the statement “x spends more than five hours

every weekday in class,” where the domain for x consists

of all students. Express each of these quantifications in

English.

a) dxP(x) b) VxP(x)

¢) Ix—P(x) d) Vx =P (x)

. Let N(x) be the statement “x has visited North Dakota,”

where the domain consists of the students in your school.

Express each of these quantifications in English.

a) IxN(x) b) VxN(x) ¢) —IAxN(x)

d) Ix—N(x) e) —VxN(x) f) Vx—N(x)

. Translate these statements into English, where C (x) is “x

is a comedian” and F'(x) is “x is funny” and the domain

consists of all people.

a) Vx(C(x) — F(x)) b) Vx(C(x) A F(x))

¢) Ix(Cx) —> F(x)) d) Ix(C(x) A F(x))

. Translate these statements into English, where R (x) is “x

is arabbit” and H (x) is “x hops” and the domain consists

of all animals.

a) Yx(R(x) — H(x)) b) Vx(R(x) A H(x))

¢) dx(R(x) > H(x)) d) Ix(R(x) A H(x))

. Let P(x) be the statement “x can speak Russian” and let

Q(x) be the statement “x knows the computer language

C++.” Express each of these sentences in terms of P (x),

Q(x), quantifiers, and logical connectives. The domain

for quantifiers consists of all students at your school.

a) There is a student at your school who can speak Rus-
sian and who knows C++-.

b) There is a student at your school who can speak Rus-
sian but who doesn’t know C++.

¢) Every student at your school either can speak Russian
or knows C++.

d) No student at your school can speak Russian or knows
C++.

10.

11.
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Let C(x) be the statement “x has a cat,” let D(x) be the

statement “x has a dog,” and let F (x) be the statement “x

has a ferret.” Express each of these statements in terms of

C(x), D(x), F(x), quantifiers, and logical connectives.

Let the domain consist of all students in your class.

a) A student in your class has a cat, a dog, and a ferret.

b) All students in your class have a cat, a dog, or a ferret.

¢) Some student in your class has a cat and a ferret, but
not a dog.

d) No student in your class has a cat, a dog, and a ferret.

e) For each of the three animals, cats, dogs, and ferrets,
there is a student in your class who has this animal as
a pet.

Let P(x) be the statement “x = x2.” If the domain con-

sists of the integers, what are these truth values?

a) P(0) b) P(1) ¢ P2

d) P(—1) e) dxP(x) f) VxP(x)

Let Q(x) be the statement “x + 1 > 2x.” If the domain

consists of all integers, what are these truth values?

a) 0(0) b) O(-1) ¢) 0()
d) IxQ(x) e) VxQO(x) f) Ix—-Q0(x)
g Vx—0(x)

Determine the truth value of each of these statements if
the domain consists of all integers.

a) Ynn+1>n) b) In(2n = 3n)

¢) In(n = —n) d) Vn(3n < 4n)
Determine the truth value of each of these statements if
the domain consists of all real numbers.

a) Ix(x3=-1) b) Ix(x* < x?)

©) Vx((—x)? =x?) d) Vx(2x > x)

Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

a) Vn(n® > 0) b) In(n*=2)

¢) Va(n? > n) d) In(n? <0)

Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.

a) Ix(x2=2) b) Ix(x2=—1)

¢ Vx(x24+2>1) d) Vx(x? # x)

Suppose that the domain of the propositional function
P (x) consists of the integers 0, 1, 2, 3, and 4. Write out

each of these propositions using disjunctions, conjunc-
tions, and negations.

a) dxP(x) b) VxP(x) ¢) dx—P(x)

d) Vx—=P(x) e) —3IxP(x) f) =VxP(x)
Suppose that the domain of the propositional function
P (x) consists of the integers —2, —1, 0, 1, and 2. Write
out each of these propositions using disjunctions, con-
junctions, and negations.

a) dxP(x) b) VxP(x)
d) Vx—P(x) e) —IxP(x)

¢) Ix—P(x)
f) =VxP(x)
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Suppose that the domain of the propositional function
P(x) consists of the integers 1, 2, 3, 4, and 5. Express
these statements without using quantifiers, instead using
only negations, disjunctions, and conjunctions.

a) AxP(x) b) VxP(x)

¢) —3dxP(x) d) =VxP(x)

e) Vx((x #3) - P(x)) vIx—P(x)

Suppose that the domain of the propositional function
P(x) consists of —5, —3, —1, 1, 3, and 5. Express these
statements without using quantifiers, instead using only
negations, disjunctions, and conjunctions.

a) dxP(x) b) VxP(x)

¢) Vx((x #1) > P(x))

d) Ix((x = 0) A P(x))

e) Ax(—P(x)) AVx((x <0) > P(x))

For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone is studying discrete mathematics.

b) Everyone is older than 21 years.

¢) Every two people have the same mother.

d) No two different people have the same grandmother.

For each of these statements find a domain for which the
statement is true and a domain for which the statement is
false.

a) Everyone speaks Hindi.

b) There is someone older than 21 years.

¢) Every two people have the same first name.
d) Someone knows more than two other people.

Translate in two ways each of these statements into logi-
cal expressions using predicates, quantifiers, and logical
connectives. First, let the domain consist of the students
in your class and second, let it consist of all people.

a) Someone in your class can speak Hindi.

b) Everyone in your class is friendly.

¢) There is a person in your class who was not born in
California.

d) A student in your class has been in a movie.

e) No student in your class has taken a course in logic
programming.

Translate in two ways each of these statements into logi-

cal expressions using predicates, quantifiers, and logical

connectives. First, let the domain consist of the students

in your class and second, let it consist of all people.

a) Everyone in your class has a cellular phone.

b) Somebody in your class has seen a foreign movie.

¢) There is a person in your class who cannot swim.

d) All students in your class can solve quadratic equa-
tions.

e) Some student in your class does not want to be rich.

Translate each of these statements into logical expres-
sions using predicates, quantifiers, and logical connec-
tives.

a) No one is perfect.

b) Not everyone is perfect.

¢) All your friends are perfect.

d) At least one of your friends is perfect.

26.
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e) Everyone is your friend and is perfect.

f) Not everybody is your friend or someone is not per-
fect.

Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

by using predicates with one and with two variables.

a) Someone in your school has visited Uzbekistan.

b) Everyonein your class has studied calculus and C4+4-.

¢) No one in your school owns both a bicycle and a mo-
torcycle.

d) There is a person in your school who is not happy.

e) Everyone in your school was born in the twentieth
century.

Translate each of these statements into logical expres-

sions in three different ways by varying the domain and

by using predicates with one and with two variables.

a) A student in your school has lived in Vietnam.

b) There is a student in your school who cannot speak
Hindi.

¢) A student in your school knows Java, Prolog, and
C++.

d) Everyone in your class enjoys Thai food.

e) Someone in your class does not play hockey.

Translate each of these statements into logical expres-

sions using predicates, quantifiers, and logical connec-

tives.

a) Something is not in the correct place.

b) All tools are in the correct place and are in excellent
condition.

¢) Everything is in the correct place and in excellent con-
dition.

d) Nothing is in the correct place and is in excellent con-
dition.

e) One of your tools is not in the correct place, but it is
in excellent condition.

Express each of these statements using logical operators,

predicates, and quantifiers.

a) Some propositions are tautologies.

b) The negation of a contradiction is a tautology.

¢) The disjunction of two contingencies can be a tautol-
ogy.

d) The conjunction of two tautologies is a tautology.

Suppose the domain of the propositional function P (x, y)

consists of pairs x and y, where x is 1, 2, or 3 and y is

1,2, or 3. Write out these propositions using disjunctions

and conjunctions.

a) dx P(x,3) b) Vy P(1, y)

¢) Iy—PQ2,y) d) Vx—=P(x,2)

Suppose that the domain of Q(x, y, z) consists of triples

x,y,z,wherex =0,1,or2,y=0or1,andz =0or 1.

Write out these propositions using disjunctions and con-

junctions.

a) Vy0Q(0,y,0)

¢) 3z—0(0,0,2)

b) IxQ0(x,1,1)
d) 3x—0Q0(x,0,1)
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Express each of these statements using quantifiers. Then

form the negation of the statement so that no negation is

to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) All dogs have fleas.

b) There is a horse that can add.

¢) Every koala can climb.

d) No monkey can speak French.

e) There exists a pig that can swim and catch fish.

Express each of these statements using quantifiers. Then

form the negation of the statement, so that no negation

is to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Some old dogs can learn new tricks.

b) No rabbit knows calculus.

¢) Every bird can fly.

d) There is no dog that can talk.

e) There is no one in this class who knows French and
Russian.

Express the negation of these propositions using quanti-

fiers, and then express the negation in English.

a) Some drivers do not obey the speed limit.

b) All Swedish movies are serious.

¢) No one can keep a secret.

d) There is someone in this class who does not have a
good attitude.

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all integers.

a) Vx(x2 > x)

b) Vx(x >0vx <0)

¢) Vx(x=1)

Find a counterexample, if possible, to these universally

quantified statements, where the domain for all variables

consists of all real numbers.

a) Vx(x? # x)

¢) Vx(lx| > 0)

Express each of these statements using predicates and

quantifiers.

a) A passenger on an airline qualifies as an elite flyer if
the passenger flies more than 25,000 miles in a year
or takes more than 25 flights during that year.

b) A man qualifies for the marathon if his best previ-
ous time is less than 3 hours and a woman qualifies
for the marathon if her best previous time is less than
3.5 hours.

¢) A student must take at least 60 course hours, or at least
45 course hours and write a master’s thesis, and re-
ceive a grade no lower than a B in all required courses,
to receive a master’s degree.

b) Vx(x% £2)

d) There is a student who has taken more than 21 credit
hours in a semester and received all A’s.
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Exercises 38-42 deal with the translation between system
specification and logical expressions involving quantifiers.

38.

39.

40.

41.

42.

Translate these system specifications into English where

the predicate S(x, y) is “x is in state y” and where the

domain for x and y consists of all systems and all possible
states, respectively.

a) IxS(x, open)

b) Vx(S(x, malfunctioning) V S(x, diagnostic))

¢) IxS(x, open) Vv IxS(x, diagnostic)

d) Jx—S(x, available)

e) Vx—S(x, working)

Translate these specifications into English where F'(p) is

“Printer p is out of service,” B(p) is “Printer p is busy,”

L(j) is “Print job j is lost,” and Q(j) is “Print job j is

queued.”

a) Ap(F(p) A B(p)) — 3jL())

b) VpB(p) — 3jQ())

¢) 3j(Q() A L)) — IpF(p)

d) (YpB(p) AVjQ(j)) — FjL())

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) When there is less than 30 megabytes free on the hard
disk, a warning message is sent to all users.

b) No directories in the file system can be opened and
no files can be closed when system errors have been
detected.

