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Abstract—Video streaming has become a prevalent form of
entertainment and a vital means of communication, but the chal-
lenges of delivering high quality video content over the internet
are numerous. One of the key challenges is the varying network
conditions that can significantly impact video streaming quality,
such as bandwidth fluctuations and packet loss. To overcome
these challenges, an adaptive video streaming architecture is
needed to adjust the video streaming in real-time to match
the changing network conditions and ensure a high Quality
of Experience (QoE) for the end-user. This article presents
MIGRATE, an orchestrator architecture for video streaming
services capable of adapting to user demand in real-time. The
study considers an edge/cloud multi-tier network infrastructure.
In addition, an Integer Linear Programming (ILP) model and
a Greedy solution are proposed to decide the distribution of
connections between users and services. Experimental results
show that based on the optimization strategy used, it is observed
that there is a trade-off between the resources used and the
QoE provided to users. Further, we discuss the importance of
considering QoE metrics and user engagement in designing video
streaming systems.

Index Terms—Cloud computing, Edge computing, Quality of
Experience, Video Streaming, Video-on-Demand

I. INTRODUCTION

In many ways, the pandemic has impacted our social lives.
The population has acquired a habit of consuming video
streaming services on the top video content platforms. Content
Providers have noticed a difference in their customers’ behav-
ior. The total time spent downloading and watching a plethora
of multimedia content during the pandemic peak has increased
substantially compared to the prior years [1]. To deliver
this huge demand, the Over-the-top providers have adopted
HTTP Adaptive Streaming solutions to attend to the end-
users. Approximately 70% of all mobile traffic corresponds to
multimedia data circulating over the Internet. In addition, the
forecasts for the coming years still estimate consistent growth
in this type of traffic [2].

Adaptive video streaming services are done through the
HTTP Servers using the HTTP protocol requests/responses.
Original videos are partitioned into segments of equivalent
playback time on the server side, and each of these segments
has multiple versions that vary in bitrate/resolution/quality [3].
On the user side, the player can request video segments
sequentially and adjust the bitrate resolution dynamically to
network conditions. The users’ QoE is significantly affected
by the segment video quality levels that the video player se-
lects [4]. Considering video streaming platforms working over
the network, the final mile of access networks is when QoE
deterioration and resource limitations occur for consumers [5].

Edge computing can accommodate the new demands of
cloud video traffic, leading to better QoE for users[6]. How-

ever, some level of planning is required to effectively manage
edge resources. Firstly, the edge node selection problem, in
which video streaming services may not be deployed on the
best edge node. For example, after a handover in a multi-access
edge scenario, the user may connect to a node logically distant
from the deployed streaming services. Second, the content
providers have to take advantage of the infrastructure flexibil-
ity. When the number of users grows, additional local nodes
must be added to the distributed system, and network capacity
is expanded to accommodate the neighborhood’s growth. The
system must aggregate the users on the proper edge servers
capable of maintaining QoE guarantees. This factor shows
that the hierarchy of multimedia content transmission must
be scalable according to the pool of users [7], [8].

Therefore, content providers or network operators must find
an appropriate edge node to meet their users’ needs. With
these questions to be tackled, a decision-making process for
selecting nodes at the edge becomes evident, which must be
done in real-time to maintain a good QoE and minimize the
waste resources in edge nodes. Additionally, aggregating active
users in a minimum number of edge nodes can help balance
load traffic [9], [10]. The main contributions of this paper are
presented below.

1) Introduce the MultI-tiered edGe/cloud oRchestrator
Architecture for video sTrEaming (MIGRATE), which
aims to perform the decision-making for video streaming
services in real-time;

2) An ILP model and Greedy solution to decide the distri-
bution of connections between users and services;

3) Analysis of the results shows that, depending on the
optimization strategy used, there is a trade-off between
resources and users’ QoE.

The remaining article is organized as follows. In Section II,
related works in video streaming and edge computing are
discussed. MIGRATE is presented in Section III, describing
the architecture and also the proposed optimization model.
Section IV describes the simulation-based experimental setup,
while Section V describes the results, which demonstrate the
effectiveness of the proposed solution in improving QoE and
balancing load traffic. Finally, Section VI summarizes the main
findings and contributions of the research.

II. RELATED WORK

In this section, we examine previous research in the field
of video streaming at the edge, specifically focusing on the
models of orchestrators capable of managing services.

