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Uirá Kuleszaa,c, Roger Immicha,c, Augusto V. Netoa,c, Ramon Fontesa,c, Vicente

Sousaa,c, Marcelo A. C. Fernandesa,c,∗

aLeading Advanced Technologies Center of Excellence (LANCE), Federal University of Rio
Grande do Norte (UFRN), Natal, 59078-900, RN, Brazil

bFederal Institute of Rio Grande do Norte (IFRN), Natal, 59015-300, RN, Brazil
cFederal University of Rio Grande do Norte (UFRN), Natal, 59078-900, RN, Brazil

Abstract

In the new 5G networking digital era, Network Slicing is pivotal in delivering new
visionary applications (e.g., holographic calls, tactical Internet, immersive video, and
expanded reality) as well as driving new business models and market opportunities.
To pave the way for delivering new applications, the Quality of Network-Slice Service
(QoNSS) must be maintained over time, which requires intelligent decision-making
logic at the network edge for agility. In this paper, we propose a new Network
Slice control-plane function that lies on predictive analysis using Machine Learning
(ML) over throughput and packet loss rate Key Quality Indicators (KQIs) at
slice-delivered service application data traffic granularity to guarantee QoNSS over
time. The study brings the following significant contributions to the field of dynamic
network traffic management within a network slicing framework: (i) assessing the
performance of three popular machine learning models to predict QoNSS-aware data
traffic patterns at slice-delivered applications granularity; (ii) designing an intelligent
decision-making function capable of proactively fostering inter-slice offloading of
slice-delivered applications flows in response to QoNSS degradation predictions; and,
(iii) providing testing outcomes to offer a better understanding of the different
mapping features displayed by each machine learning model. The experiments were
conducted atop different testbed settings featuring real-world slice-defined network
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and computing infrastructure. Detailed mappings and statistical outcome analyses
suggest that the proactive load-balancing function outperformed a regular rule-based
approach by significantly reducing the total packet loss of the network system while
allowing high accuracy and anticipation reaction time.
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Learning, QoS
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1. Introduction

Slicing has become a pivotal focus and an essential part of 5G network ecosystem
design due to its potential to drive new business models and market opportunities.
Slicing networks [1] lay on an ecosystem of technologies that interwork to overlay
multiple virtual network partitions (i.e., slices) atop the same physical network
infrastructure. Network Function Virtualization (NFV) and Software-Defined
Networking (SDN) [2] are among these enabling technologies. Each network slice
is assumed to deliver particular services and applications, thus yielding different
requirements holding proper characteristics, resources, policies, and others defined
at the level of mobile users, applications verticals, customers, and other use-cases [3].

The network-slicing heterogeneity nature demands computing, storage, virtual
services, and network resource to be configured in the supporting infrastructure
in a monolithic manner to meet each particular instance’s demands. A
network slice instance comprises manageable constituent parts called slice parts, a
service-delivering point within an end-to-end network slice structure. Network Slice
parts can be provisioned to run on Commercial Off-The-Shelf (COTS) equipment
distributed along on-path facilities spanning across backhaul, fronthaul, and Radio
Access Network (RAN) infrastructure domains [4].

A slice part structure comprises service components, such as applications and
network functions, operating in virtual mode for service provisioning, along with
representations of physical objects like digital twins [5], which are mapped to physical
resources. During the orchestration lifecycle of a network slice, all constituent
slice parts are digitally associated to form Service Functions Chaining (SFC),
which handle the data-plane traffic that the network slice yields systematically and
under personalized and isolated use perspectives [6]. Hence, the ability to notice
whether each network slice meets the performance and reliability requirements of
slice part-running services and applications is denoted in this paper as QoNSS.
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In order to yield predictable QoNSS levels, which must comply with data rate
and packet loss settings established in Service-Level Agreements (SLAs), the network
slicing control plane must include methods tailored for QoNSS-aware slice parts
service delivery management and control operations. The transformation of networks
into programmable, software-driven, service-based, and holistically managed
architectures paved the way for the need for network slice’s monolithic management
and operations to be conducted autonomously, namely in terms of self-configuration,
self-composition, self-monitoring, self-optimization, and self-elasticity. The Zero
touch network and Service Management (ZSM)1, states that “Full end-to-end
automation of network and service management has become an urgent necessity for
delivering services with agility and speed and ensuring the economic sustainability
of the very diverse set of services offered by Digital Service Providers.” Last but not
least, the dynamic patterns that slice part-running services and applications yield a
hot research area.