¢) The file system cannot be backed up if there is a user
currently logged on.

d) Video on demand can be delivered when there are at
least 8 megabytes of memory available and the con-
nection speed is at least 56 kilobits per second.

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) At least one mail message, among the nonempty set
of messages, can be saved if there is a disk with more
than 10 kilobytes of free space.

b) Whenever there is an active alert, all queued messages
are transmitted.

¢) The diagnostic monitor tracks the status of all systems
except the main console.

d) Each participant on the conference call whom the host
of the call did not put on a special list was billed.
Express each of these system specifications using predi-

cates, quantifiers, and logical connectives.

a) Every user has access to an electronic mailbox.

b) The system mailbox can be accessed by everyone in
the group if the file system is locked.

¢) The firewall is in a diagnostic state only if the proxy
server is in a diagnostic state.

d) At least one router is functioning normally if the

throughput is between 100 kbps and 500 kbps and
the proxy server is not in diagnostic mode.
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Determine whether Vx(P(x) — Q(x)) and VxP(x) —
Vx Q(x) are logically equivalent. Justify your answer.

Determine whether Vx(P(x) <> Q(x)) and Vx P(x) <
Vx Q(x) are logically equivalent. Justify your answer.

Show that 3x (P (x) vV Q(x)) and Ix P(x) v Ax Q(x) are
logically equivalent.

Exercises 46-49 establish rules for null quantification that
we can use when a quantified variable does not appear in part
of a statement.

46.

47.

48.

49.

50.

51.

52.

53.

54.
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Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) VxP(x))VA=Vx(P(x)VA)

b) AxP((x)) VA =3Ix(P(x)V A)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) (VxPx)ANA=Vx(P(x) ANA)

b) @xP(x)) AA=3x(P(x) AA)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) Vx(A - P(x)) = A - VxP(x)

b) Ix(A - P(x))=A — FxP(x)

Establish these logical equivalences, where x does not

occur as a free variable in A. Assume that the domain is

nonempty.

a) Vx(P(x) > A)=3xP(x) > A

b) Ax(P(x) > A) =VxP(x) > A

Show that Vx P(x) vV VxQ(x) and Vx(P(x) VvV Q(x)) are

not logically equivalent.

Show that 3x P(x) A IxQ(x) and Ax (P (x) A Q(x)) are

not logically equivalent.

As mentioned in the text, the notation 3!x P (x) denotes
“There exists a unique x such that P (x) is true.”

If the domain consists of all integers, what are the truth

values of these statements?

a) Ax(x > 1) b) Ax(x2=1)

¢) Ax(x +3 =2x) d) dx(x=x+1)

What are the truth values of these statements?

a) AxP(x) — IxP(x)

b) VxP(x) - I'xP(x)

¢) Ax—P(x) -> =VxP(x)

Write out 3!x P (x), where the domain consists of the in-

tegers 1, 2, and 3, in terms of negations, conjunctions,

and disjunctions.

Given the Prolog facts in Example 28, what would Prolog

return given these queries?

a) ?instructor (chan,math273)

b) ?instructor (patel,cs301)

¢) ?enrolled(X,cs301)

d) ?enrolled(kiko,Y)

e) ?teaches (grossman,Y)

56. Given the Prolog facts in Example 28, what would Prolog
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return when given these queries?

a) ?enrolled(kevin, ee222)

b) ?enrolled(kiko,math273)

¢) ?instructor (grossman, X)

d) ?instructor(X,cs301)

e) ?teaches (X, kevin)

Suppose that Prolog facts are used to define the predicates
mother(M, Y) and father(F, X), which represent that M
is the mother of Y and F is the father of X, respectively.
Give a Prolog rule to define the predicate sibling(X, Y),

which represents that X and Y are siblings (that is, have
the same mother and the same father).

Suppose that Prolog facts are used to define the predi-
cates mother(M, Y) and father(F, X), which represent
that M is the mother of Y and F is the father of X,
respectively. Give a Prolog rule to define the predicate
grandfather (X, Y), which represents that X is the grand-
father of Y. [Hint: You can write a disjunction in Prolog
either by using a semicolon to separate predicates or by
putting these predicates on separate lines.]

Exercises 59—-62 are based on questions found in the book
Symbolic Logic by Lewis Carroll.

59

60.

61

. Let P(x), Q(x), and R(x) be the statements “x is a

99 ¢

professor,” “x is ignorant,” and “x is vain,” respectively.
Express each of these statements using quantifiers; log-
ical connectives; and P(x), Q(x), and R(x), where the
domain consists of all people.

a) No professors are ignorant.

b) All ignorant people are vain.

¢) No professors are vain.

d) Does (c) follow from (a) and (b)?

Let P(x), Q(x), and R(x) be the statements “x is a clear
explanation,” “x is satisfactory,” and “x is an excuse,’
respectively. Suppose that the domain for x consists of all
English text. Express each of these statements using quan-
tifiers, logical connectives, and P (x), Q(x), and R(x).

a) All clear explanations are satisfactory.

b) Some excuses are unsatisfactory.

¢) Some excuses are not clear explanations.

*d) Does (c) follow from (a) and (b)?

. Let P(x), Q(x), R(x), and S(x) be the statements “x is

a baby,” “x is logical,” “x is able to manage a crocodile,”

and “x is despised,” respectively. Suppose that the domain
consists of all people. Express each of these statements
using quantifiers; logical connectives; and P(x), Q(x),
R(x), and S(x).
a) Babies are illogical.
b) Nobody is despised who can manage a crocodile.
¢) Illogical persons are despised.
d) Babies cannot manage crocodiles.

*e) Does (d) follow from (a), (b), and (c)? If not, is there

a correct conclusion?



62. Let P(x), Q(x), R(x), and S(x) be the statements “x

9 <

is a duck,” “x is one of my poultry,” “x is an officer,”
and “x is willing to waltz,” respectively. Express each of
these statements using quantifiers; logical connectives;
and P(x), Q(x), R(x), and S(x).

a) No ducks are willing to waltz.
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b) No officers ever decline to waltz.
¢) All my poultry are ducks.
d) My poultry are not officers.

*¢) Does (d) follow from (a), (b), and (c)? If not, is there
a correct conclusion?

Nested Quantifiers

Introduction

In Section 1.4 we defined the existential and universal quantifiers and showed how they can
be used to represent mathematical statements. We also explained how they can be used to
translate English sentences into logical expressions. However, in Section 1.4 we avoided nested
quantifiers, where one quantifier is within the scope of another, such as

Vx3dy(x +y =0).

Note that everything within the scope of a quantifier can be thought of as a propositional function.
For example,

Vxdy(x +y =0)

is the same thing as Vx Q(x), where Q(x) is Iy P(x, y), where P(x, y)isx + y = 0.

Nested quantifiers commonly occur in mathematics and computer science. Although nested
quantifiers can sometimes be difficult to understand, the rules we have already studied in
Section 1.4 can help us use them. In this section we will gain experience working with nested
quantifiers. We will see how to use nested quantifiers to express mathematical statements such
as “The sum of two positive integers is always positive.” We will show how nested quantifiers
can be used to translate English sentences such as “Everyone has exactly one best friend” into
logical statements. Moreover, we will gain experience working with the negations of statements
involving nested quantifiers.

Understanding Statements Involving Nested Quantifiers

To understand statements involving nested quantifiers, we need to unravel what the quantifiers
and predicates that appear mean. This is illustrated in Examples 1 and 2.

EXAMPLE 1 Assume that the domain for the variables x and y consists of all real numbers. The statement
VaxVy(x +y=y+x)

Exira >N says that x + y = y + x for all real numbers x and y. This is the commutative law for addition
Examples of real numbers. Likewise, the statement

Vxdy(x +y =0)

says that for every real number x there is a real number y such that x + y = 0. This states that
every real number has an additive inverse. Similarly, the statement

VaVyVz(x + (y+2) = (x +y) +2)

is the associative law for addition of real numbers. <
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EXAMPLE 16

(Requires calculus) Use quantifiers and predicates to express the fact that lim,_,, f(x) does
not exist where f(x) is a real-valued function of a real variable x and a belongs to the domain

of f

Solution: To say that limy_., f(x) does not exist means that for all real numbers L,
limy,_,, f(x) # L. By using Example 8, the statement lim,_,, f(x) # L can be expressed as

—Ve>03I5>0Vx(O < |x —a|l <8 — |f(x) — L| <e€).

Successively applying the rules for negating quantified expressions, we construct this sequence
of equivalent statements

—Ve>035>0Vx(O<|x —a|<d — |f(x) — L|<e)
=3e>0—-3I>0Vx(O<|x —al<d — |f(x) — L|<e)
=3e>0V6>0-Vx(O<|x —a|<d— |f(x) — L|<e)
=3e>0V6>0dx =-(O<|x —al<d — |f(x) — L|<e)

=3de>0V6>03AxO0<|x —al|<d A |f(x) — L|>¢€).

In the last step we used the equivalence —(p — ¢g) = p A —¢, which follows from the fifth
equivalence in Table 7 of Section 1.3.

Because the statement “lim,_,, f(x) does not exist” means for all real numbers L,
lim,_,, f(x) # L, this can be expressed as

VLIe>0V56>03x(0 < |[x —a| <A |f(x)—L|>¢€).

This last statement says that for every real number L there is a real number € > 0 such that
for every real number § > 0, there exists a real number x such that 0 < |x —a| < § and

lf(x) —L|=e.