To ensure the best user experience, Farahani et al. suggested
using an optimization model that employs a service approach



with auxiliary caches [11]. Client requests are served by
reverse proxy services placed at the edge and considered the
shortest fetch time to serve users. Large-scale trials verify
the accuracy of the proposed method, and the framework
performance is compared to client-server approaches. The
framework significantly improves the users’ QoE. Bentaleb et
al. [12], proposed a method based on a deep neural network
to make predictions about the media that will be used. This
method allows the edge server to anticipate demand for cloud-
based video segments and make requests in advance. The
experimental findings demonstrate a superior performance of
the proposed solution over baseline models.

Shi et al. [13] discussed two edge challenges, namely the
ping-pong effect and the edge node selection problem. To
solve these challenges, a proposed edge node selection strategy
considers the handover and the edge cache status. Further,
the authors proposed a QoE-aware method to optimize QoE
directly. Thus, the proposed policies are executed based on
users’ QoE to effectively utilize the cached content on the
server BS as much as possible. Nguyen et al. [14], proposed an
HTTP-based relay mechanism, where the throughput perceived
by users is computed while the user receives the segments.
This allows the server segment re-transmission during network
fluctuations as long as better-quality segments are received.
Additionally, the authors utilize the push property of HTTP/2
to decrease the number of requests. The mechanism has
reduced the low-quality video time while also improving QoE.

The distribution of multimedia services in a hierarchical
edge/cloud network also poses significant challenges. Santos
et al. [15] addresses this problem by formulating the service
allocation problem as an ILP, with the goal of reducing the
number of network nodes while keeping latency in mind.
The proposed approach strategically selects the node closest
to the user to meet their demands and enhance the overall
user experience. Santos et al. [16] presents an orchestration
mechanism called Fog4Video, designed to select the edge
nodes for downloading video content. The mechanism utilizes
user feedback to evaluate video streaming from edge nodes.
The work divides the edge into three layers to ensure storage
capacity and thus improves the average bitrate and signifi-
cantly reduces monetary costs.

Guan et al. [17], [18] demonstrate the performance of the
tree-structure model and propose an algorithm with a hit
rate improvement in the multimedia content and considerable
memory consumption savings. The algorithm redirects a user’s
request for a video to the nearest cache. If the cache node
does not receive the video, the edge node forwards it to the
upper tier, which forwards the request to the upper tier until
it reaches the source node.

Within the featured articles, only Shi [13] deals with aspects
directly related to wireless network issues. The displacement
of content to the network edge is not necessarily beneficial, so
the connection between the cache and AP operates separately.
However, dealing with a multi-level architecture brings aspects
that can help or worsen network performance if not managed
correctly. In summary, the previous approaches’ efforts to
improve users’ QoE have focused on statically reducing traffic
load or optimizing multimedia streaming.

Our work aims to bridge this gap by introducing an
orchestrator MIGRATE for video streaming across multiple
edge/cloud levels. MIGRATE addresses current challenges by
implementing an orchestrator capable of adapting to real-time

video demands. Additionally, we formulate an ILP model that
considers the multi-tier edge network. The model aims to
maximize infrastructure use without affecting the user’s QoE.

III. MIGRATE: MULTI-TIERED EDGE/CLOUD
ORCHESTRATOR ARCHITECTURE FOR VIDEO STREAMING

This section presents an overview of the MIGRATE ar-
chitecture. A formal scenario in multi-tier edge/cloud en-
vironments is described, which includes the different tiers
of the environment. The detailed architecture components
are then defined, including the different functionalities and
responsibilities of each component.

A. System Overview
MIGRATE is an adaptive video streaming architecture that

utilizes a multi-tier edge environment for efficient resource
management and improved video streaming quality. It takes
advantage of the interactivity between nodes at different tiers
to make the best decision within the edge network. The nodes
are accessible through various connection levels, ranging from
specialized servers in the core network to micro-data centers
in the radio-access network. As depicted in Figure 1, on the
left-hand side, the edge can be divided into various tiers;
The top tier consists of cloud servers. The three tiers of the
edge network illustrate the hierarchical structure of the edge
network. Tier 2 corresponds to the Core Network Regional
Edge in this upper multi-level edge. The Access Network Edge
in Tier 3 supports a few dozen to a few hundred local nodes
on the edge. Tier 4 deploys Edge Gateways on locally hosted
edge nodes with limited storage capacity.