The state-of-the-art in the field of monolithic and autonomous network slicing
service delivering control plane reveals that reactive adjusting operations, namely
load balancing and elasticity, can keep network slices activated at a given performance
level. However, reactive decision-making methods are unsuitable for stringent
resource-demanding use cases by assuming that the temporary occurrence of service
outages while employing relief functions is tolerable. This might be unacceptable
for the 5G scenario since the 3GPP (3rd Generation Partnership Project) design
foresaw fostering visionary applications, such as in mission-critical services (e.g.,
autonomous vehicles and smart factories), intense-bandwidth experience-enhanced
multimedia services (e.g., holographic calls and immersive video), and ultra-reliable
connected massive Internet of Things (IoT) deployments, to name a few currently
incapable of delivering in market [7]. Considering the need to cater to the stringent
requirements (highly intense bandwidth and ultra-low latency) that such visionary
applications yield, we hypothesize that intelligent decision-making is best fitted to
prevent actions over the anomalies that struggle to maintain QoNSS levels.

The ability to predict QoNSS degradation before it happens is essential to
speed up network slice data traffic adjustment to guarantee QoNSS and optimize
the resource utilization of the underlying network infrastructure as a whole. In
this context, incorporating ML supported decision-making provides the prospect
of deploying intelligent mechanisms that are not just prepared to solve complex
problems, but also can enhance the understanding of complex situations, improve
the accuracy of decision-making, and ultimately lead to more accurate outcomes,

1http://www.etsi.org/technologies/zero-touch-network-service-management
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unsuitable, for instance, in regular rule-based solutions [8, 9, 10]. The complexity
behind the problem of keeping QoNSS over time requires optimizing the network slice
resources efficiently. To achieve this, the prediction of QoNSS levels will potentially
promote Network Slice data plane proactive control without incurring undesirable
service outages.

This paper fills the above-described gap by devising an intelligent decision-making
scheme, which fosters a proactive inter-slice load-balancing function that offloads, at
running time and in a QoNSS-driven manner, a given slice-delivered application
service data traffic to another network slice instance best fitting the predicted
QoNSS demand. The QoNSS predictions are driven by analyzing throughput and
packet loss rate KQIs, at slice-delivered application granularity. The inter-slice
load-balancing solution is designed on an agent-based architecture that can be
provisioned at any part of the cloud continuum (core or edge facilities), and operates
autonomously and in a monolithic Slice approach to promote seamless reactions
[11]. In the scientific methodology applied, we first evaluated the capabilities
that three fundamental ML models (namely, Artificial Neural Networks (ANN),
k-Nearest Neighbors (kNN), and Support Vector Machines (SVM) take in predicting
QoNSS degradation for employing intelligent inter-slice load balancing decisions
[12, 13, 14, 15]. We present the outcomes of the training phase of the ML models,
using Key Performance Indicators (KPIs), such as the coefficient of determination
(R2), to assess the accuracy of the models. The results reveal remarkable consistency
and effectiveness of the models in predicting QoNSS degradation associated with
active slice-part-running applications [16, 17, 18].