Exercises

1. Translate these statements into English, where the domain

for each variable consists of all real numbers.
a) Vxdy(x <y)

b) Va¥y(((x = 0) A (y 2 0)) = (xy = 0))
¢) VxVydz(xy =2z)

. Translate these statements into English, where the domain

for each variable consists of all real numbers.
a) IxVy(xy =y)

b) VxVy(x = 0) A (y <0)) > (x —y > 0))
¢) VxVydz(x =y +2)

. Let O(x, y) be the statement “x has sent an e-mail mes-

sage to y,” where the domain for both x and y consists of
all students in your class. Express each of these quantifi-
cations in English.

a) IxAyO(x,y)
¢) VxIyQ(x,y)
e) VyaxQ(x,y)

b) IxVyQ(x, y)
d) IyVxQ(x, y)
f) Vx¥yQ(x.y)

. Let P(x, y) be the statement “Student x has taken class

y,” where the domain for x consists of all students in your
class and for y consists of all computer science courses

at your school. Express each of these quantifications in
English.

a) IxAyP(x,y)
¢) Vx3dyP(x,y)
e) VydxP(x,y)

b) IxVyP(x,y)
d) IyVxP(x,y)
f) VxVyP(x,y)

. Let W(x, y) mean that student x has visited website y,

where the domain for x consists of all students in your

school and the domain for y consists of all websites. Ex-

press each of these statements by a simple English sen-

tence.

a) W(Sarah Smith, www.att.com)

b) IxW(x, www.imdb.org)

c¢) dyW(José Orez, y)

d) Jy(W(Ashok Puri, y) A W(Cindy Yoon, y))

e) dyVz(y # (David Belcher) A (W (David Belcher, z)
- W(y.2)

f) IxIyVa((x # y) A (W(x, 2) & W(y,2)

. Let C(x, y) mean that student x is enrolled in class y,

where the domain for x consists of all students in your
school and the domain for y consists of all classes being
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given at your school. Express each of these statements by
a simple English sentence.

a) C(Randy Goldberg, CS 252)

b) 3xC(x, Math 695)

¢) dyC(Carol Sitea, y)

d) Jx(C(x, Math 222) A C(x, CS 252))

e) IxAyVz((x # y) A (C(x,2) = C(y,2)))
f) IxIyvz((x # y) A (C(x,2) < C(y,2)))

. Let T (x, y) mean that student x likes cuisine y, where the

domain for x consists of all students at your school and
the domain for y consists of all cuisines. Express each of
these statements by a simple English sentence.

a) —T (Abdallah Hussein, Japanese)
b) IxT (x, Korean) A VxT (x, Mexican)
¢) Jy(T (Monique Arsenault, y) Vv
T (Jay Johnson, y))
d) VxVzIy((x #2) = ~(T(x, y) AT(z, )
e) IxIVy(T(x,y) < T(z, y)
£) VxVz3ay(T(x, y) < T(z,y))

. Let Q(x, y) be the statement “student x has been a con-

testant on quiz show y.” Express each of these sentences
in terms of Q(x, y), quantifiers, and logical connectives,
where the domain for x consists of all students at your
school and for y consists of all quiz shows on television.

a) There is a student at your school who has been a con-
testant on a television quiz show.

b) No student at your school has ever been a contestant
on a television quiz show.

¢) There is a student at your school who has been a con-
testant on Jeopardy and on Wheel of Fortune.

d) Every television quiz show has had a student from
your school as a contestant.

e) Atleast two students from your school have been con-
testants on Jeopardy.

. Let L(x, y) be the statement “x loves y,” where the do-

main for both x and y consists of all people in the world.
Use quantifiers to express each of these statements.

a) Everybody loves Jerry.

b) Everybody loves somebody.

¢) There is somebody whom everybody loves.

d) Nobody loves everybody.

e) There is somebody whom Lydia does not love.

f) There is somebody whom no one loves.

g) There is exactly one person whom everybody loves.

h) There are exactly two people whom Lynn loves.

i) Everyone loves himself or herself.

j) There is someone who loves no one besides himself
or herself.

Let F(x, y) be the statement “x can fool y,” where the
domain consists of all people in the world. Use quantifiers
to express each of these statements.

a) Everybody can fool Fred.

b) Evelyn can fool everybody.

¢) Everybody can fool somebody.

d) There is no one who can fool everybody.
e) Everyone can be fooled by somebody.
f) No one can fool both Fred and Jerry.

g) Nancy can fool exactly two people.

11.

12.
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h) There is exactly one person whom everybody can fool.

i) No one can fool himself or herself.

j) There is someone who can fool exactly one person
besides himself or herself.

Let S(x) be the predicate “x is a student,” F'(x) the pred-

icate “x is a faculty member,” and A(x, y) the predicate

“x has asked y a question,” where the domain consists of

all people associated with your school. Use quantifiers to

express each of these statements.

a) Lois has asked Professor Michaels a question.

b) Every student has asked Professor Gross a question.

¢) Every faculty member has either asked Professor
Miller a question or been asked a question by Pro-
fessor Miller.

d) Some student has not asked any faculty member a
question.

e) There is a faculty member who has never been asked
a question by a student.

f) Some student has asked every faculty member a ques-
tion.

g) There is a faculty member who has asked every other
faculty member a question.

h) Some student has never been asked a question by a
faculty member.

Let I (x) be the statement “x has an Internet connection”

and C(x, y) be the statement “x and y have chatted over

the Internet,” where the domain for the variables x and y

consists of all students in your class. Use quantifiers to

express each of these statements.

a) Jerry does not have an Internet connection.

b) Rachel has not chatted over the Internet with Chelsea.

¢) Jan and Sharon have never chatted over the Internet.

d) No one in the class has chatted with Bob.

e) Sanjay has chatted with everyone except Joseph.

f) Someone in your class does not have an Internet con-
nection.

g) Not everyone in your class has an Internet connec-
tion.

h) Exactly one student in your class has an Internet con-
nection.

i) Everyone except one student in your class has an In-
ternet connection.

j) Everyone in your class with an Internet connection
has chatted over the Internet with at least one other
student in your class.

k) Someone in your class has an Internet connection but
has not chatted with anyone else in your class.

1) There are two students in your class who have not
chatted with each other over the Internet.

m) There is a student in your class who has chatted with
everyone in your class over the Internet.

n) There are at least two students in your class who have
not chatted with the same person in your class.

0) There are two students in the class who between them
have chatted with everyone else in the class.
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13. Let M(x,y) be “x has sent y an e-mail message” and

14

15

T (x, y) be “x has telephoned y,” where the domain con-
sists of all students in your class. Use quantifiers to ex-
press each of these statements. (Assume that all e-mail
messages that were sent are received, which is not the
way things often work.)

a) Chou has never sent an e-mail message to Koko.

b) Arlene has never sent an e-mail message to or tele-
phoned Sarah.

¢) Joséhas never received an e-mail message from Deb-
orah.

d) Every student in your class has sent an e-mail mes-
sage to Ken.

e) No one in your class has telephoned Nina.

f) Everyone in your class has either telephoned Avi or
sent him an e-mail message.

g) Thereis astudentin your class who has sent everyone
else in your class an e-mail message.

h) There is someone in your class who has either sent an
e-mail message or telephoned everyone else in your
class.

i) There are two different students in your class who
have sent each other e-mail messages.

Jj) There is a student who has sent himself or herself an
e-mail message.

k) There is a student in your class who has not received
an e-mail message from anyone else in the class and
who has not been called by any other student in the
class.

1) Every student in the class has either received an e-

mail message or received a telephone call from an-

other student in the class.

There are at least two students in your class such that

one student has sent the other e-mail and the second

student has telephoned the first student.

n) There are two different students in your class who
between them have sent an e-mail message to or tele-
phoned everyone else in the class.

m)

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) There is a student in this class who can speak Hindi.

b) Every student in this class plays some sport.

¢) Some student in this class has visited Alaska but has
not visited Hawaii.

d) All students in this class have learned at least one pro-
gramming language.

e) There is a student in this class who has taken ev-
ery course offered by one of the departments in this
school.

f) Some student in this class grew up in the same town
as exactly one other student in this class.

g) Every student in this class has chatted with at least
one other student in at least one chat group.

Use quantifiers and predicates with more than one vari-

able to express these statements.

a) Every computer science student needs a course in dis-
crete mathematics.

16
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*d)

b) There is a student in this class who owns a personal

computer.

¢) Every student in this class has taken at least one com-

puter science course.

There is a student in this class who has taken at least

one course in computer science.

e) Every student in this class has been in every building
on campus.

f) There is a student in this class who has been in every
room of at least one building on campus.

g) Every student in this class has been in at least one
room of every building on campus.

d)

A discrete mathematics class contains 1 mathematics ma-
jor who is a freshman, 12 mathematics majors who are
sophomores, 15 computer science majors who are sopho-
mores, 2 mathematics majors who are juniors, 2 computer
science majors who are juniors, and 1 computer science
major who is a senior. Express each of these statements in
terms of quantifiers and then determine its truth value.

a) There is a student in the class who is a junior.

b) Every student in the class is a computer science major.

¢) There is a student in the class who is neither a math-

ematics major nor a junior.

Every student in the class is either a sophomore or a

computer science major.

e) There is amajor such that there is a student in the class
in every year of study with that major.

Express each of these system specifications using predi-

cates, quantifiers, and logical connectives, if necessary.

d)

a) Every user has access to exactly one mailbox.

b) There is a process that continues to run during all error
conditions only if the kernel is working correctly.

¢) All users on the campus network can access all web-

sites whose url has a .edu extension.

There are exactly two systems that monitor every re-

mote server.

18. Express each of these system specifications using predi-

19

cates, quantifiers, and logical connectives, if necessary.

a) At least one console must be accessible during every
fault condition.

b) The e-mail address of every user can be retrieved
whenever the archive contains at least one message
sent by every user on the system.

¢) For every security breach there is at least one mecha-
nism that can detect that breach if and only if there is
a process that has not been compromised.

d) There are at least two paths connecting every two dis-
tinct endpoints on the network.

e) No one knows the password of every user on the sys-
tem except for the system administrator, who knows
all passwords.[

Express each of these statements using mathematical and

logical operators, predicates, and quantifiers, where the

domain consists of all integers.

a) The sum of two negative integers is negative.

b) The difference of two positive integers is not neces-
sarily positive.
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¢) The sum of the squares of two integers is greater than
or equal to the square of their sum.

d) The absolute value of the product of two integers is
the product of their absolute values.

Express each of these statements using predicates, quan-

tifiers, logical connectives, and mathematical operators

where the domain consists of all integers.

a) The product of two negative integers is positive.

b) The average of two positive integers is positive.

¢) The difference of two negative integers is not neces-
sarily negative.

d) The absolute value of the sum of two integers does
not exceed the sum of the absolute values of these
integers.

Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that ev-

ery positive integer is the sum of the squares of four in-
tegers.

Use predicates, quantifiers, logical connectives, and

mathematical operators to express the statement that there

is a positive integer that is not the sum of three squares.

Express each of these mathematical statements using

predicates, quantifiers, logical connectives, and mathe-

matical operators.

a) The product of two negative real numbers is positive.

b) The difference of a real number and itself is zero.

¢) Every positive real number has exactly two square
roots.

d) A negative real number does not have a square root
that is a real number.

Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) Vy(x+y=y)

b) VxVy((x = 0) A (y < 0)) = (x —y > 0))

o IkI((x=OA(y=0)A(x—y=>0)

d) VxVy((x Z0) A (y #0) < (xy #0))

Translate each of these nested quantifications into an En-
glish statement that expresses a mathematical fact. The
domain in each case consists of all real numbers.

a) dxVy(xy =y)

b) VaVy(((x < 0) A (y <0)) = (xy > 0))

©) IxIy((x? > y) A (x < y)

d) VaxVydz(x +y =2)

Let Q(x, y) be the statement “x + y = x — y.” If the do-
main for both variables consists of all integers, what are
the truth values?

a) 0(1,1)

¢) VyQO(l,y)

e) Ix3yQ(x,y)
g PVx0(x,y)
i) VxVyQ(x,y)
Determine the truth value of each of these statements if
the domain for all variables consists of all integers.

b) InVm(n < m?)

d) InVm(nm = m)

b) 0(2,0)

d) 3xQ0(x,2)
f) Vx3yQO(x,y)
h) Vy3axQ(x, y)

a) Vndm(n? < m)
¢) Ynadm(n +m = 0)

28.
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e) EInEIm(n2 +m?= 5) £) InImn? +m? =6)

g mdmn+m=4An—m=1)

h) Indmin+m=4Arn—m=2)

i) VnVmap(p = (m +n)/2)

Determine the truth value of each of these statements if
the domain of each variable consists of all real numbers.
a) Vxdy(x? =y) b) VxIy(x = y?)

¢) IxVy(xy =0) d) IFyx+y#y + x)
e) Vx(x #0 — y(xy = 1))

f) IxVy(y #0—xy=1)

g YxIdy(x+y=1

h) IxIy(x +2y =2A2x +4y =5)

i) Vx3yx+y=2A2x—y=1)

J) VaVydz(z = (x + y)/2)

Suppose the domain of the propositional function P (x, y)
consists of pairs x and y, where x is 1, 2, or 3 and y is
1, 2, or 3. Write out these propositions using disjunctions
and conjunctions.

a) VxVyP(x,y) b) x3IyP(x, y)

¢) IxVyP(x,y) d) VydxP(x,y)

Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) —JydxP(x, y) b) =Vx3yP(x, y)

©) —Iy(Q(y) AVx—R(x, y))

d) =3y(@AxR(x,y) VVxS(x,y))

e) —Iy(VxIzT(x,y,z) VvV IxVzU(x,y, 2))

Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) Vx3IyvzT(x,y,2)

b) Vx3yP(x,y) Vv VxAyQ(x, y)

¢) Vx3Iy(P(x,y) AJzR(x, y, 2)

d) Vady(P(x,y) — Q(x, y))

Express the negations of each of these statements so that
all negation symbols immediately precede predicates.

a) IVyVxT(x,y,z2)

b) IxIyP(x,y) AVxVyQ(x,y)

¢) IxIy(Q(x,y) < Oy, x))

d) VyIx3 (T (x,y,2) v O(x, »))

Rewrite each of these statements so that negations ap-
pear only within predicates (that is, so that no negation
is outside a quantifier or an expression involving logical
connectives).

a) —VxVyP(x,y) b) =Vy3xP(x,y)

©) —VyVx(P(x,y) Vv Q(x,y))

d) —@xIy—P(x, y) AVxVy0(x,y))

e) —Vx(3yVzP(x,y,z) ANIzVyP(x,y,2))

Find a common domain for the variables x, y, and z
for which the statement VxVy((x # y) — Vz((z = x) V
(z = y))) is true and another domain for which it is false.
Find a common domain for the variables x,y,z,
and w for which the statement VxVyVzaw((w # x) A
(w # y) A (w # 2)) is true and another common domain
for these variables for which it is false.
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36. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) No one has lost more than one thousand dollars play-
ing the lottery.
b) There is a student in this class who has chatted with

exactly one other student.
¢) No student in this class has sent e-mail to exactly two

other students in this class.
d) Some student has solved every exercise in this book.
e) No student has solved at least one exercise in every

section of this book.

37. Express each of these statements using quantifiers. Then
form the negation of the statement so that no negation is
to the left of a quantifier. Next, express the negation in
simple English. (Do not simply use the phrase “It is not
the case that.”)

a) Every studentin this class has taken exactly two math-
ematics classes at this school.

b) Someone has visited every country in the world except
Libya.

¢) No one has climbed every mountain in the Himalayas.

d) Every movie actor has either been in a movie with

Kevin Bacon or has been in a movie with someone
who has been in a movie with Kevin Bacon.
38. Express the negations of these propositions using quan-
tifiers, and in English.
a) Every student in this class likes mathematics.
b) There is a student in this class who has never seen a

computer.
¢) There is a student in this class who has taken every

mathematics course offered at this school.
d) There is a student in this class who has been in at least
one room of every building on campus.

39. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) VaVy(x2 =y? > x =)
b) VxIy(y? =)
c) VxVy(xy > x)

40. Find a counterexample, if possible, to these universally
quantified statements, where the domain for all variables
consists of all integers.

a) Vxdy(x =1/y)
b) Vx3y(y? —x < 100)
©) VxVy(x? #y%)

41. Use quantifiers to express the associative law for multi-
plication of real numbers.

42. Use quantifiers to express the distributive laws of multi-
plication over addition for real numbers.

43. Use quantifiers and logical connectives to express the fact
that every linear polynomial (that is, polynomial of de-
gree 1) with real coefficients and where the coefficient of
X is nonzero, has exactly one real root.

44. Use quantifiers and logical connectives to express the fact
that a quadratic polynomial with real number coefficients
has at most two real roots.

45. Determine the truth value of the statement Vx3y(xy = 1)
if the domain for the variables consists of

a) the nonzero real numbers.
b) the nonzero integers.
¢) the positive real numbers.

46. Determine the truth value of the statement IxVy(x < y?)
if the domain for the variables consists of

a) the positive real numbers.
b) the integers.
¢) the nonzero real numbers.

47. Show that the two statements —3IxVyP(x,y) and
Vx3y—P(x, y), where both quantifiers over the first vari-
able in P(x, y) have the same domain, and both quanti-
fiers over the second variable in P(x, y) have the same
domain, are logically equivalent.

#48. Show that Vx P(x) vV VxQ(x) and VxVy(P(x) VvV Q(¥)),
where all quantifiers have the same nonempty domain,
are logically equivalent. (The new variable y is used to
combine the quantifications correctly.)

*#49, a) Show that Vx P(x) A 3x Q(x) is logically equivalent
to Vx3y (P(x) A Q(y)), where all quantifiers have
the same nonempty domain.

b) Show that Vx P(x) v 3x Q(x) is equivalent to Vx3y
(P(x) Vv Q(y)), where all quantifiers have the same
nonempty domain.

A statement is in prenex normal form (PNF) if and only if it
is of the form

01x102x2 - Qxp P(x1, X2, ..., Xg),

where each Q;,i = 1, 2, ..., k, is either the existential quan-
tifier or the universal quantifier, and P (xy, ..., x¢) is a pred-
icate involving no quantifiers. For example, 3xVy(P(x, y) A
Q(y)) is in prenex normal form, whereas 3x P (x) VvV Yx Q(x)
is not (because the quantifiers do not all occur first).

Every statement formed from propositional variables,
predicates, T, and F using logical connectives and quan-
tifiers is equivalent to a statement in prenex normal form.
Exercise 51 asks for a proof of this fact.

#50. Put these statements in prenex normal form. [Hint: Use
logical equivalence from Tables 6 and 7 in Section 1.3,
Table 2 in Section 1.4, Example 19 in Section 1.4,
Exercises 45 and 46 in Section 1.4, and Exercises 48 and
49.]

a) dxP(x) v IxQ(x) Vv A, where A is a proposition not
involving any quantifiers.

b) =(VxP(x) VVxQ(x))

¢) dxP(x) = IxQ(x)

##%5]. Show how to transform an arbitrary statement to a state-
ment in prenex normal form that is equivalent to the given
statement. (Note: A formal solution of this exercise re-
quires use of structural induction, covered in Section 5.3.)

#52. Express the quantification 3!x P(x), introduced in Sec-
tion 1.4, using universal quantifications, existential quan-
tifications, and logical operators.
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Rules of Inference

Introduction

Later in this chapter we will study proofs. Proofs in mathematics are valid arguments that estab-
lish the truth of mathematical statements. By an argument, we mean a sequence of statements
that end with a conclusion. By valid, we mean that the conclusion, or final statement of the
argument, must follow from the truth of the preceding statements, or premises, of the argument.
That is, an argument is valid if and only if it is impossible for all the premises to be true and
the conclusion to be false. To deduce new statements from statements we already have, we use
rules of inference which are templates for constructing valid arguments. Rules of inference are
our basic tools for establishing the truth of statements.

Before we study mathematical proofs, we will look at arguments that involve only compound
propositions. We will define what it means for an argument involving compound propositions to
be valid. Then we will introduce a collection of rules of inference in propositional logic. These
rules of inference are among the most important ingredients in producing valid arguments. After
we illustrate how rules of inference are used to produce valid arguments, we will describe some
common forms of incorrect reasoning, called fallacies, which lead to invalid arguments.

After studying rules of inference in propositional logic, we will introduce rules of inference
for quantified statements. We will describe how these rules of inference can be used to produce
valid arguments. These rules of inference for statements involving existential and universal
quantifiers play an important role in proofs in computer science and mathematics, although they
are often used without being explicitly mentioned.

Finally, we will show how rules of inference for propositions and for quantified statements
can be combined. These combinations of rule of inference are often used together in complicated
arguments.

Valid Arguments in Propositional Logic

Consider the following argument involving propositions (which, by definition, is a sequence of
propositions):

“If you have a current password, then you can log onto the network.”

“You have a current password.”

Therefore,

“You can log onto the network.”

We would like to determine whether this is a valid argument. That is, we would like to
determine whether the conclusion “You can log onto the network™ must be true when the
premises “If you have a current password, then you can log onto the network” and “You have a
current password” are both true.
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combines universal instantiation and modus tollens and can be expressed in the following way:

Vx(P(x) = QX))

—Q(a), where a is a particular element in the domain

. ~P(a)

The verification of universal modus tollens is left as Exercise 25. Exercises 26-29 develop
additional combinations of rules of inference in propositional logic and quantified statements.

Exercises

1. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If Socrates is human, then Socrates is mortal.
Socrates is human.

.. Socrates is mortal.

. Find the argument form for the following argument and

determine whether it is valid. Can we conclude that the
conclusion is true if the premises are true?

If George does not have eight legs, then he is not a
spider.
George is a spider.

*. George has eight legs.