The orchestrator can monitor the network conditions and
allocate resources accordingly to ensure that video services are
deployed on the most appropriate edge nodes. This hierarchical
structure enables MIGRATE to make decisions tailored to each
level’s specific needs, ensuring efficient resource management
and better video streaming quality for end-users. The right-
hand side of Figure 1 shows the MIGRATE software archi-
tecture and the necessary interactions for the video streaming
components.

B. Communication Component
In order to perform the communication operation between

the network entities, the main Communication Component
feature works as a control channel. All inter-entity commu-
nication is handled through a channel created by the main
class. The design follows the DASH-IF specifications [19]. In
this work, the communication functions are offered to redirect
the user to an edge cache, and afterward, the execution of
the optimization component, which involves sending messages
through the communication protocol to the users. After receiv-
ing a server change notice, users can only communicate with
a server that actively accepts them. In doing that, this switch
server message must be sent for users to initiate requests on
an already available server.

A communication flowchart is depicted in Figure 2. The
client initiates the process by requesting content from a
centralized node. The server, in turn, provides the client with a
manifest file containing information about the communication
component, their relationships, and any other data the client
requires to select a server.

The manifest file also includes other metadata needed to
select additional media segments from edge caches. Afterward,
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the content is exchanged between the client and the cloud. In
this context, user feedback sent to the cloud can trigger the
service redirection to an edge node, e.g. due to QoE issues
and link capacity. The data transmission can be provided both
by the cloud and the edge nodes. Finally, the client can send
additional feedback to the edge node that may lead to another
service, either in a new or a pre-existing edge node in a
different network tier or even in the cloud.

C. Monitoring Component
The monitoring component plays a central role in the

overall system by observing predefined network metrics. These
metrics are essential for the decision process of the MIGRATE
orchestration, which must be aware of the network’s real
conditions to decide when a new edge node is needed. In
this work, we will observe bandwidth consumption as a key
metric. A network topology is represented by a non-directed
graph G = (V, E). The set of vertices is V = V1∪V2, where V1

represents the set of nodes capable of provisioning or serving
in a backhaul topology of a mobile operator, and V2 is the
set of viewers’ locations. These vertices are connected by a
set of edges E , where each node vx ∈ V1 has at least one
edge exy ∈ E connecting to another node vy ∈ V1, where
x, y = 1, 2, ...., |V1|, x ̸= y. Furthermore, V2 represents the
end-users u.

We consider a set of links with bandwidth ωe, where e ∈ E .
Bandwidth estimation is based on the number of packets
received and transmitted from network interfaces over a certain
period t and for a given network status ψ. The estimated

current link transfer rate is defined as ωe(ψ, t). The total
bandwidth capacity on the link e is represented by ωT

e (ψ, t).

ωe(ψ, t) ≤ ωT
e (ψ, t),∀e ∈ E ,∀ t (1)

Note that the estimated bandwidth ωe(ψ, t) within the
network should not exceed the total capacity ωT

e (ψ, t) of each
link e at any instant of time t, as given in Eq.(1). This is crucial
to ensure that the network resources are used efficiently and
that the end-users experience optimal performance.

D. Tracking Component

The tracking component registers the user’s location, gen-
erating information on which the system can identify the best
network management decision. When a streaming session is
started, the Control Channel component first classifies the user
into one of the groups based on specific characteristics of
the manifest request and AP information. These operations
can be done with the help of radio access level information
received from the base stations, as well as the application level
information that can aid in the whereabouts tracking in the
video streaming system.

Here, we consider a set of users, where each user u is placed
within a user group, with V2 = {g1, g2, ..., gn}. In this way,
a user’s real-time location can be determined by the location
area code (LAC), and the cell id id(.), which we consider as
a stopping point in where u is connected. We can combine
these two fields to uniquely indicate the user’s stay point as
gi = {LAC, id(u)}.

When a new user joins the video streaming system, the
insertion algorithm adds the user to a group. Each set of users
belonging to the same group is then aggregated into a single-
node service. In this way, when a user requests video content,
the multimedia server is able to route the user to a particular
video provider rapidly. If the viewer is currently watching the
video, a redirect message updates the server instead.