Subsequently, the trained ML models were rigorously tested, whilst the obtained
results were compared with regular rule-based load-balancing decision-making
algorithms, unequivocally suggesting the superiority of the ML-based models.
This study offers an in-depth understanding of how ML-based models enhance
slice-delivered applications’ responsiveness and data traffic management capacities
in slice-defined environments through detailed mappings and statistical analyses.
The presented results provide a solid foundation for practically integrating these
innovative techniques into next-generation communication infrastructures. The
ML-based approaches, including ANN, kNN, and SVM, showcased significantly
reduced cumulative packet loss rates compared to a regular rule-based strategy.
Additionally, the ML models exhibited consistent and timely action anticipation in
offloading the data traffic of affected slice-delivered applications to another suitable
Network Slice instance. This indicates the effectiveness of ML-based mechanisms in
proactively responding to predictions of slice-delivered application throughput and
packet loss patterns while highlighting their potential in optimizing QoNSS over
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time.
The present study makes several significant contributions to the field of dynamic

network traffic management within a network slicing framework:

• Introducing and evaluating three ML models (ANN, kNN, and SVM) for
predicting QoNSS levels of active slice-delivered applications, taking the
predictive analysis over throughput and packet loss rates at slice-delivered
applications granularity. The evaluation results strongly suggest that these
models succeed with high accuracy, with R-squared values close to 1.0,
indicating a substantial correlation with the data.

• Proposing an ML-based decision-making strategy tailored to the proactive
QoNSS-aware inter-slice load-balancing problem. This solution keeps
quality-guaranteed slice-delivered application data traffic over time while
raising high agility at edge network premises.

• The research offers a better understanding of each ML model’s different
mapping features. It also shows the advantages and disadvantages
behind a Network Slicing system when managing Slice-part network traffic
autonomously.

The approach stands out from the current state of the art by offering several
significant advantages. Firstly, it enhances the agility and accuracy of QoNSS
predictions, which is crucial for maintaining service quality amidst dynamic
network conditions. Secondly, through comprehensive experimental validation, the
framework demonstrates its effectiveness in reducing packet loss and optimizing
resource utilization—areas where many existing studies fall short. Lastly, the work
addresses the lack of real-world applicability in prior models, providing a practical,
scalable, and adaptive solution that significantly improves network management and
QoNSS. By directly addressing these gaps, the research advances the theoretical
understanding of network slicing and provides a robust, empirically validated
framework for its application in real-world scenarios.

The paper’s organization falls under the following structure. Section 2 outlines the
study of the most relevant related works in application service control in slice-defined
networks. Details about our solution are delineated in Section 3. Section 4 presents
the methodology for developing the proposed solution and conducting evaluation
experiments. Section 5 presents the suggested insights from the analysis with the
experimental results collected during our solution evaluations. Finally, but not least,
Section 6 wraps up our work and provides suggestions for future work.
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2. Related Work Analysis

In recent years, significant research efforts have been devoted to enhancing the
Quality of Service (QoS) in the context of 5G technology. This section provides an
overview of the relevant literature in the domain of efficiently delivering network
slice services, highlighting key contributions and approaches. The related work has
been confronted on the basis of their supporting capabilities attempting to provision
QoS-aided slice-delivered.

In [22], the Quality of Experience/Quality of Service (QoE/QoS) of 5G-enabled
optical networks is studied, which focuses on the E2E (end-to-end) service delivery.
An architecture of network slice provisioning with QoS guarantee was presented,
supporting 5G service chaining in cross-domain optical networks. This setup
facilitated linking 5G services through a policy-driven monitoring and control
system to uphold the specified QoS standards for end-to-end network slices.
Nevertheless, this system lacked a mechanism for SDN controllers and NFV entities to
communicate and enforce QoS decisions on the occurrence of infrastructure topology
events that affect the network slice. In [20], authors address the optimal allocation
of a slice in 5G core networks by tackling two challenges, namely function isolation
and guaranteeing end-to-end delay for a slice.

The authors of [21] elaborate on the necessity of automating network functions
related to the design, construction, deployment, operation, control, and management
of network slices. It revisits machine-learning techniques applicable to the
automation of network functions and then presents an ML-based framework for
the operation and control of network slices by continuously monitoring workload,
performance, and resource utilization and dynamically adjusting the resources
allocated to network slices. The authors of [19] thoroughly discuss the challenges
that network slicing brings in the different network parts and design a cooperative
game to study the potential cooperation aspects among the participants. Although
these works have notorious relevance, they do not seek to validate the proposals
through realistic use case studies. They limit themselves only to evaluating the
performance of their proposals. In some cases, they are just architectural models.

