Commit

MO801

Why a new stage is necessary?

Both in-order and out-of-order processors can
have instructions reaching write-back stage
out of order

Processors need to handle exceptions

Processors need to handle branch miss-
prediction

The commit stage helps all these issues

Processor states

 Architectural state

— Registers that should be accessed and visible through
all processor (committed values)

e Speculative state
— Data that should be used with caution (speculatively)
— Processor needs to keep track of all speculative state

— Processor should be able to undo all speculative state
and its consequences

— Committed speculative state = Architectural state

RISC vs CISC

e CISC instructions are broken into micro-
operations

* |n general, micro-operations should commit

together

— There are a few exceptions in x86 like memory
copy instructions

Reclaiming Resources

* Reorder Buffer (ROB) and Memory Order
Buffer (MOB) entries are reclaimed at commit

* Physical registers can be reclaimed if they are
not going to be used

Managing Architectural States

e Stores can only update memory at commit
stage
— Loads need to check the store buffer

 Two approaches to keep track of architectural
states

— Reorder Buffer (ROB) and Retire Register File
(RRF)

— Merged Register File (MRF)

tire Register File

Re

Retire
Register

Reorder Buffer (ROB)

+—# architectural regs=—

©
=
I
o |3/3[8]3(8]8|8|8|e—F
- X ol o|o|o|w|c|®|® ©
o e b b e B R R B L
2
-]
0Ju| uononJsu| anjea
OJu| uononusu| anjep
0ju| uononisu| anjep
OjJu| uonoNIIsu| anjep
Oju| uononsu| anjep
OJu| uononsu| anjep
0Ju| UonoNIISU| anjep
OJu| uononsu| anjepA
OJu| uononusu| anjep
0ju| uonRoNISU| anjep
Oju| UoRINIISU| anjep
OJu| uonoNIIsu| anjep
0ju| uononisu| anjep
OJu| uononJsu| anjep
OJu| uononsu| anjep
OJu| uononusu| anjep
OJu| uononJIIsu| anjep
Oju| UoRINIISU| anjea <
0Ju| uononIIsu| anjea

state

Allocation

Producer

Consumer1

Consumer2

Consumer3

RRF in use

—

Become the
oldest in the
pipeline
. WriteBack .
Execution (ROB write) Commit
L esesccsccns .
! Value moved .
) Write into . tothe RRF .
Allocation Data Read lssue Queue * notified
) N
. rite into
Reads from Allocation Data Read Issue Queue
ROB
>—</'
Reads from Allocation Data Read Wiite into
Issue Queue
ROB
Reads from
RRF

Merged Register File

One unique register file to hold Architectural
State and Speculative State

Requires a list of Speculative values
Values are not moved from one place to another

Better for processors where instructions read
their source operands after issue

Centralized vs Decentralized scheme
— ROB

— MRF

— Multiple pipelines

Recovering...

 Make sure that the instruction is not speculative
in case of exception

e Two distinct tasks:

— Front end recovery
* Flush intermediate buffers

e Restore branch predictor history
* Update PC

— Back end recovery
* Remove all speculative instructions

e Restore renaming tables
* Reclaim architectural state storage

Pipeline for branch recovery

Mispredicted Execution
(branch
branch validation)

BackEnd Recovery

Correct path
instruction

FrontEnd
Recovery

| L
Resume FrontEnd

Resume BackEnd

Fetch

Instruction
Cache access

X86 to
micro-ops

Decode

Allocation

Handling Branch Misprediction

e ROB-Based architecture with RRF
— Wait for the branch to commit

— Use RRF to restore architectural state (renaming
table)

 Merged Register File
— Use a log to detect speculative values
— May take time and can be optimized

— Adjust renaming table and physical register
identifiers

Exceptions

Wait until commit stage

— This guarantees that the instruction is not
speculative

All architectural states are stable now
~lush all in-flight instructions
Recovery the architectural states

Redirect the front-end to the exception
nandler