E. Optimization Component

The Optimization Component, which is in charge of making
decisions regarding service placement and scalability, is a
crucial part of the proposed architecture. These algorithms
consider factors such as the current state of the network, the
available resources, and the current services’ workloads. As
the demand for resources changes, the optimization component



can quickly adjust the services to ensure that the network
remains balanced and efficient.

Once the monitoring component detects a congested link,
the optimizer component is triggered. First, the edge node
selection module collects the input from the monitoring and
repository. The first entry is a subset F1 ⊂ V1 of the network
topology with nodes below the congested link. In doing so, a
subset of user groups F2 ⊂ V2 are selected, since the selected
groups gi are connected to an Access Point v ∈ F1. For the
sake of readability, the notations used throughout the paper
are summarized in Table I.

TABLE I: Notation used in the proposed model
Notation Description
ψ Actual network state
V Set of all network nodes
Vi Subset of nodes i
E Set of links over nodes V
Fi Subset of nodes
Mj Total server capacity j
u Current user u
gi Group of user i
pj Weight to serve the maximum number of users
xij Binary variable for server selection
NUMj(.) Number of user groups that pass through the

same node j
DEMe(.) Bandwidth required to attend a group’s QoE at

link e
CAPj(.) Function that calculates the cache capacity of

the video streaming in the edge server j

In a hierarchical model, the upper tiers within the network
edge tend to serve more users. In order to maximize the
number of users served by the same node, we used the function
defined in Eq. (2). NUMj(.) is a function that returns the total
number of users who traverse node j. We aim to classify the
best candidate for deploying the service based on pj , defined
as energy degree. Each node j holds its energy degree in
accordance to pj = NUMj(F1)/

∑
i∈F1

NUMi(F1).
This approach allows us to identify the best candidate

nodes to deploy the services based on the energy degree. By
deploying services on nodes with a higher energy degree, the
same node will serve the maximum number of users. The Eq.
2 also seeks to limit the number of users through an upper
limit. Thus, we can efficiently manage the limited resources
available at the edge without affecting the end-users’ QoE.

χ(ψ, j) = NUMj(F1) ∗ pj (2)

Eq. (3) represents the constraint that must be satisfied when
assigning a video streaming service in an arbitrary node j.
It guarantees that the assigned service is consistent with the
available bandwidth ωe. This constraint is essential to ensure
that the users experience optimal performance and that the
resources available at the network’s edge are used efficiently.∑

gi∈F1

xij ∗ DEMe(gi) ≤ ωT
e (ψ, t), e ∈ Rij (3)

To support the video services demanded by users, an optimal
route Rij must be chosen between user group gi and server j.
The bandwidth required to attend the QoE of a users’ group
gi is represented by DEMe(.). If gi requests to the server j
xij is 1, otherwise 0.

With users accessing a video streaming from such a catalog
and select the desired multimedia content, the demand for

the video content segments can be approximately estimated,
given the current audience. This allows efficient management
in allocating cache resources to ensure that edge nodes are
guaranteed continuous storage. Let si be an arbitrary mul-
timedia content by a video server. The video streaming si
starting at ti as St

i (that is, ST
i = {st1i , s

t2
i , ..., s

tn
i }, where

(t1, t2, ..., tn) are timestamps of videos (s1, s2, ..., sn) stored
from ti, respectively. The function CAPj(.) calculates the
cache of a given video stream, and the cache capacity of the
edge server j, denoted by Mj , is given by Eq.(4).∑

gi∈F2

xij ∗ CAPj(S
T
i ) ≤ Mj , j ∈ F1 (4)

The proposed problem can be formulated as follows: To
find the optimal set of candidates that maximize the energy
degree while satisfying the necessary constraints. This can be
achieved by maximizing the objective function in Eq 5.

max
∑

gi∈F1

∑
j∈F2

χ(ψ, j) ∗ xij

Subject to (1), (3) and (4)

(5)

The proposed strategy considers the dynamic nature of net-
work resources and adjusts in real-time to changing network
circumstances, making it a resilient solution for managing
multimedia services in edge-based networks. Once the ILP
problem is solved, we receive the nodes on which the video
streaming service should be deployed, as well as the connec-
tions between nodes F1 and F2.

IV. PERFORMANCE EVALUATION

This section presents the performance evaluation of the
MIGRATE orchestrator. The evaluation compares the results
obtained from the ILP model two other models.