In [23], a stateful backward recursive path procedure was used to maintain
the E2E connection services. Experimental results indicated that this solution
can support the automatic establishment of QoS-based E2E connections across
multi-operator network domains. However, the orchestration scheme was not flexible
enough to support the scalability of the advertisement for resources and dynamic
connection services. A novel SliceNet framework is introduced in [24], based on
advanced and customized network slicing, to address some challenges in the QoS
for emergency service operators in migrating eHealth telemedicine services to 5G
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networks. Experimental results empirically validate the prototyped enablers and
demonstrate the applicability of the proposed framework. Although these solutions
seek to do some experimental validation analysis, there is no integration between
SDN controllers and NFV entities. Furthermore, they also do not consider the use
of AI in decision-making.

In [25], the authors propose a novel QoS framework of network slice in 5G and
beyond networks based on SDN and NFV to guarantee key QoS indicators. The
performance evaluation was executed in the Mininet emulation tool, which shows
that the proposed QoS framework can steer different flows into different queues of
OpenVSwitch (OVS), schedule network resources for various network slice types, and
provide reliable E2E QoS for users according to pre-configured QoS requirements.
This work comes closest to ours but lacks a mechanism to automate traffic flow
between services in a virtual network through SFC.

The paper presented in [27] introduces an innovative approach to enhance the
efficiency of congestion control algorithms by employing Recurrent Neural Networks
(RNNs) for bandwidth prediction. Diverging from prior studies that primarily
relied on simulated data, the authors validate the accuracy of their predictions
in a real-world environment, capturing and converting packet data for training
their model. The results demonstrate a maximum correct response rate of 79.71%,
showcasing the method’s effectiveness in a real-world context and comparable
performance to simulated data results. The paper also examines congestion control
in TCP, exploring various algorithms that dynamically adjust data transmission
in response to congestion levels. Additionally, it references a previous study that
utilized RNNs to address transmission reduction in congestion control algorithms.

In [28], the authors present a significant contribution to 5G experimentation
platforms by designing a scalable, flexible, and reliable analytics service supporting
end-user experiments and verticals. It provides valuable insights into KPIs for
network setup, ensuring correct operation and operational efficiency. Additionally,
it demonstrates the application of the analytics tool in various environments and
releases it as open-source in the Open5Genesis suite. The analytics component
is developed as a set of microservices, promoting modularity and scalability. The
analytics module incorporates descriptive, diagnostic, and predictive functionalities
based on microservices and containerized modules, including standard machine
learning, visualization, and reporting libraries. The paper also outlines a
methodology for applying machine learning and artificial intelligence techniques
in networks, covering data collection to model validation. While the paper
showcases promising results, highlighting the effectiveness of the analytics tool in
practical scenarios, there are limitations, such as the absence of a comprehensive
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evaluation of the performance and scalability of the analytics service and the need to
address privacy and security concerns associated with data collection and analysis.
Furthermore, it would be beneficial to explore the limitations of the machine learning
and artificial intelligence techniques employed and compare them with existing
analytics solutions for 5G experimentation platforms to contextualize the proposed
approach’s advantages better.

The work presented in [29] investigates the application of diverse machine and
deep learning techniques, including Decision Trees, Random Forest, Support Vector
Machines, 1D Convolutional Neural Networks, Multi-Layer Perceptron, and k-nearest
Neighbours, to enhance network prediction performance in 5G cellular networks.
Introducing a bagging-based ensemble learning approach, which outperforms existing
methods for network load prediction, emerges as a notable contribution. The study
addresses load prediction and anomaly detection, emphasizing the importance of
accurate anomaly detection in mitigating network load. Additionally, incorporating
standardized 3GPP protocols enhances the realism of the dataset used. However,
the paper lacks in-depth discussions on model limitations, dataset analysis,
scalability considerations, resource constraints, and comparisons with state-of-the-art
techniques, highlighting areas for potential improvement.

