Allocation

MO801



Dispatch

* Send instructions to specific functional units
(FUs)

 Some instructions need more than one
functional unit
— Reserve all of them
— Do a step by step execution

* Multiple functional units of the same type

— Select which one to queue each instruction



Register Renaming

Processors do not have enough register for all
variables

Registers are reused

Out-of-order processors can execute
instructions in different order

Whenever a new value is assigned to a
register, the old value is lost



Data and Name Dependences

rl = r2 + r3
r4d = rl + r5

Data dependence
Read after write

rl r2 + r3

rl = rd4d + r5

Name dependence
Write after write

rl = r2 + r3
r2 = r4d + r5

Name dependence
Write after read



Renaming

* Use extra registers to store additional values

* Processors can have about 100 instructions on

the fly
— Possibly requiring 100 registers in total

— Usually they have 32 registers
* Three alternatives

— Renaming through reorder buffer
— Renaming through a rename buffer

— Merged register file



Log. Reg.

Reorder Buffer

Architectural Register File

Register Map Table

Value

rg

ROB/RF IROBpointer

Reorder Buffer

Value




Rename Buffer

Variation of the previous method

One third of instructions do not produce
values!

Use a separate structure to store the results,
instead of ROB
Rename buffer can be smaller than ROB

— If a instruction needs a rename buffer and there is
no empty space, the instruction is stalled



Merged Register File

Register File

Register Map Table

Log. Reg. >l

Physical Register ID Value

Free List

Head

Tail




Merged Register File

Single and Bigger Register File
— Holds speculative and committed values
— Registers can be free or allocated

Uses a free list to keep track of free registers

Uses a register map table to map logical registers
to physical registers

If there is no free register, instructions are stalled

Only frees a register when another instruction
writes to it

— Need to wait until commit because instruction could
be squashed



Register File Read

* Read before issue
— Not all operands are available
— Process non-available later through bypass network
— Fewer register ports, more temporary values
— More energy

* Read afterissue
— Store id in the issue queue

— Process operands through register file and bypass
network

— Larger number of register port
— Does not require intermediate storage



Recovery from Misspeculation

* Whenever in flight instructions need to be
squashed

e Release the reserved resources

* Reverses allocated registers
— Rename tables

— Reorder buffer



Reorder Buffer and Rename Buffer

Comparison

Do not require the free list .
May require two writes

May require extra bypasses
Better to read before issue

Merged Register File

Register values are written
only once

All source operands come
from a single location

Can be used with the two
read approaches



