|Issue Stage

MO801

Overview

* |In-order

— The oldest nonissued instructions are issued when
their operands and required resources are available

e Qut-of-order
— Used by most of the latest processors

— Instructions are issued as their operands and required
resources are available

— Can be based on
* Reservation stations
 Distributed issue queues
e Unified issue queues

In-order

* |nstructions are issued as soon as their
operands and required resources are available

* The issue logic usually contains a simple
scoreboard with two tables

— One for data dependencies
— One for hardware constraints

Source
Register

Issue Logic

Data Dependence Table

{

Nonavailable
Register File
Bypass network

Resource Table

Out-of-Order

* Represents a critical aspect of the processor

— Limits the number of instructions executed
simultaneously

* Three key scenarios
— Unified issue queues
— Distributed issue queues
— Reservation stations

Issue Process
(operands are read before issue)

(4 To Functional Units 4)

—>(Select Logic)(—
-1 1 1%

) s N e B e B o Y SR
<>
Zrcz <
CAM Srcld Srcl Control ata Srcld CAM
—
Dests 1 R1 vi data info or V2 R2 2 . Dests
imm
—
;A_J I B E— SN N SE— _rJ
Produced value ‘

Destination Id of produced value

Pipeline stages w/issue logic

CAM CAM
matching matching
with with
destination destination
registers
. Data Read / .
. . Write
Allocation Allocation Write Data
Stages ready_info
Bypass for
Bypass for source data
ready info
v
Issue . .
Wake-Up Select Drive Execution
Stages

CAM
matching
with
destination

registers

Issue Queue Allocation

Renaming (allocation) stage places new
instructions in the issue queue

Whenever there are no space available = stall
renaming stage

Avoid processing instructions while queue is
full

Read registers and set available bit

Instruction Wakeup

Notifies that one operand has been produced
|dentifies the renaming ID and a valid bit

As soon as the ready bits for both sources are
set = instruction becomes ready (woken up)

When the value is produced but not
consumed (instruction not in queue), it should
be stored elsewhere and valid bit should be
set there too

Early wakeup

o WakeUp signal received when value becomes available

Producer | wake-Up Select Drive Execution 'W{h
L

Consumer ’Wake-Un Select Drive Execution
3 cycles bubbl
L 1

o WakeUp signal received 3 cycles before becomes available

Producer Wake-Up Select Drive Execution %iteBack

Consumer Wake-Up Select Drive xecution

Early wakeup

* Can be issued when we know how long one
instruction will take

* |ssue 3 cycles before instruction finish, as in
previous slide

* For load instructions, it is not possible to pre-
calculate the latency

— Wait until the end of load to wakeup consumer
— Speculatively wakeup load consumer

Instruction Selection

e Selects the next instruction to be executed
— Requires all source registers to be available
— Requires enough hardware resources

e Usually split into arbiters or schedulers

— Instead of issuing 4 instructions, use two arbiters
to issue 2 instructions each

— Instructions are assigned to different arbiters

— Each arbiter is responsible to a subset of the
instructions and functional unit

Selection Logic

—»Simple

M

—» Sub Issue Queue Array A

Arbiter A

—Instruction

—»Simple

Arbiter Steering

—» Sub Issue Queue Array B

Arbiter B

A

—»Simple

Entry reclamation

* Frees the instruction queue after instruction
Issue

 Can be delayed if the processor speculatively
wakeup instructions

Issue Process
(operands are read after issue)

(4 To Functional Units 4)

—>(Select Logic)(—
-1 1 1%

SR s e s B e B e Y SR
Src?2 >
data
CAM Srcld Srcl C | or Srcld N CAM
rc rc ontro rc
P— e
Dests 1 R1 Vi data info V2 R2 2 Dests
<>
imm -
;A_J I B E— SN N SE— _rJ
Produced value ‘

Destination Id of produced value

Pipeline

WakeUp
» signal
« generated
.