The paper [30] makes notable contributions to the SDN security field. It
introduces two datasets generated using Mininet and Ryu controllers, comprising
regular traffic and various attack types, for training supervised binary classification
machine learning algorithms. The study evaluates multiple algorithms, with the
decision tree algorithm standing out for achieving impressive scores, including an F1
score of 0.9995 for the attack class. However, it acknowledges limitations such as
the need for a more comprehensive algorithm comparison, reliance on generated
datasets, and potential scalability challenges in large-scale SDN environments.
Nevertheless, the paper represents a significant advancement in applying machine
learning techniques to bolster security in SDN infrastructures, paving the way for
future research and refinement in this domain.

The articles address resource management and orchestration within 5G networks,
focusing on dynamic network slicing for performance optimization. [32] proposes
combining a tailored HARQ scheme with hierarchical resource scheduling for 5G
network orchestration, emphasizing efficient resource utilization and responsive
service delivery. [33] introduces dynamic single-tenant radio resource orchestration
for eMBB traffic in multi-slice scenarios, aiming to ensure optimal service levels by
monitoring performance indicators. Both emphasize the importance of inter-slice
coordination for flexible and efficient resource allocation across diverse service
demands in 5G networks.
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In Table 1, we perform a comprehensive comparative analysis of the existing
literature to evaluate the strengths and limitations of current solutions in comparison
to our proposed approach.

Table 1: Comparison between existing solutions and our proposed solution.
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Vincenzi et al. 2017 [19]
Sattar and Matrawy 2019 [20]

Kafle et al. 2019 [21]
Montero et al. 2019 [22]

Sgambelluri et al. 2019 [23]
Wang et al. 2019 [24]

Shu and Taleb 2020 [25]
Khan et al. 2021 [26]

Kazama et al. 2022 [27]
Aumayr et al. 2022 [28]
Haider et al. 2023 [29]

Alzahrani and Alenazi 2023
[30]

Maule et al. 2022 [32]
Maule et al. 2021 [33]

Our Solution

The findings from our comprehensive comparative analysis, as presented in
Table 1, reveal that while numerous innovative contributions have been made,
many research works have struggled to address the ever-expanding complexities
and emerging challenges of effectively delivering network slice services. Overall,
related works leverage standard functionalities for slice provisioning, such as dynamic
multi-path routing, collaboration among multiple SDN controllers, integration
between SDN controllers and NFV Management and Orchestration (MANO), SFC,
experimental validation, and AI-based algorithms.

Therefore, we assert that our approach represents a significant advancement in
dynamic network traffic management within network slicing structures, fostering
the provisioning of QoS-guaranteed slice-delivered services over time. By providing
detailed QoNSS prediction, customized decision-making strategies, optimized
resource utilization, and insights into ML model mapping features, we foresee to
pave the way for more efficient, adaptive, and resilient network operations in the era
of 5G and beyond.
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3. Description of the Proposed Solution

To ensure slice-delivered application data traffic with guaranteed quality over
time, we designed a novel function that operates virtually on COTS data
center equipment, which are distributed across a programmable and cloud-native
network infrastructure. Our solution is centered around an agent-based virtual
service function that incorporates predictive QoNSS-aware inter-slice load-balancing
decision-making logic. This study emphasizes deploying the function on
edge-premised equipment for high-agility perspectives. The functional requirements
of our solution are outlined as follows:

• can run at either edge or core cloud computing premises;

• carries out ML-based predictive analysis on active slice-delivered application
data flows in the packet loss and data rate patterns;

• predicts QoNSS levels of active slice-delivered applications at data traffic, QoS,
and QoE levels;

• operates autonomously to offload slice-delivered data flows to another
best-fitted network slice;

• operates autonomously to promote seamless and monolithic reactions.

