Execute

MO801

Execution Units

DI L/S Queue

.

Data
Cache

—

Reorder

Buffer ; : 2
5 Registers IO—‘—

-

Renaming

' Commit logic I

[ssue
Queue

{ Write- }

back Commit *

Decode * Issue ' Execution

Execution Units

Floating-Point Units - FPU
Arighmetic and Logical Units - ALU
Address Generation Units =2 AGU
Branch Unit 2> BRU

Arithmetic and Logical Unit

* Performs arithmetic and logical operations
— Addition, subtraction
— AND, OR, NOT, XOR, NAND, NOR, XNOR
— Shift, rotation, byte-swap

* Condition code or flags

— For x86: sign, parity, adjust, zero, overflow and
carry

— Usually generated in parallel of each computation

Integer Multiplication and Division

* Sometimes integrated to the conventional
ALU

* For simplicity, can be implemented by
— Converting integer to floating-point
— Performing the floating-point operation
— Converting the result back
— This saves power and area at the cost of latency

* Different latencies for each operation and
implementation

Address Generation Unit

Converts the operands to a memory address

Flat memory model
— There is one continuous address space
— Linear address space

Segmented memory model
— Several independent address spaces
— Segment base address + offset

The result is called effective address

x86 AGU

Displacement —{ Displacement —{
o—JL Q—
— =+
8 x Index —\| > Base —
4 x Index — Q—1
2 x Index + [— Offset 2 x Ind > + — Offset
Index syl
0 —/ > 4 x Index —
2 x Index —
Base — "\ [] Index —
@ L~ @ I
Calculate offset / | Calculate linear
Wake-up Select Data read Drive read segment address / check
info segment limit

Branch Unit

Direct absolute

— The instruction defines
the next PC value
explicitly

Direct PC-relative

— Adds an offset to create
the next PC

Indirect

— Selects from an integer
register

displacement

PC —

\k

Instr. size

condition

— next PC

register value

/

Floating-Point Unit

Performs arithmetic operations on floating-point
numbers

It is a very complex (big) unit

Uses a separate register file

— Usually have instructions to move from one register
file to the other

IEEE 754 specifies 4 formats

— Single precision (32 bits)

— Double precision (64 bits)

— Single-extended precision (= 43 bits)
— Double-extended precision (= 79 bits)

SIMD

Single Instruction Multiple Data
Operates on SIMD registers

In the past, SIMD machines = vector machines
— Vectors of hundreds of elements from/to memory

Recent SIMD machines operate on short
vectors

SIMD extensions

— x86 MMX, SSE, AVX

— Power AltiVec

SIMD Unit

W 7 Y Y
||

z:x+y‘ X3 +vy3 ‘ X2 +Vy2 ‘ x1+vyl ‘ x0 +y0 ‘

Operand sizes for 128-bit registers

e 16 bytes

8 words (16 bits)

e 4 doublewords (32 bits)

e 2 quadword (64 bits)

e 4 single-precision FP (32 bits)
e 2 double-precision FP (64 bits)

Implementation

* To reduce hardware size, processor can have
lanes

— One lane: executes all operations at once

— Two lanes: split operations into two cycles

* Different operations can have different lane
configurations

Result Bypassing

Data Write-
Issue read ALU back
‘ Data Write-
Bubble
' Issue read ALU back

Bypassing

Results from a computation can be used
speculatively after the write-back stage

Write-back stage and Data read can share the
same cycle in several processors

The bigger the pipeline (higher frequency), the
higher is the cost of waiting instructions

Compiler can alleviate some of this problems by
interleaving instructions

In-order pipelines suffer more than out-of-order

Deeply pipelined processor

Result Write-
drive back

Source
drive

Data

‘ Wake- ALU
read

up

‘ Select

Source
drive

Data
read

ALU ‘

Bub Bub Bub Bub ‘ Wake- ‘ Select
ble ble ble ble I]