3. What rule of inference is used in each of these argu-

ments?

a) Alice is a mathematics major. Therefore, Alice is ei-
ther a mathematics major or acomputer science major.

b) Jerry is a mathematics major and a computer science
major. Therefore, Jerry is a mathematics major.

c¢) If it is rainy, then the pool will be closed. It is rainy.
Therefore, the pool is closed.

d) If it snows today, the university will close. The uni-
versity is not closed today. Therefore, it did not snow
today.

e) IfIgo swimming, then I will stay in the sun too long.
If I stay in the sun too long, then I will sunburn. There-
fore, if I go swimming, then I will sunburn.

4. Whatrule of inference is used in each of these arguments?

a) Kangaroos live in Australia and are marsupials. There-
fore, kangaroos are marsupials.

b) Itis either hotter than 100 degrees today or the pollu-
tion is dangerous. It is less than 100 degrees outside
today. Therefore, the pollution is dangerous.

¢) Lindais anexcellent swimmer. If Linda is an excellent
swimmer, then she can work as a lifeguard. Therefore,
Linda can work as a lifeguard.

d) Steve will work at a computer company this summer.
Therefore, this summer Steve will work at a computer
company or he will be a beach bum.

e) If I work all night on this homework, then I can an-
swer all the exercises. If I answer all the exercises, I
will understand the material. Therefore, if I work all
night on this homework, then I will understand the
material.

. Userules of inference to show that the hypotheses “Randy

works hard,” “If Randy works hard, then he is a dull boy,”
and “If Randy is a dull boy, then he will not get the job”
imply the conclusion “Randy will not get the job.”

. Use rules of inference to show that the hypotheses “If it

does not rain or if it is not foggy, then the sailing race will
be held and the lifesaving demonstration will go on,” “If
the sailing race is held, then the trophy will be awarded,”
and “The trophy was not awarded” imply the conclusion
“It rained.”

. What rules of inference are used in this famous argu-

ment? “All men are mortal. Socrates is a man. Therefore,
Socrates is mortal.”

. What rules of inference are used in this argument? “No

man is an island. Manhattan is an island. Therefore, Man-
hattan is not a man.”

. For each of these collections of premises, what relevant

conclusion or conclusions can be drawn? Explain the

rules of inference used to obtain each conclusion from

the premises.

a) “If I take the day off, it either rains or snows.” “I took
Tuesday off or I took Thursday off.” “It was sunny on
Tuesday.” “It did not snow on Thursday.”

b) “If I eat spicy foods, then I have strange dreams.” “I
have strange dreams if there is thunder while I sleep.”
“I did not have strange dreams.”

¢) “I am either clever or lucky.” “I am not lucky.” “If I
am lucky, then I will win the lottery.”

d) “Every computer science major has a personal com-
puter.” “Ralph does not have a personal computer.”
“Ann has a personal computer.”

e) “What is good for corporations is good for the United
States.” “What is good for the United States is good
for you.” “What is good for corporations is for you to
buy lots of stuff.”

f) “All rodents gnaw their food.” “Mice are rodents.”
“Rabbits do not gnaw their food.” “Bats are not ro-
dents.”



10.

11.

12.

13

14.

For each of these sets of premises, what relevant conclu-

sion or conclusions can be drawn? Explain the rules of in-

ference used to obtain each conclusion from the premises.

a) “If I play hockey, then I am sore the next day.” “I
use the whirlpool if I am sore.” “I did not use the
whirlpool.”

b) “IfIwork,itiseither sunny or partly sunny.” “I worked
last Monday or I worked last Friday.” “It was not sunny
on Tuesday.” “It was not partly sunny on Friday.”

¢) “All insects have six legs.” “Dragonflies are insects.”
“Spiders do not have six legs.” “Spiders eat dragon-
flies.”

d) “Every student has an Internet account.” “Homer does
not have an Internet account.” “Maggie has an Internet
account.”

e) “All foods that are healthy to eat do not taste good.”
“Tofu is healthy to eat.” “You only eat what tastes
good.” “You do not eat tofu.” “Cheeseburgers are not
healthy to eat.”

f) “I am either dreaming or hallucinating.” “I am not
dreaming.” “If I am hallucinating, I see elephants run-
ning down the road.”

Show that the argument form with premises

p1, P2, ---, pn and conclusion g — r is valid if the

argument form with premises pi, p2,..., pn,q, and
conclusion r is valid.

Show that the argument form with premises (p A t) —
(rvs),q—> (unt), u— p, and —s and conclusion
q — r is valid by first using Exercise 11 and then us-
ing rules of inference from Table 1.

For each of these arguments, explain which rules of in-

ference are used for each step.

a) “Doug, a student in this class, knows how to write
programs in JAVA. Everyone who knows how to write
programs in JAVA can get a high-paying job. There-
fore, someone in this class can get a high-paying job.”

b) “Somebody in this class enjoys whale watching. Ev-
ery person who enjoys whale watching cares about
ocean pollution. Therefore, there is a person in this
class who cares about ocean pollution.”

¢) “Each of the 93 students in this class owns a personal
computer. Everyone who owns a personal computer
can use a word processing program. Therefore, Zeke,
a student in this class, can use a word processing pro-
gram.”

d) “Everyone in New Jersey lives within 50 miles of the
ocean. Someone in New Jersey has never seen the
ocean. Therefore, someone who lives within 50 miles
of the ocean has never seen the ocean.”

For each of these arguments, explain which rules of in-

ference are used for each step.

a) “Linda, a student in this class, owns a red convertible.
Everyone who owns a red convertible has gotten at
least one speeding ticket. Therefore, someone in this
class has gotten a speeding ticket.”

15
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b) “Each of five roommates, Melissa, Aaron, Ralph, Ve-
neesha, and Keeshawn, has taken a course in discrete
mathematics. Every student who has taken a course in
discrete mathematics can take a course in algorithms.
Therefore, all five roommates can take a course in
algorithms next year.”

¢) “All movies produced by John Sayles are wonder-
ful. John Sayles produced a movie about coal miners.
Therefore, there is a wonderful movie about coal min-
ers.”

d) “There is someone in this class who has been to
France. Everyone who goes to France visits the
Louvre. Therefore, someone in this class has visited
the Louvre.”

For each of these arguments determine whether the argu-
ment is correct or incorrect and explain why.

a) All students in this class understand logic. Xavier is
a student in this class. Therefore, Xavier understands
logic.

b) Every computer science major takes discrete math-
ematics. Natasha is taking discrete mathematics.
Therefore, Natasha is a computer science major.

¢) Allparrots like fruit. My pet bird is not a parrot. There-
fore, my pet bird does not like fruit.

d) Everyone who eats granola every day is healthy. Linda
is not healthy. Therefore, Linda does not eat granola
every day.

For each of these arguments determine whether the argu-

ment is correct or incorrect and explain why.

a) Everyone enrolled in the university has lived in a dor-
mitory. Mia has never lived in a dormitory. Therefore,
Mia is not enrolled in the university.

b) A convertible car is fun to drive. Isaac’s car is not a
convertible. Therefore, Isaac’s car is not fun to drive.

¢) Quincy likes all action movies. Quincy likes the movie
Eight Men Out. Therefore, Eight Men Out is an action
movie.

d) All lobstermen set at least a dozen traps. Hamilton is a
lobsterman. Therefore, Hamilton sets at least a dozen
traps.

17. What is wrong with this argument? Let H(x) be “x is

happy.” Given the premise Jx H(x), we conclude that
H (Lola). Therefore, Lola is happy.

18. What is wrong with this argument? Let S(x, y) be “x is

19.

shorter than y.” Given the premise 3s S (s, Max), it follows
that S(Max, Max). Then by existential generalization it
follows that AxS(x, x), so that someone is shorter than
himself.

Determine whether each of these arguments is valid. If an

argument is correct, what rule of inference is being used?

If it is not, what logical error occurs?

a) If n is a real number such that n > 1, then n? > 1.
Suppose that n2 > 1. Thenn > 1.

b) If n is a real number with n > 3, then n% > 9.
Suppose that n? <9.Thenn < 3.

¢) If n is a real number with n > 2, then n? > 4.
Suppose that n < 2. Then n? < 4.
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Determine whether these are valid arguments.

a) Ifx isapositive real number, then x? is a positive real
number. Therefore, if a2 is positive, where a is a real

number then a is a positive real number.
b) If x2 #£ 0, where x is a real number, then x # 0. Let

a be a real number with a? # 0; then a # 0.

Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 26 of Section 1.4?

Which rules of inference are used to establish the
conclusion of Lewis Carroll’s argument described in
Example 27 of Section 1.4?

Identify the error or errors in this argument that sup-
posedly shows that if IxP(x) A IxQ(x) is true then
Ax(P(x) A Q(x)) is true.

1. 3xP(x) vIxQ(x) Premise

2. AxP(x) Simplification from (1)

3. P(c) Existential instantiation from (2)
4. AxQ(x) Simplification from (1)

5. Q(c) Existential instantiation from (4)
6. P(c) A Q(c) Conjunction from (3) and (5)

7. Ix(P(x) A Q(x)) Existential generalization
Identify the error or errors in this argument that sup-

posedly shows that if Vx(P(x)V Q(x)) is true then
VxP(x)V VxQ(x) is true.

1. Vx(P(x) Vv Q(x)) Premise

2. P(c) Vv Q(c) Universal instantiation from (1)
3. P(o) Simplification from (2)

4. VxP(x) Universal generalization from (3)
5. 0(c) Simplification from (2)

6. VxQ(x) Universal generalization from (5)
7. Vx(P(x) v VxQ(x)) Conjunction from (4) and (6)
Justify the rule of universal modus tollens by showing

that the premises Vx(P(x) — Q(x)) and —=Q(a) for a
particular element a in the domain, imply —P (a).
Justify the rule of universal transitivity, which states that
if Vx(P(x) = Q(x)) and Vx(Q(x) — R(x)) are true,
then Vx(P(x) — R(x)) is true, where the domains of all
quantifiers are the same.

Use rules of inference to show that if Vx(P(x) —
(Q(x) AS(x))) and Vx(P(x) A R(x)) are true, then
Vx(R(x) A S(x)) is true.

Use rules of inference to show that if Vx(P(x)V
QO(x)) and Vx((—P(x) A Q(x)) = R(x)) are true, then
Vx(—R(x) — P(x)) is also true, where the domains of
all quantifiers are the same.

Introduction to Proofs

29.

30.

31.

32.

33.

*34.

*35.

Use rules of inference to show that if Vx (P (x) vV Q(x)),
Vx(=Q(x) V S(x)), Vx(R(x) = —S(x)), and Ix— P (x)
are true, then Ix—R(x) is true.