Figure 1 depicts the functional architecture of the QoNSS-aware inter-slice
load-balance solution, considering inner building blocks and internal/external
communication interfaces. The main functionalities of the proposed solution are
described as follows:

• Data Manager: The Data Manager building block is pivotal for orchestrating
slice-delivered application data management functions, namely gathering,
organizing, and storing all data in the State Table. Thus, it aims to ensure
that all data is readily available for the Model Training building block. By
centralizing this information, the Data Manager enables seamless access to
processed data for further predictive analysis, foreseen to enhance the system’s
ability to leverage ML effectively, enabling accurate predictions and proactive
load balancing based on real-time and historical data insights.

• Model Training: This component plays a crucial role in the functional
architecture by acting as a foundation for creating a robust ML system to
achieve optimal performance and predictive accuracy. Model training entails
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QoNSS-aware inter-Slice Load-Balance Agent

Network Physical Infrastructure

Network Slice Infrastructure

External Interface

Internal Interface

Figure 1: Architecture of the QoNSS-aware inter-Slice load-balance agent solution.

the logic tailored to undertake model training capabilities efficiently to handle
the complexities of data pre-processing effectively and yield high-accurate
predictions. The data pre-processing steps are integrated seamlessly to enhance
data quality, thereby enabling the extraction of meaningful insights.

• Prediction: Distinct from the Model Training, the Prediction building block
analyzes real-time data to make highly accurate predictions based on the ML
model’s learned patterns. Hence, it aims to ensure that the ML model can
adapt effectively to dynamic load conditions, optimize resource allocation, and
enhance overall load balancing performance by harnessing sophisticated ML
algorithms and techniques. This architectural component is fundamental in
validating the model’s predictive capabilities and its ability to handle varying
workloads efficiently in real-world scenarios.

• Inter-slice Load-Balancing: As the architecture’s central decision-making point,
the Inter-slice Load-Balancing building block utilizes predictions generated by
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the system to determine the most suitable network slice for performing optimal
load balancing. This component is responsible for dynamically configuring
the infrastructure to effectively implement the predicted load-balancing
adjustments. This building block completes the load-balancing lifecycle by
laying the foundation for predictive traffic steering of flows delivered by affected
network slices, aiming to afford optimal network performance and resource
utilization while responding proactively to changing traffic conditions.

• State Table: The State Table component in the QoNSS-aware inter-slice
load balancing functional architecture, plays a pivotal role in facilitating
the decision-making processes by allowing real-time data on the status and
performance metrics of each network slice to be maintained, gathered, and
used by both the Data Manager and the Model Training building blocks. By
leveraging the State Table, the system can dynamically allocate resources,
adjust load balancing strategies, and ensure QoS requirements are met across
different slices. Additionally, the State Table component interfaces with
other modules within the architecture to enable seamless communication and
coordination, contributing to the overall effectiveness and responsiveness of the
inter-slice load balancing solution.

• Interfaces: Within our QoNSS-aware inter-slice load balancing functional
architecture, internal interfaces serve as the communication channels that
interconnect the system’s building blocks. External interfaces, on the other
hand, allow external systems to interact with the QoNSS solution. These
interfaces adhere to RESTful principles to ensure standardized and efficient
communication. The seamless operation of these interfaces is essential for
facilitating QoNSS-aware inter-slice load balancing operations.

As Figure 1 illustrates, the interaction among the AI-based Virtual Network
Functions (VNFs) is facilitated by well-defined interfaces structured according to
REST API principles [RFC 9205]. These interfaces are systematically crafted to
provide a streamlined mechanism for QoNSS-embedded services to communicate
internally with architectural building blocks, as well as be accessed seamlessly
by external entities. Furthermore, the interaction with the network slice and
the physical network infrastructure elements plays a crucial role throughout
the entire QoNSS system orchestration lifecycle. For example, the system
orchestration functionalities leverage ONOS’s advanced management, monitoring,
and programmability capabilities designed to enhance network performance and
efficiency. As a result, essential tasks such as keeping abreast of network resource
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availability and enforcing slicing-defined flow rule control become more manageable.
It is worth mentioning that ONOS has been widely adopted as the main control layer
solution for 5G networks (i.e. SD-FABRIC2).

