SimPoints
http://cseweb.ucsd.edu/~calder/simpoint/index.htm

Timothy Sherwood, Erez Perelman, Greg Hamerly, Suleyman Sair, and Brad Calder, Discovering and
Exploiting Program Phases, IEEE Micro: Micro's Top Picks from Computer Architecture Conferences,
December 2003.

Why?

 Computer Architects need to simulate large
workloads

— Cycle-level simulators are slow

— Design Space Exploration requires multiple
simulations

* Full simulations can take months to complete

* Phase analysis provides an accurate and
efficient workaround for this problem

Alternatives

* Smaller input sizes

* Crop execution time

— Run the first X instructions = like 5 billion
instructions

— Skip the first X instructions and run for the next Y
instructions =2 like skip 1 billion instructions and
run for 5 billion instructions

Program Phases

Specific parts of the program that mimics the
whole program execution

You can get parameters from program
execution by considering these small parts

— Very good correlation
Programs have several different phases

There are similar phases

— One SimPoint is the best representative point to a
phase

Definitions

Interval

— A section of continuous execution within a program = 1, 10, or 100
million instructions (can be variable)

Phase

— A set of intervals with similar behavior, regardless of temporal
adjacency

Phase classification

— Breaks program’s execution into phases with similar behavior
Similarity

— Show how close the behavior of two intervals are
Similarity metric

— Metric to detect similarity (independent of hardware)

Phase change
— Noticeable and sudden change in program behavior over time

Example

Phase Behavior: gzip

2nd |leyvel cache
misses

Energy used per
interval

Instruction
cache misses

Data cache
misses

astatet e titS iiias e a B S iimiamiceei o

I

' . . ' . ,
0 50 100 Billion

Execution —-

Branch
misprediction

Performance
(IPC)

Phase observations

Three phases: red, blue and yellow

The behavior of each architectural metric
shifts in unison with the other metrics

Phases range over large sections of execution

The behavior between phases can vary
significantly

There is strong structure and repetition for all
the phases

SimPoint Technique

Basic Block Vector Analysis
— Architecture independent code profiling

Random Projection
— Reduces dimentionality of data

Phase Classification using Kmeans clustering
— Classifies all intervals into a set of phases
Picking simulation points

— Finds a good representation of the execution by
using a sample from each phase

Basic Block Vector Analysis

Interval 1 Interval 2 Interval 3

Basic Block Vectors

A B C D E
Intervall < 3, 1, 2, 3, 1>
Interval2< 3, 2, 1, 3, 1>
Interval 3< 2, 0O, 2, 2, 2>

Basic Block Vectors

* One-dimensional array with one element for
each static basic block in the program

* During each interval, counts the number of
execution for each basic block, weighed by the
number of instructions in the basic block

* Normalize by dividing each element by the
sum of all the elements in the vector

Similarity

* Calculate the Manhattan Distance among BBV

— Manhattan Distance = sum of the absolute value
of the element-wise subtraction of two vectors

e Small distance means vectors are similar

— May be in the same phase

Interval 1 < 3, 1, 2, 3, 1>
Interval 2 < 3, 2. 1. 3. 1>

Manh.Dist. < O, 1, 1. O 0O»=2

Interval 2
Interval 3

Manh. Dist.

Basic Block Similarity Matrix

Similarity Matrix for gzip

K-axis: BB vectors (time) e

Y-axis:

BB vectors (time)

Example: gcc

Phases Discovered: gcc

2nd |evel cache
misses

Energy used
per interval

Instruction
cache misses

Data cache

misses

Branch | . I :
Porformance 4| 1. l& f
(IPQ) sl

0 10 20 30 40 Billion

Execution (instructions) —’

Example: gzip

Simulation Points Chosen: gzip
SP1 SP2 SP3

Instruction
cache misses

Data cache
misses

Branch
misprediction

Performance
(IPC)

OB et RRR RS VT

— EXECULION e

Errorin Parformance

Estimation {IPC})

100%
80%

70%
60%

40%
2%

10%
0%

How good is it?

O From Start = Skip 1 Bilion O Sample Per Phase

68%

13%
4%

gzp

51%

I3%

23%

2%

Medlan

3736% 1986%

8%

What happened?

Used 100 million instructions per cluster

From start

— Simulates 300 million instructions

Skip 1 billion

— Simulates 300 million instructions after the first 1
billion

Sample per phase

— Simulates 3 samples for 100 million instructions
each

—{+True [PC —t— SP IPC

A

—+—True DL1 —= 5P DL1
—o—True UL2Z ——SP ULZ

p ——

T == A — e -
=g \ / \ / \
1 2 3 4 5 b6 7 8 9 10 11 1213 14 15 16 17 18 19

Configuration

Architecture Independence

20%

T 15%

T 10%

5%

0%

DL1{UL2 Cache MR

Early Simulation Points

Early Simulation Points: gzip
SP1/
ESP1 ESp2 ESP3 sP2 SP3

!

--

Instruction
cache misses

Data cache
misses

Branch
misprediction

Performance
(IPC)

:
1

oB SOE 100B

— EXECULION iy

Group Exercise

 How would you implement such tool/toolset?