Use resolution to show the hypotheses “Allen is a bad
boy or Hillary is a good girl” and “Allen is a good boy or
David is happy” imply the conclusion “Hillary is a good
girl or David is happy.”

Use resolution to show that the hypotheses “It is not rain-
ing or Yvette has her umbrella,” “Yvette does not have
her umbrella or she does not get wet,” and “It is raining
or Yvette does not get wet” imply that “Yvette does not
get wet.”

Show that the equivalence p A —=p = F can be derived
using resolution together with the fact that a condi-
tional statement with a false hypothesis is true. [Hint: Let
g = r = F in resolution.]

Use resolution to show that the compound propo-

sition (pV @) A(=pV @) A(pV =g)A(=pV—q)is

not satisfiable.

The Logic Problem, taken from WFF’N PROOEF, The

Game of Logic, has these two assumptions:

1. “Logic is difficult or not many students like logic.”

2. “If mathematics is easy, then logic is not difficult.”

By translating these assumptions into statements involv-

ing propositional variables and logical connectives, deter-

mine whether each of the following are valid conclusions

of these assumptions:

a) That mathematics is not easy, if many students like
logic.

b) That not many students like logic, if mathematics is
not easy.

¢) That mathematics is not easy or logic is difficult.

d) That logic is not difficult or mathematics is not easy.

e) Thatif not many students like logic, then either math-
ematics is not easy or logic is not difficult.

Determine whether this argument, taken from Kalish and
Montague [KaMo64], is valid.

If Superman were able and willing to prevent evil,
he would do so. If Superman were unable to prevent
evil, he would be impotent; if he were unwilling
to prevent evil, he would be malevolent. Superman
does not prevent evil. If Superman exists, he is nei-
ther impotent nor malevolent. Therefore, Superman
does not exist.

Introduction

In this section we introduce the notion of a proof and describe methods for constructing proofs.
A proof is a valid argument that establishes the truth of a mathematical statement. A proof can
use the hypotheses of the theorem, if any, axioms assumed to be true, and previously proven
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1.

2.

10.

11.

12.

13.
14.
15.

17.

18.

19.

20.

21.

22,

Use adirect proof to show that the sum of two odd integers
is even.

Use a direct proof to show that the sum of two even inte-
gers is even.

. Show that the square of an even number is an even number

using a direct proof.

. Show that the additive inverse, or negative, of an even

number is an even number using a direct proof.

. Prove that if m + n and n + p are even integers, where

m, n, and p are integers, then m + p is even. What kind
of proof did you use?

. Use a direct proof to show that the product of two odd

numbers is odd.

. Use a direct proof to show that every odd integer is the

difference of two squares.

. Prove that if n is a perfect square, then n 4+ 2 is not a

perfect square.

. Use a proof by contradiction to prove that the sum of an

irrational number and a rational number is irrational.

Use a direct proof to show that the product of two rational
numbers is rational.

Prove or disprove that the product of two irrational num-
bers is irrational.

Prove or disprove that the product of a nonzero rational
number and an irrational number is irrational.

Prove that if x is irrational, then 1/x is irrational.
Prove that if x is rational and x # 0, then 1/x is rational.

Use a proof by contraposition to show that if x + y > 2,
where x and y are real numbers, then x > 1 ory > 1.

. Prove that if m and n are integers and mn is even, then m

is even or n is even.

Show that if n is an integer and n3 + 5 is odd, then 7 is
even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove that if n is an integer and 3n + 2 is even, then 7 is
even using

a) a proof by contraposition.

b) a proof by contradiction.

Prove the proposition P(0), where P (n) is the proposi-
tion “If n is a positive integer greater than 1, thenn? > n.”’
What kind of proof did you use?

Prove the proposition P (1), where P (n) is the proposi-
tion “If n is a positive integer, then n? > n” What kind
of proof did you use?

Let P(n) be the proposition “If a and b are positive real
numbers, then (a + b)" > a" + b".” Prove that P(1) is
true. What kind of proof did you use?

Show that if you pick three socks from a drawer contain-
ing just blue socks and black socks, you must get either
a pair of blue socks or a pair of black socks.

23.

24.

25.

26.

217.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

Show that at least ten of any 64 days chosen must fall on
the same day of the week.

Show that at least three of any 25 days chosen must fall
in the same month of the year.

Use a proof by contradiction to show that there is no ratio-
nal number r for which 3 + r + 1 = 0. [Hint: Assume
thatr = a/b is aroot, where a and b are integers and a /b
is in lowest terms. Obtain an equation involving integers
by multiplying by b3. Then look at whether a and b are
each odd or even.]

Prove that if n is a positive integer, then # is even if and
only if 7n + 4 is even.

Prove that if n is a positive integer, then n is odd if and
only if 51 + 6 is odd.

Prove that m> = n? if and only if m = n or m = —n.
Prove or disprove that if m and n are integers such that
mn =1, theneitherm =1andn =1, orelse m = —1
andn = —1.

Show that these three statements are equivalent, where a
and b are real numbers: (i) a is less than b, (i) the average
of a and b is greater than a, and (ii7) the average of a and
b is less than b.

Show that these statements about the integer x are equiv-
alent: (i) 3x + 2 is even, (i) x + 5 is odd, (iii) x2 is even.
Show that these statements about the real number x are
equivalent: (i) x is rational, (if) x /2 is rational, (iii) 3x — 1
is rational.

Show that these statements about the real number x are
equivalent: (i) x is irrational, (if) 3x + 2 is irrational,
(iii) x /2 is irrational.

Is this reasoning for finding the solutions of the equa-
tion v/2x2 — 1 = x correct? (/) +/2x2 — 1 = x is given;
(2) 2x? — 1 = x?, obtained by squaring both sides of (1);
(3) x> — 1 =0, obtained by subtracting x> from both
sides of (2); (4) (x — 1)(x + 1) = 0, obtained by factor-
ing the left-hand side of x2—1; S)x=1orx=-1,
which follows because ab = 0 implies that a =0 or
b=0.

Are these steps for finding the solutions of /x +3 =
3 — xcorrect? (I) /x +3 =3 —xisgiven; 2)x +3 =
x2 — 6x + 9, obtained by squaring both sides of (1); (3)
0 = x2 — 7x + 6, obtained by subtracting x + 3 from
both sides of (2); (4) 0 = (x — 1)(x — 6), obtained by
factoring the right-hand side of (3); (5) x = 1 or x = 6,
which follows from (4) because ab = 0 implies that
a=0orb=0.

Show that the propositions pi, pa, p3, and p4 can be
shown to be equivalent by showing that p; <> p4, p2 <
p3,and p; <> p3.

Show that the propositions pip, p2, p3, pa, and ps can
be shown to be equivalent by proving that the conditional
statements p; — pa4, p3 — p1, pa = p2, p2 — ps5,and
ps — p3 are true.
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38.

39.

40.
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Find a counterexample to the statement that every posi-
tive integer can be written as the sum of the squares of
three integers.

Prove that at least one of the real numbers ay, as, ..., a,
is greater than or equal to the average of these numbers.
What kind of proof did you use?

Use Exercise 39 to show that if the first 10 positive inte-
gers are placed around a circle, in any order, there exist

41.

42,

three integers in consecutive locations around the circle
that have a sum greater than or equal to 17.

Prove that if n is an integer, these four statements are
equivalent: (i) n is even, (if) n + 1 is odd, (iii) 3n + 1 is
odd, (iv) 3n is even.

Prove that these four statements about the integer n are
equivalent: (i) n is odd, (i) 1 — n is even, (iii) n> is odd,
(iv) n? + 1 is even.

Proof Methods and Strategy

Introduction

In Section 1.7 we introduced many methods of proof and illustrated how each method can be
used. In this section we continue this effort. We will introduce several other commonly used proof
methods, including the method of proving a theorem by considering different cases separately.
We will also discuss proofs where we prove the existence of objects with desired properties.

In Section 1.7 we briefly discussed the strategy behind constructing proofs. This strategy
includes selecting a proof method and then successfully constructing an argument step by step,
based on this method. In this section, after we have developed a versatile arsenal of proof
methods, we will study some aspects of the art and science of proofs. We will provide advice
on how to find a proof of a theorem. We will describe some tricks of the trade, including how
proofs can be found by working backward and by adapting existing proofs.

When mathematicians work, they formulate conjectures and attempt to prove or disprove
them. We will briefly describe this process here by proving results about tiling checkerboards
with dominoes and other types of pieces. Looking at tilings of this kind, we will be able to
quickly formulate conjectures and prove theorems without first developing a theory.

We will conclude the section by discussing the role of open questions. In particular, we
will discuss some interesting problems either that have been solved after remaining open for
hundreds of years or that still remain open.

Assessment

Exhaustive Proof and Proof by Cases

Sometimes we cannot prove a theorem using a single argument that holds for all possible cases.
We now introduce a method that can be used to prove a theorem, by considering different cases
separately. This method is based on a rule of inference that we will now introduce. To prove a
conditional statement of the form

(p1Vp2V--Vpy)—>q

the tautology

[(prVp2V---Vp) =gl (pr—=>@ANpP2—>q@ A AN(pp— q)]

can be used as a rule of inference. This shows that the original conditional statement with
a hypothesis made up of a disjunction of the propositions pi, p2, ..., p, can be proved by
proving each of the n conditional statements p; — ¢, i = 1,2, ..., n, individually. Such an
argument is called a proof by cases. Sometimes to prove that a conditional statement p — ¢ is
true, it is convenient to use a disjunction p; V pa V - -+ V p, instead of p as the hypothesis of
the conditional statement, where p and p; V pa V -+ -V p, are equivalent.
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Exercises

10.

11.

12.

13.

14.

15.

16.

17.

. Prove that n” + 1 > 2" when n is a positive integer with

1<n<4.

. Prove that there are no positive perfect cubes less than

1000 that are the sum of the cubes of two positive integers.

. Prove that if x and y are real numbers, then max(x, y) +

min(x, y) = x + y. [Hint: Use a proof by cases, with
the two cases corresponding to x > y and x < y, respec-
tively.]

. Use a proof by cases to show that min(a, min(b, ¢)) =

min(min(a, b), ¢) whenever a, b, and ¢ are real numbers.

. Prove using the notion of without loss of generality

that min(x, y) = (x + y — |x — y|)/2 and max(x, y) =
(x +y + |x — y|)/2 whenever x and y are real numbers.

. Prove using the notion of without loss of generality that

5x 4+ 5y is an odd integer when x and y are integers of
opposite parity.

. Prove the triangle inequality, which states that if x and

y are real numbers, then |x| 4 |y| > |x + y| (where |x]|
represents the absolute value of x, which equals x if x > 0
and equals —x if x < 0).