Figure 2 depicts a baseline scenario for applying the QoNSS-aware inter-slice
load balancing solution, which incorporates network intelligence service provisioning
operating virtually within edge computing nodes of the cloud infrastructure. This
approach aims to improve traffic management in slice-enabled network environments
by integrating NFV and ML technologies, particularly focusing on AI-supported
VNFs. By strategically placing these AI-based VNFs at the edge premises, intelligent
decisions can be made quickly and in real-time, analyzing numerous KQIs to optimize
slice-delivered services for QoNSS guarantees. Through softwarization facilities,
ML models can be generated and updated instantaneously, addressing challenges
associated with data drift.

Edge
service

Video serverVideo serverVideo serverVideo server

Core
service

Edge Cloud

Video clientVideo clientVideo clientVideo clients

Core Cloud

AI-based
VNFs

Slices

Figure 2: Operational framework of the QoNSS-aware inter-slice load-balance solution and edge
network traffic management, integrating AI-based VNFs within the edge service in the edge cloud.

Although the applicability of our intelligent approach is not logically limited
to particular parameters and can be extended to situations with multiple input
parameters, we designed our predictive analysis based on throughput and packet
loss rates, which are performed at the slice-delivered service application granularity.
It is essential to stress that using intelligent decision-making processes provides a
more comprehensive understanding of the challenges in guaranteeing QoNSS over
time. This, in turn, leads to improvements in the patterns of slice-delivered services,
ultimately enhancing the overall network performance.

2https://opennetworking.org/sd-fabric/

13



4. Methodology

This section provides a comprehensive overview of the scientific methodology
applied to validate the efficacy of the proposed intelligent QoNSS-aware inter-slice
load-balance function. The validation process adopts a two-step approach, starting
with creating a comprehensive dataset that reflects the behavior of data flows that
each slice-delivered application yields.

All the experiments were executed within an emulated testbed scenario, enclosing
a core cloud and interconnected edge network parts, as illustrated in Figure 2. The
experimental setup was built using an Ubuntu 22.04 virtual machine configured with
eight vCPUS and 32GB of RAM, which was managed and hosted at an OpenStack
premisse. The Containernet3 tool emulated the network topology, thus providing
connectivity to two pairs of Docker4 containers attached as hosts. The first Docker
pair serves as a video streaming server and client. In contrast, the second pair
serves as a traffic generator (by employing the iPerf35 tool), used to consume
slicing resources. The control plane management was performed by an ONOS
SDN Controller operating as a WAN Infrastructure Manager (WIM), which was
responsible for creating and managing slicing capabilities provisioned by the Virtual
Private LAN Service (VPLS). SDN rules and applications were built following the
OpenFlow v1.3 standard.

To create the dataset, we conducted experiments using the iPerf3 traffic generator
tool, resulting in a dataset of 9,030 rows. This dataset serves as the foundation for
the subsequent phase of the validation process, where we analyze the performance
of the intelligent QoNSS-aware inter-slice load-balance function.

Employing a meticulously crafted dataset enables a thorough assessment of the
proposed solution, guaranteeing the reliability and practical applicability of the
outcomes in real-world contexts. By focusing on the throughput and packet loss
rates KQIs at the slice-delivered service application granularity, we can assess the
effectiveness of the intelligent decision-making process in improving the patterns of
slice-delivered services and guaranteeing QoNSS over time.

Overall, the scientific methodology employed in this study provides a
robust framework for evaluating the proposed intelligent QoNSS-aware inter-slice
load-balance function and its potential impact on network performance and user
experience. The second phase shifted the focus to ML models. Three distinct

3https://containernet.github.io/
4https://docker.com/
5http://iperf.fr
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ML techniques (kNN, ANN and SVM) were carefully trained using the enhanced
dataset. These models were designed to predict the cumulative load associated with
the slice-delivered application data traffic, a critical factor in the decision-making
process to keep QoNSS over time.

