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Execution Units

Floating-Point Units - FPU
Arighmetic and Logical Units - ALU
Address Generation Units =2 AGU
Branch Unit 2> BRU



Arithmetic and Logical Unit

* Performs arithmetic and logical operations
— Addition, subtraction
— AND, OR, NOT, XOR, NAND, NOR, XNOR
— Shift, rotation, byte-swap

* Condition code or flags

— For x86: sign, parity, adjust, zero, overflow and
carry

— Usually generated in parallel of each computation



Integer Multiplication and Division

* Sometimes integrated to the conventional
ALU

* For simplicity, can be implemented by
— Converting integer to floating-point
— Performing the floating-point operation
— Converting the result back
— This saves power and area at the cost of latency

* Different latencies for each operation and
implementation



Address Generation Unit

Converts the operands to a memory address

Flat memory model
— There is one continuous address space
— Linear address space

Segmented memory model
— Several independent address spaces
— Segment base address + offset

The result is called effective address



x86 AGU
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Branch Unit

Direct absolute

— The instruction defines
the next PC value
explicitly

Direct PC-relative

— Adds an offset to create
the next PC

Indirect

— Selects from an integer
register
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Floating-Point Unit

Performs arithmetic operations on floating-point
numbers

It is a very complex (big) unit

Uses a separate register file

— Usually have instructions to move from one register
file to the other

IEEE 754 specifies 4 formats

— Single precision (32 bits)

— Double precision (64 bits)

— Single-extended precision (= 43 bits)
— Double-extended precision (= 79 bits)



SIMD

Single Instruction Multiple Data
Operates on SIMD registers

In the past, SIMD machines = vector machines
— Vectors of hundreds of elements from/to memory

Recent SIMD machines operate on short
vectors

SIMD extensions

— x86 MMX, SSE, AVX

— Power AltiVec
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Operand sizes for 128-bit registers

e 16 bytes

8 words (16 bits)

e 4 doublewords (32 bits)

e 2 quadword (64 bits)

e 4 single-precision FP (32 bits)
e 2 double-precision FP (64 bits)




Implementation

* To reduce hardware size, processor can have
lanes

— One lane: executes all operations at once

— Two lanes: split operations into two cycles

* Different operations can have different lane
configurations
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Bypassing

Results from a computation can be used
speculatively after the write-back stage

Write-back stage and Data read can share the
same cycle in several processors

The bigger the pipeline (higher frequency), the
higher is the cost of waiting instructions

Compiler can alleviate some of this problems by
interleaving instructions

In-order pipelines suffer more than out-of-order



Deeply pipelined processor
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Improving performance
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Complexity

Bypass lines grow as the number of sources
and destinations grow

Affects area, power critical path and physical
layout

Improves IPC but may reduce cycle time

Some machines reduces the bypass network
as a tradeoff instead of using a full bypass
network



Basic implementation
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Deeply pipelined execution engine
with bypass
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Bypass in the pipeline

Wake- Data Source
Select i
up read drive

Wake- Data Write-

Select
up read back
Wake- Select Data ource LU Result Write-
up read drive }A drive back

Data Source
read drive

Result ‘ Write-

ALU ‘ drive back




In-order Processors

* Due to timing constraints, instructions that
finish first may have to wait several cycles for
the previous instruction still running

— Several staging latches are necessary
— Need forward from those staging latches to all FU

 Complexity can be higher than Out-of-Order
pipeline



Possible Intel Atom in-order execution
engine
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Complexity

In-order implementation will require lots of
staging registers

Each register may walk through the pipeline

As an alternative approach, processors create a

SRF (staging register file) that contains all staging
registers

— Very similar to ROB for data

It is very difficult, in modern processors, to
bypass results from any FU to any other.

— The bypass network would grow too large

— Not all FU share bypass: floating-point, SIMD



Clustering

 Architectures have evolved and increased in
complexity

 Power, temperature, wire length restrict
processor growth

* An effective approach to minimize this
problem is to partition the hardware
— Replicate arrays in caches

— Divide register files, issue queues and bypass
network



Clustering the Bypass Network

e Restricts the FUs that can receive data from
other FUs

 The simpler approach is to allow only FUx to
receive data from FUXx.

* This approach can reduce one pipeline stage
from the execution core

— In complex processors, bypassing can use one
pipeline stage



Clustering the bypass network
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Clustering with Replicated Register
Files
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Clustering with Distributed Issue
Queue and Register Files
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