. Prove that there is a positive integer that equals the sum

of the positive integers not exceeding it. Is your proof
constructive or nonconstructive?

. Prove that there are 100 consecutive positive integers that

are not perfect squares. Is your proof constructive or non-
constructive?

Prove that either 2 - 10°% + 150r2 - 10°% 4 16is not a
perfect square. Is your proof constructive or nonconstruc-
tive?

Prove that there exists a pair of consecutive integers such
that one of these integers is a perfect square and the other
is a perfect cube.

Show that the product of two of the numbers 65000 —
82001 + 3177 791212 _ 92399 4 22001 and 244493 _
58192 4 71777 i nonnegative. Is your proof constructive
or nonconstructive? [Hint: Do not try to evaluate these
numbers!]

Prove or disprove that there is a rational number x and an
irrational number y such that x” is irrational.

Prove or disprove that if a and b are rational numbers,
then a” is also rational.

Show that each of these statements can be used to ex-
press the fact that there is a unique element x such that
P (x) is true. [Note that we can also write this statement
as x P(x).]

a) IVy(P(y) - x=y)

b) AxP(x) AVXVy(P(x) A P(y) > x =)

¢) Ix(P(x) AVY(P(y) > x =y))

Show that if a, b, and ¢ are real numbers and a # 0, then
there is a unique solution of the equation ax + b = c.
Suppose that @ and b are odd integers with a # b. Show
there is a unique integer ¢ such that |[a — ¢| = |b — ¢|.

18.

19.

20.

21.

22,

23.

24,

*25.

#26.

27.

28.

29.

30.

31.

32.

Show that if r is an irrational number, there is a unique
integer n such that the distance between r and n is less
than 1/2.

Show that if n is an odd integer, then there is a unique
integer k such that n is the sum of k — 2 and k + 3.

Prove that given a real number x there exist unique num-
bers n and € such that x = n + €, n is an integer, and
0<e<l.

Prove that given a real number x there exist unique num-
bers n and € such that x = n — €, n is an integer, and
0<e<l.

Use forward reasoning to show that if x is a nonzero real
number, then x2 + 1/x? > 2. [Hint: Start with the in-
equality (x — 1/x)? > 0 which holds for all nonzero real
numbers x.]

The harmonic mean of two real numbers x and y equals
2xy/(x + y).Bycomputing the harmonic and geometric
means of different pairs of positive real numbers, formu-
late a conjecture about their relative sizes and prove your
conjecture.

The quadratic mean of two real numbers x and y
equals \/(x2 4 y2)/2. By computing the arithmetic and
quadratic means of different pairs of positive real num-
bers, formulate a conjecture about their relative sizes and
prove your conjecture.

Write the numbers 1, 2, ..., 2n on a blackboard, where
n is an odd integer. Pick any two of the numbers, j and
k, write | j — k| on the board and erase j and k. Continue
this process until only one integer is written on the board.
Prove that this integer must be odd.

Suppose that five ones and four zeros are arranged around
a circle. Between any two equal bits you insert a 0 and
between any two unequal bits you insert a 1 to produce
nine new bits. Then you erase the nine original bits. Show
that when you iterate this procedure, you can never get
nine zeros. [Hint: Work backward, assuming that you did
end up with nine zeros.]

Formulate a conjecture about the decimal digits that ap-
pear as the final decimal digit of the fourth power of an
integer. Prove your conjecture using a proof by cases.

Formulate a conjecture about the final two decimal digits
of the square of an integer. Prove your conjecture using a
proof by cases.

Prove that there is no positive integer n such that n> +
n3 = 100.

Prove that there are no solutions in integers x and y to the
equation 2x2 4 5y* = 14.

Prove that there are no solutions in positive integers x and
y to the equation x* + y* = 625.

Prove that there are infinitely many solutions in posi-
tive integers x, y, and z to the equation x2 + y% = z2.
[Hint: Let x = m? — n?, y =2mn, and z = m? + n?,

where m and n are integers. ]



33.

34.
35.
36.

*37.

38.

39.

40.

41.

42.

43.

44,

45.

Adapt the proof in Example 4 in Section 1.7 to prove that
if n = abc, where a, b, and ¢ are positive integers, then

a<nb<n orc<.n.
Prove that +/2 is irrational.

Prove that between every two rational numbers there is
an irrational number.

Prove that between every rational number and every irra-
tional number there is an irrational number.

Let S =x1y1 +x2y2 + -+ x5, Where x1,x2,...,

xp and y1, y2, ..., y, are orderings of two different se-

quences of positive real numbers, each containing n ele-
ments.

a) Show that S takes its maximum value over all order-
ings of the two sequences when both sequences are
sorted (so that the elements in each sequence are in
nondecreasing order).

b) Show that S takes its minimum value over all order-
ings of the two sequences when one sequence is sorted
into nondecreasing order and the other is sorted into
nonincreasing order.

Prove or disprove that if you have an 8-gallon jug of wa-

ter and two empty jugs with capacities of 5 gallons and 3

gallons, respectively, then you can measure 4 gallons by

successively pouring some of or all of the water in a jug
into another jug.

Verify the 3x + 1 conjecture for these integers.

a) 6 b) 7 c) 17 d) 21
Verify the 3x 4 1 conjecture for these integers.
a) 16 b) 11 c) 35 d) 113

Prove or disprove that you can use dominoes to tile
the standard checkerboard with two adjacent corners re-
moved (that is, corners that are not opposite).

Prove or disprove that you can use dominoes to tile a
standard checkerboard with all four corners removed.

Prove that you can use dominoes to tile a rectangular
checkerboard with an even number of squares.

Prove or disprove that you can use dominoes to tile a
5 x 5 checkerboard with three corners removed.

Use a proof by exhaustion to show that a tiling using
dominoes of a 4 x 4 checkerboard with opposite corners
removed does not exist. [Hint: First show that you can
assume that the squares in the upper left and lower right
corners are removed. Number the squares of the original

Key Terms and Results

*46.

47.

#48.

*49,

*50.
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checkerboard from 1 to 16, starting in the first row, mov-
ing right in this row, then starting in the leftmost square
in the second row and moving right, and so on. Remove
squares 1 and 16. To begin the proof, note that square 2 is
covered either by a domino laid horizontally, which cov-
ers squares 2 and 3, or vertically, which covers squares 2
and 6. Consider each of these cases separately, and work
through all the subcases that arise.]

Prove that when a white square and a black square are
removed from an 8 x 8 checkerboard (colored as in the
text) you can tile the remaining squares of the checker-
board using dominoes. [Hint: Show that when one black
and one white square are removed, each part of the parti-
tion of the remaining cells formed by inserting the barriers
shown in the figure can be covered by dominoes.]

Show that by removing two white squares and two black
squares from an 8 x 8 checkerboard (colored as in the
text) you can make it impossible to tile the remaining
squares using dominoes.
Find all squares, if they exist, on an 8 x 8 checkerboard
such that the board obtained by removing one of these
square can be tiled using straight triominoes. [Hint: First
use arguments based on coloring and rotations to elimi-
nate as many squares as possible from consideration.]
a) Draw each of the five different tetrominoes, where a
tetromino is a polyomino consisting of four squares.
b) Foreach of the five different tetrominoes, prove or dis-
prove that you can tile a standard checkerboard using
these tetrominoes.

Prove or disprove that you can tile a 10 x 10 checker-
board using straight tetrominoes.

TERMS

proposition: a statement that is true or false

propositional variable: a variable that represents a proposi-
tion

truth value: true or false

= p (negation of p): the proposition with truth value opposite
to the truth value of p

logical operators: operators used to combine propositions

compound proposition: a proposition constructed by combin-
ing propositions using logical operators

truth table: a table displaying all possible truth values of
propositions

PV q (disjunction of p and q): the proposition “p or ¢,” which
is true if and only if at least one of p and ¢ is true



RESULTS

The logical equivalences given in Tables 6, 7, and 8 in Sec-

tion 1.3.

Review Questions
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De Morgan’s laws for quantifiers.
Rules of inference for propositional calculus.
Rules of inference for quantified statements.

1.

a) Define the negation of a proposition.
b) What is the negation of “This is a boring course”?

. a) Define (using truth tables) the disjunction, conjunc-

tion, exclusive or, conditional, and biconditional of
the propositions p and g.

b) What are the disjunction, conjunction, exclusive or,
conditional, and biconditional of the propositions “T’1l
go to the movies tonight” and “I’ll finish my discrete
mathematics homework”?

. a) Describe at least five different ways to write the con-

ditional statement p — ¢ in English.

b) Define the converse and contrapositive of a conditional
statement.

¢) State the converse and the contrapositive of the con-
ditional statement “If it is sunny tomorrow, then I will
go for a walk in the woods.”

. a) What does it mean for two propositions to be logically

equivalent?

b) Describe the different ways to show that two com-
pound propositions are logically equivalent.

¢) Show in at least two different ways that the compound
propositions —=p V (r — —¢g)and —p V —q V —r are
equivalent.

. (Depends on the Exercise Set in Section 1.3)

a) Given atruth table, explain how to use disjunctive nor-
mal form to construct a compound proposition with
this truth table.

b) Explain why part (a) shows that the operators A, V,
and — are functionally complete.

¢) Is there an operator such that the set containing just
this operator is functionally complete?

. What are the universal and existential quantifications of

a predicate P(x)? What are their negations?

. a) What is the difference between the quantification

IxVyP(x,y) and YVy3dx P(x, y), where P(x,y) is a
predicate?

Supplementary Exercises

10.

11.

12.

13.

14.

15.

16.

b) Give an example of a predicate P(x,y) such that
IxVyP(x,y) and Vy3dx P(x, y) have different truth
values.

. Describe what is meant by a valid argument in proposi-

tional logic and show that the argument “If the earth is
flat, then you can sail off the edge of the earth,” “You can-
not sail off the edge of the earth,” therefore, “The earth is
not flat” is a valid argument.

. Use rules of inference to show that if the premises “All

zebras have stripes” and “Mark is a zebra” are true, then
the conclusion “Mark has stripes” is true.

a) Describe what is meant by a direct proof, a proof by
contraposition, and a proof by contradiction of a con-
ditional statement p — q.

b) Give a direct proof, a proof by contraposition and a
proof by contradiction of the statement: “If n is even,
then n + 4 is even.”

a) Describe a way to prove the biconditional p <> gq.
b) Prove the statement: “The integer 3n 4 2 is odd if and
only if the integer 9n + 5 is even, where 7 is an inte-

”

ger.
To prove that the statements py, p2, p3, and p4 are equiva-
lent, is it sufficient to show that the conditional statements
p4 — p2, p3 — pi1,and p; — p» are valid? If not, pro-
vide another collection of conditional statements that can
be used to show that the four statements are equivalent.

a) Suppose that a statement of the form Vx P (x) is false.
How can this be proved?

b) Show that the statement “For every positive integer n,
n? > 2n” is false.