Figure 3 illustrates the scenario discussed in this work. We
consider a cache hierarchy organized as a binary tree topology
with seven nodes and a Cloud Provider connected to the root
node. The four bottommost nodes are APs, and the others
are edge nodes. The AP nodes are implemented in wireless
devices that communicate via IEEE 802.11g at 2.4 GHz. The
APs have wired connections to the edge nodes, while end
users are connected wirelessly. Each user connected to the AP
is located precisely 8 meters away from the AP. In order to
force the use of edge nodes, the available bandwidth is 20Mbs
on links 0-1 and 0-2 and 30Mbs on links 1-3, 1-4, 2-5, and
2-6. This configuration allows us to verify the spread of video
streaming services at the edge. The bandwidth in e0,1 and e0,2
are smaller than in the lower links. In this way, the evaluated
solutions can be used in the allocation of services with more
efficiency in their performance in different conditions.

To implement the DASH servers and users that allow adap-
tive video streaming, we use the Adaptive Multimedia Stream-
ing project (Adaptive Multimedia Streaming - AMuSt) [20].
The AMuSt framework provides a set of applications to
produce and consume adaptive video based on the DASH stan-
dard. DASH functionalities are enabled by the libdash library,
an open-source library that provides an interface to the DASH
standard [21]. We consider that users are interested in a video
available with ten different bitrate representations, namely
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{235kbps, 375kbps, 560kbps, 560kbps, 750kbps, 1050kbps,
1750kbps, 2350kbps, 3000kbps, 4300kbps, 5800kbps}, which
are a subset used by Netflix [22]. Each representation is
divided into 2-second segments. The number of streaming
videos for download is limited to 10. The nodes’ capacity
is 10 in the cloud, while the edges are 9, 6, and 3 in levels 3,
2, and 1, respectively. A Zipf distribution with α equal to 0.7
is used to generate video selection and quality.

A. Decomposition Approach

We evaluate three scenarios: a Cloud-Only scenario with-
out MIGRATE, and two scenarios using different strategies
that seek to use the available resources with the MIGRATE
orchestrator, called QoS-Greedy and ILP Solution.

The Only-Cloud scenario only uses the Cloud Provider
node to deliver the video content. On the other hand, the
QoS-Greedy approach uses the edge network nodes. When-
ever link congestion is detected, QoS-Greedy is activated to
choose which edge node to assist in delivering the video. The
simulation’s initial scenario starts with users requesting video
content from the cloud. However, as soon as a congested link
is detected, the edge caching mechanism below the congested
link in the hierarchy is enabled, and the users receiving the
video through the congested link are redirected to the activated
edge nodes. This approach aims to alleviate the congestion on
the network by reducing the amount of data that needs to be
transferred over the congested link and, instead, serving the
video content from the edge nodes located closer to the users.
The third scenario, i.e. the ILP Solution, uses the proposed
architecture, which aims to implement the video streaming
service maximizing the use of the existing edge servers while
respecting the user’s QoE needs.

B. QoE Evaluation

Among the existing models in the literature, we describe
how QoE metrics can be used to score user satisfaction.
First, the video quality of each segment is calculated using a
logarithmic law based on the bitrate [3]. The equation 6 shows
the numerical transformation of the video quality received by
the user. Each video has N segments and is encoded with L
bitrate levels. ri represents a specific bitrate level, and at each
step i, the quality of the segment i is defined.

q(ri) = a1 ∗ log(a2 ∗ (ri/rL)) (6)

To calculate the long-term satisfaction of each user, a
flexible model is needed that includes the most influential
metrics to quantify users’ QoE. We consider Equation 7 [10],
which encompasses four metrics: (a) the average perceptual
quality of the chunk, (b) the average number of oscillations
of quality, (c) the average number of stall events and their
duration, and (d) the video startup delay. In Equation 7, K
represents the total video segments, Si is the duration of the
stall, and STi is the startup delay of the user i.

QoEi =
1

K

K∑
k=1

q(rk)−
1

K − 1

K−1∑
k=1

|q(rk+1)− q(rk)|

− 1

K

K∑
k=1

Sk − STi

(7)

The QoEi for each user i can range from 1 to 5, where
1 = bad, 2 = poor, 3 = fair, 4 = good, and 5 = excellent.
By considering these different values, we can have a more
comprehensive and accurate measure of the user’s satisfaction.