CAM
matching
with
destination
isters

Allocation Allocation Write-ready
Stages
Bypass for
ready info
\ 4
Issue Wake-Up Select Data Read Drive Execution
Stages

CAM
matching
with Srclds

Read Port Reduction

Reads after issue may require more read ports
— Machine width vs issue width

Some processors (Alpha) split the register file and the
number of ports

Most of the source data are read from the bypass network
instead of from the register file

Active port reduction
— Synchronizes arbiters to use less read ports

Reactive port reduction

— Cancel instructions if the number of ports are bigger than the
available

Both require a fair policy to perform cancellation

Exercise

* Count the dynamic distance among data through
instructions in a program. Create a histogram of
the distances

add rl, r2, r3
sub , 5, r6
add r7, rl,

 Distances
—r1-=>2
—r4d>1

Distributed Issue Queue

* Processors distribute functional units in
execution clusters

* Each cluster implements its own issue queue

e Pentium 4 has two execution clusters
— Memory operations

— Nonmemory operations

Reservation Stations

Buffers per functional unit
Store instructions with their inputs
Receive instructions right after renaming

Instructions broadcast their produced values
to all reservation stations

Whenever a instruction has all its sources, it
can be executed

Memory operations

Dependencies through memory are not solved by
renaming

Memory disambiguation = handles memory
dependencies

Nonspeculative disambiguation

— Waits to be sure there is no memory dependency with
previous operation

Speculative disambiguation

— Tries to predict whether memory operation have
dependence

30% of instructions are memory operations

Memory disambiguation

Total ordering X All memory accesses are processed in order

All stores are processed in order, but loads
Partial ordering X execute out of order as long as all previous
stores have computed their address

Execution between loads and stores is out of

Load ordering order, but all loads execute in order among

Store ordering & them, and all stores execute in order among
them
. Stores execute in order, but loads execute
Store ordering v

completely out of order

Load Queue

"[Scheduler

Store Queue

ISSUE

AMD K6

Load ordering and store ordering

- 1 S A
I
|
I
Address 1
= Generation — ' q
! —
|
/\ A\ [N /N
Register
File CMP CMP Data Cache
| | A A A A]
| [I I |
Address
~ Generation =)
N
A | A Store Buffer A
Store data:
READ I ADDRESS I DISAMBIGUATIONI MEM ACCESS I

GENERATION

AMD K6

Load queue

— Keeps loads in program order. Loads stay in queue until
they are the oldest on queue and their operands are ready

Address generation
— Calculates address of memory operations

Store queue

— Keeps the store operations in program order. Stores stay
in queue until they are the oldest on queue and their
operands are ready

Store buffer

— Keeps the store operations until they are the oldest in-
flight instruction in the processor

Load/Store Queue

—>

Indeter.
matrix

ISSUE

MIPS R10000

Partial ordering

Store data
Deps.
matrix !
CMP
Register Address T
4 Data Cache
File — Generation [—
AddressQueue
READ l ADDRESS I DISAMBIGUATIONI MEM ACCESS I

GENERATION

MIPS R10000

Load/store queue

— 16-entry. Instructions wait until operands are ready
Indetermination matrix

— Used to mark whether instruction addresses are computed
Dependency matrix

— Store dependencies among memory operations

Address generation
— Compute memory address

Address queue

— Keeps memory addresses of loads and stores that want to
access the cache

Speculative Memory Disambiguation

Store Queue

Load/Store Queue

Register Address
= ™ Fie [™ Generation[—pData Cachey) - -
/\ T /\ /\ /\ /\

Load Queue

I ADDRESS

GENERATION IDISAMBIGUATIONI MEM ACCESS I

ISSUE I READ

Wait Table | g—

FETCH I

Alpha 21264

Load/Store Queue
— Holds memory operation until operands are ready

Load Queue
— Stores physical addresses of the loads in program order

Store Queue

— Stores the physical addresses of the stores and its data in
program order

Wait Table

— Keeps track of loads to detect whenever it violates
dependencies

— Also tracks previous loads that caused dependencies so
that they are not scheduled before the store it depends on

Speculative wakeup of load consumers

* Loads will take cycles to wakeup the next
Instruction

* Most of the time, Loads face a cache hit

 We can speculatively wakeup the next
instructions and roll-back if there is a cache miss
— Cancel the next instruction
— Reissue it again

e Alternatives

— Keep instruction in issue queue

— Create additional structures to handle these
Instructions

Example

0 Conservative WakeUp signal generated after Hit/Miss Computation

. Address Hit/Miss L1 cache
Producer | Wake-Up Select Drive computation|computation 'Ag:cess
:)
\Wakeup signal)
Consumer ‘\Nake-Up Select Drive Execution
42 cycles bubbled>

o Speculative WakeUp of load consumers

Address Hit/Miss L1 cache

computation|computation| Access Data bypass
putaion compuat M ¢ D

'.V\Wakeup signal

Consumer Wake-Up Select Drive xecution

Producer | Wake-Up Select Drive