Improving performance

Data Write-

Issue read ALU back
Data Write-
Issue read ALU back

. Resul
Wake Select Data Sogrce ALU e§u t
up read drive drive

- W t -

Wake Select Data Sogrce ALU Result rite

up read drive drive back

Complexity

Bypass lines grow as the number of sources
and destinations grow

Affects area, power critical path and physical
layout

Improves IPC but may reduce cycle time

Some machines reduces the bypass network
as a tradeoff instead of using a full bypass
network

Basic implementation

Register file
RO RL WO W1R2 R3
FUO FU1

RO

Register file
RI WO W1 R2

R3

Y

| 4

FUO

! 11

Vol

FU1

Deeply pipelined execution engine
with bypass

register file register file
RO RI WO Wil Rl WO W1 _R2

rl()| I_rll_‘w() I_\\._”—rlf| I—L +]

ST TR o

| rl ||w0| \\l

'x“%xm&
sk o

1

Bypass in the pipeline

Wake- Data Source
Select i
up read drive

Wake- Data Write-

Select
up read back
Wake- Select Data ource LU Result Write-
up read drive }A drive back

Data Source
read drive

Result ‘ Write-

ALU ‘ drive back

In-order Processors

* Due to timing constraints, instructions that
finish first may have to wait several cycles for
the previous instruction still running

— Several staging latches are necessary
— Need forward from those staging latches to all FU

 Complexity can be higher than Out-of-Order
pipeline

Possible Intel Atom in-order execution
engine

Instr | Data Data | Data Fault | Fault [Write-
{l Issue | read AGU cache \@ache \ALU *L MT& MT]| back
\ \
Instr | Data ata | Data I\ault Fault [Write-
12 Issue | read +GU cqz)nche clz&he U &\MT& MT]| back
[\ \
3 Instr UDala GU Data uDlta U Fault | Fault Write-
Issue | read cache|cadhe ‘# & MT|& MT]| back
/ /
4 Instr UData U ta uDala ALU Fault | Fault |Write-
Issue | read '41e cache & MT|& MT]| back
15 Instr VDataV Dgta | Data ALU Fault | Fault |Write-
Issue | read ca¢he|cache & MT|& MT]| back
|
6 Instr UData GU Data | Data ALU Fault | Fault [Write-
Issue | read cache|cache & MT|& MT]| back
Instr yDala Data | Data Fault | Fault [Write-
17
Issue | read AGU cache|cache ALU & MT|& MT]| back

Complexity

In-order implementation will require lots of
staging registers

Each register may walk through the pipeline

As an alternative approach, processors create a

SRF (staging register file) that contains all staging
registers

— Very similar to ROB for data

It is very difficult, in modern processors, to
bypass results from any FU to any other.

— The bypass network would grow too large

— Not all FU share bypass: floating-point, SIMD

Clustering

 Architectures have evolved and increased in
complexity

 Power, temperature, wire length restrict
processor growth

* An effective approach to minimize this
problem is to partition the hardware
— Replicate arrays in caches

— Divide register files, issue queues and bypass
network

Clustering the Bypass Network

e Restricts the FUs that can receive data from
other FUs

 The simpler approach is to allow only FUx to
receive data from FUXx.

* This approach can reduce one pipeline stage
from the execution core

— In complex processors, bypassing can use one
pipeline stage

Clustering the bypass network

iy

-

P, Y Y
&\ /

|r1 | wi()
" 4

?
/

register file register file
RO R1 WO W1 R2 R3 RO R1 V\I/O W1 R2 R3
) 4 . 4 I

Clustering with Replicated Register
Files

Cluster 0 Cluster 1

register file register file
O rl wO wl 12 r3 w2 w3

w2 w3 r0 rl wO wl r2 r3

Clustering with Distributed Issue
Queue and Register Files

Fetch

.

[Decode)

+

Rename & Steer

| +

Issue Queue Issue Queue
register file register file
0 rl w0 wl 12 3 r4 w2 w2 rd4 r0 rl w0 wl r2 r3
" " . "
xfer xfer
FUO FUI FUO FUI
Memot Data Memo
Y le—— ry

Disambiguation Cache Disambiguation