What is the difference between a constructive and non-

constructive existence proof? Give an example of each.

What are the elements of a proof that there is a unique

element x such that P(x), where P(x) is a propositional

function?

Explain how a proof by cases can be used to prove a result

about absolute values, such as the fact that |xy| = |x||y|

for all real numbers x and y.

1.

Let p be the proposition “I will do every exercise in
this book™” and g be the proposition “I will get an “A”
in this course.” Express each of these as a combination of
pandq.

a) I will get an “A” in this course only if I do every exer-
cise in this book.

b) I will get an “A” in this course and I will do every
exercise in this book.

¢) Either I will not get an “A” in this course or I will not
do every exercise in this book.

d) For me to get an “A” in this course it is necessary and
sufficient that I do every exercise in this book.
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. Find the truth table of the compound proposition (p Vv

q) — (p A—r).

. Show that these compound propositions are tautologies.

a) (—g A (p—>q)—>—p
b) (pVvg)A=p)—gq

. Give the converse, the contrapositive, and the inverse of

these conditional statements.

a) Ifit rains today, then I will drive to work.
b) If |[x| = x, then x > 0.
¢) If n is greater than 3, then n? is greater than 9.

. Given a conditional statement p — ¢, find the converse

of its inverse, the converse of its converse, and the con-
verse of its contrapositive.

. Given a conditional statement p — ¢, find the inverse of

its inverse, the inverse of its converse, and the inverse of
its contrapositive.

. Find a compound proposition involving the propositional

variables p, g, r, and s that is true when exactly three of
these propositional variables are true and is false other-
wise.

. Show that these statements are inconsistent: “If Sergei

takes the job offer then he will get a signing bonus.” “If
Sergei takes the job offer, then he will receive a higher
salary.” “If Sergei gets a signing bonus, then he will not
receive a higher salary.” “Sergei takes the job offer.”

. Show that these statements are inconsistent: “If Miranda

does not take a course in discrete mathematics, then she
will not graduate.” “If Miranda does not graduate, then
she is not qualified for the job.” “If Miranda reads this
book, then she is qualified for the job.” “Miranda does
not take a course in discrete mathematics but she reads
this book.”

Teachers in the Middle Ages supposedly tested the realtime
propositional logic ability of a student via a technique known
as an obligato game. In an obligato game, a number of rounds
is set and in each round the teacher gives the student succes-
sive assertions that the student must either accept or reject as
they are given. When the student accepts an assertion, it is
added as a commitment; when the student rejects an assertion
its negation is added as a commitment. The student passes
the test if the consistency of all commitments is maintained
throughout the test.

10.

11.

12.

Suppose that in a three-round obligato game, the teacher
first gives the student the proposition p — ¢, then the
proposition —(p V r) V g, and finally the proposition g.
For which of the eight possible sequences of three answers
will the student pass the test?

Suppose that in a four-round obligato game, the teacher
first gives the student the proposition —(p — (¢ A 1)),
then the proposition p V —g, then the proposition —r, and
finally, the proposition (p A r) V (¢ — p). For which of
the 16 possible sequences of four answers will the student
pass the test?

Explain why every obligato game has a winning strategy.

Exercises 13 and 14 are set on the island of knights and knaves
described in Example 7 in Section 1.2.

13.

14.

15.

16.

17.

18.

*19.

20.

21.

22,

Suppose that you meet three people Aaron, Bohan, and
Crystal. Can you determine what Aaron, Bohan, and Crys-
tal are if Aaron says “All of us are knaves” and Bohan says
“Exactly one of us is a knave.”?

Suppose that you meet three people, Anita, Boris, and
Carmen. What are Anita, Boris, and Carmen if Anita says
“I am a knave and Boris is a knight” and Boris says “Ex-
actly one of the three of us is a knight”?

(Adapted from [Sm78]) Suppose that on an island there
are three types of people, knights, knaves, and normals
(also known as spies). Knights always tell the truth,
knaves always lie, and normals sometimes lie and some-
times tell the truth. Detectives questioned three inhabi-
tants of the island—Amy, Brenda, and Claire—as part
of the investigation of a crime. The detectives knew that
one of the three committed the crime, but not which one.
They also knew that the criminal was a knight, and that the
other two were not. Additionally, the detectives recorded
these statements: Amy: “I am innocent.” Brenda: “What
Amy says is true.” Claire: “Brenda is not a normal.” Af-
ter analyzing their information, the detectives positively
identified the guilty party. Who was it?

Show that if S is a proposition, where S is the conditional
statement “If S is true, then unicorns live,” then “Uni-
corns live” is true. Show that it follows that S cannot be a
proposition. (This paradox is known as Lob’s paradox.)

Show that the argument with premises “The tooth fairy is a
real person” and “The tooth fairy is not a real person” and
conclusion “You can find gold at the end of the rainbow”
is a valid argument. Does this show that the conclusion is
true?

Suppose that the truth value of the proposition p; is T
whenever i is an odd positive integer and is F when-
ever i is an even positive integer. Find the truth values
of V{2 (pi A pig1) and A/ (pi v pit).

Model 16 x 16 Sudoku puzzles (with 4 x 4 blocks) as
satisfiability problems.

Let P (x) be the statement “Student x knows calculus” and

let O (y) be the statement “Class y contains a student who

knows calculus.” Express each of these as quantifications

of P(x) and Q(y).

a) Some students know calculus.

b) Not every student knows calculus.

¢) Every class has a student in it who knows calculus.

d) Every student in every class knows calculus.

e) There is at least one class with no students who know
calculus.

Let P (m, n) be the statement “m divides n,” where the do-

main for both variables consists of all positive integers.

(By “m divides n”” we mean that n = km for some integer

k.) Determine the truth values of each of these statements.

a) P4,5) b) P(2,4)
¢) VmVn P(m,n) d) 3mVn P(m,n)
e) InVm P(m,n) f) vn P(1,n)

Find a domain for the quantifiers in JxIy(x # y A
Vz((z = x) V (z = y))) such that this statement is true.



23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

Find a domain for the quantifiers in JIxIy(x # y A
Vz((z = x) V (z = y))) such that this statement is false.

Use existential and universal quantifiers to express the
statement “No one has more than three grandmothers” us-
ing the propositional function G (x, y), which represents
“x is the grandmother of y.”

Use existential and universal quantifiers to express the
statement “Everyone has exactly two biological parents”
using the propositional function P(x, y), which repre-
sents “x is the biological parent of y.”

The quantifier 3, denotes “there exists exactly n,” so that
3,x P(x) means there exist exactly n values in the do-
main such that P (x) is true. Determine the true value of
these statements where the domain consists of all real
numbers.

a) Jox(x* = —1) b) Jix(x| = 0)

¢) Hx(x2=2) d) Fax(x = |x|)

Express each of these statements using existential and
universal quantifiers and propositional logic where 3, is
defined in Exercise 26.

a) dox P (x) b) 31 xP(x)
c¢) xP((x) d) 33xP(x)
Let P(x,y) be a propositional function. Show that

IxVy P(x,y) — Yy 3x P(x, y) is a tautology.

Let P(x) and Q(x) be propositional functions. Show

that3x (P(x) — Q(x))andVx P(x) — Jx Q(x) always

have the same truth value.

If Vy3x P(x, y) is true, does it necessarily follow that

Ix Vy P(x, y) is true?

If Vx3y P(x, y) is true, does it necessarily follow that

Ix Vy P(x, y) is true?

Find the negations of these statements.

a) If it snows today, then I will go skiing tomorrow.

b) Every person in this class understands mathematical
induction.

¢) Some students in this class do not like discrete math-
ematics.

d) In every mathematics class there is some student who
falls asleep during lectures.

Computer Projects

33.

34.

35.

36.

37.

38.
39.

40.

41.

42,

43.

44,

45.

46.
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Express this statement using quantifiers: “Every student
in this class has taken some course in every department
in the school of mathematical sciences.”

Express this statement using quantifiers: “There is a build-
ing on the campus of some college in the United States in
which every room is painted white.”

Express the statement “There is exactly one student in this
class who has taken exactly one mathematics class at this
school” using the uniqueness quantifier. Then express this
statement using quantifiers, without using the uniqueness
quantifier.

Describe a rule of inference that can be used to prove that
there are exactly two elements x and y in a domain such
that P (x) and P (y) are true. Express this rule of inference
as a statement in English.

Use rules of inference to show that if the premises
Vx(P(x) - Q(x)), Yx(Q(x) - R(x)), and —R(a),
where a is in the domain, are true, then the conclusion
—P(a) is true.

Prove that if x3 is irrational, then x is irrational.

Prove that if x is irrational and x > 0, then /X is irra-
tional.

Prove that given a nonnegative integer n, there is a unique
nonnegative integer m such that m?> < n < (m + 1)2.
Prove that there exists an integer m such that m> > 101000,
Is your proof constructive or nonconstructive?

Prove that there is a positive integer that can be written
as the sum of squares of positive integers in two differ-
ent ways. (Use a computer or calculator to speed up your
work.)

Disprove the statement that every positive integer is the
sum of the cubes of eight nonnegative integers.
Disprove the statement that every positive integer is the
sum of at most two squares and a cube of nonnegative
integers.

Disprove the statement that every positive integer is the
sum of 36 fifth powers of nonnegative integers.
Assuming the truth of the theorem that states that /7 is
irrational whenever n is a positive integer that is not a
perfect square, prove that /2 + /3 is irrational.

Write programs with the specified input and output.

1.

*3.

Given the truth values of the propositions p and ¢, find the
truth values of the conjunction, disjunction, exclusive or,
conditional statement, and biconditional of these proposi-
tions.

. Given two bit strings of length n, find the bitwise AND,

bitwise OR, and bitwise XOR of these strings.

Give a compound proposition, determine whether it is sat-
isfiable by checking its truth value for all positive assign-
ments of truth values to its propositional variables.

4.

*5.

*6.

Given the truth values of the propositions p and g in
fuzzy logic, find the truth value of the disjunction and
the conjunction of p and g (see Exercises 46 and 47 of
Section 1.1).

Given positive integers m and n, interactively play the game
of Chomp.

Given a portion of a checkerboard, look for tilings of this
checkerboard with various types of polyominoes, including
dominoes, the two types of triominoes, and larger polyomi-
noes.