V. RESULTS

The experiments illustrated in Figures 4 (a), (b), and (c)
present the average QoE, as calculated by Equation 7, for
scenarios involving 15, 20, and 25 users per AP request-
ing videos in the simulated infrastructure. Each data point
represents the overall QoE of each user in the Cloud-Only,
QoS-Greedy, and ILP Solution scenario. The legends provide
information on the standard deviation and mean values. The
overall average performance of QoS-Greedy is better than the
Cloud-Only and ILP Solution scenarios, mainly due to the
choice of edge nodes to meet user requests. For example,
in the QoS-Greedy experiment, when congestion occurs on
intermediate links e0,1 and e0,2, the edge nodes closest to the
users are activated. In this case, the first AP nodes would
be activated just above the users. This way, the traffic going
over the uplink will be smoothed so that users can have their
QoE improved to an excellent level. Therefore, there is an
increase in QoE in scenarios with the edge cache mechanism,
as expected, given that users request segments from closer
nodes. The performance difference in QoS-Greedy and ILP
Solution scenarios for 15 and 20 users is approximately the
same in satisfaction level. While for 25 users, there is a
difference in the level of satisfaction.

An interesting discussion arises when QoE per user is ana-
lyzed separately, however. According to the numerical results,
the final QoE tends to deteriorate as the number of active
users increases. However, this is not entirely true for the QoS-
Greedy scenario, where the final QoE for each user remains
relatively high. The standard deviations of 0.016, 0.112, and
0.256, respectively, for scenarios with 15, 20, and 25 users per
AP, suggest a relatively consistent QoE among users within the
QoS-Greedy scenario. Only with 25 users per AP, the average
QoE decreases with satisfaction close to regular, in contrast
to the other two scenarios presenting good to excellent user
satisfaction. In cloud-only scenarios, the network operates with
a high standard deviation. As the number of users increases,
some outliers appear with the lowest level of satisfaction,
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Fig. 4: Average QoE for each user. Number of users per access point in each scenario.
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ranging between bad and poor. Finally, the Greedy algorithm’s
selection of edge nodes closest to the user effectively maintains
a consistent QoE for users even when the number of active
users increases. This highlights the effectiveness of the Greedy
approach in ensuring a consistent and high level of user
satisfaction.

Figure 5 (a), (b), and (c) illustrates the distribution of
requests between edge servers. For the ILP solution, as the
number of hops decreases, the number of requests between
layers decreases for the 15 and 20 users scenarios. This can
be understood by examining the formal model of the ILP,
which only allocates new nodes for video streaming if the
current edge servers do not meet the required demand. On the
other hand, the QoS-Greedy approach always looks for the
closest edge server possible to provision the video streaming,
resulting in higher consumption of resources. As can be seen,
a higher number of video streaming services are activated in
the QoS-Greedy strategy when compared to the ILP Solution.
This difference in resource usage is reflected in the request
distribution between layers and servers, with the QoS-Greedy
approach utilizing more resources to ensure a consistent and
high level of QoE.

Based on these observations, the simulation results demon-
strate the effectiveness of the proposed QoS-Greedy approach
in providing high-quality video streaming services to users.
The QoS-Greedy algorithm’s selection of the closest edge
nodes to the user helps to improve the QoE for users, and the
standard deviation of QoE values is lower than for the other
algorithms. On the other hand, the results of our analysis show
that the ILP solution is more efficient in terms of resource
usage when compared to the QoS-Greedy approach. As the

number of hops decreases, the number of requests between
layers decreases for the 15 and 20 users scenarios. This is
due to the formal model of the ILP, which only allocates
new nodes for video streaming if the current edge servers
do not meet the required demand, whereas the QoS-Greedy
approach always looks for the closest edge server possible
to provision the video streaming, resulting in higher resource
consumption. Therefore, a trade-off between quality and cost
should be evaluated according to the expected demand and
resource availability.

VI. CONCLUSION AND FUTURE WORKS

This article presents MIGRATE and investigates the char-
acteristics of a multi-tiered Edge-Cloud scenario for video
streaming services. The numerical results show that, depending
on the optimization strategy used, there is a trade-off between
the resources used and the QoE provided to the users. The ILP
results indicate that by using a multi-layer Edge-Cloud archi-
tecture, it is possible to improve network resource utilization
significantly. However, it negatively impacts user satisfaction
due to bandwidth constraints. This highlights the importance
of an effective management mechanism to optimize network
resources and users’ QoE depending on the users’ demand.
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