Subsequently, the model’s predictive accuracy was performed in evaluation
scenarios that were not encountered during its training phase. This process involved
introducing novel and previously unseen load conditions to assess the model’s
ability to generalize and make accurate predictions beyond its training data. The
models’ performance, measured using suitable KQIs, demonstrated their ability
to accurately predict QoNSS degradation (packet loss rates) allowed by new flow
demands, thus allowing the proposed intelligent load-balancing solution to proceed
with the inter-slice offloading. This comprehensive approach provides the basis for
the paper’s results. It illustrates the integration of advanced technologies in tackling
network resource optimization and video streaming quality enhancement challenges.

4.1. Architecture

This research sets out two network slice instances on top of the same underlying
communication infrastructure, sbe and s2. The slices sbe and s2 are set up to a
bandwidth of the Bbe and B2 Mbps, respectively. The best-effort network slice, sbe,
contains the primary data flow ϕp and a set of secondary data flows ϕs. The total
data flow in sbe can be expressed by

ϕbe = ϕp + ϕs (1)

where

ϕs =
N∑
i=1

ϕs,i (2)

where the ϕs,i is the i-th flow, whilst N stands for the number of the flows associated
with the secondary flow, ϕs. The ϕp is essential for providing the main video
streaming service in HTTP Live Streaming (HLS) video flow and is carefully balanced
with the ϕs within the same slice. An important part of the proposed approach is the
ML-driven decision-making process, which can move the ϕp from sbe to the alternate
slice s2 based on predictive analysis. The flows ϕp and ϕs are distinguished by their
bandwidths, Bp Mbps and Bs Mbps, respectively. The alternate slice s2 flow is
expressed as ϕ2. The decision to move flows from one slice to another rather than
expanding the slice’s capabilities and experiencing performance issues was made for
simplicity, but slice scheduling can be performed through the REST APIs provided
by the control plane if necessary.
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This slice guarantees a bandwidth of approximately Bp Mbps for the primary
flow, which ensures that video quality is maintained within the specified range. In
contrast, the composite secondary flow, ϕs, comprises various data streams that
create a variable network demand. The bandwidth requirements of the secondary
flow, estimated to be around Bs Mbps, are not limited by the allocated best-effort
slice bandwidth (Bbe). This necessitates using the intelligent agent, embedded within
the ONOS-based6 WIM-controlled environment, to predict the secondary flow’s
bandwidth consumption.

It is worth mentioning that the architectural model considered in this work is not
limited to just two slices. The number of slices is managed by the ONOS controller,
and this abstracts any complexity in managing slices from the control plane. The
ONOS controller has been proposed by the Open Networking Foundation (ONF)
with the support of many of the most important telecommunications vendors and
operators. Specifically, ONOS is part of a broader array of initiatives promoted by
the ONF, including SD-Fabric7, which facilitates the operation of a 4G/5G mobile
core User Plane Function (UPF) within the packet processing pipeline of switches.
It is seamlessly linked with ONOS through the ONF’s SD-Core project8.

The intelligent agent, in turn, can then migrate the primary video flow,
ϕp, to an alternate slice, s2, to respond to changing traffic dynamics. This
strategy ensures optimal network resource utilization and sustained video quality
within the orchestrated network-slicing ecosystem. The process involves activating
network slicing orchestration capabilities enforced by the Inter-slice Load-Balancing
mechanism, which handles the necessary flow rules within network elements, ensuring
continuous data flow transmission for the video streaming services. As a result of our
self-managing network slicing orchestration approach, the video streaming service is
delivered with the appropriated QoNSS without introducing any noticeable service
interruption.

The flow ϕp is characterized by the video stream in HLS, which is the main
element of the streaming service. On the other hand, ϕs is generated using iPerf3, a
popular tool for measuring network performance. iPerf3 is set up to generate traffic
with a bandwidth of Bs within the network slice sbe, simulating a range of secondary
flows and their effect on the resource allocation of the network slice.

This work assumes a certain limit, Bl, and if the bandwidth of ϕs, Bs, surpasses
this limit, the primary flow ϕp should be moved to the slice s2, that is, the quality

6https://opennetworking.org/onos/
7https://docs.sd-fabric.org/master/index.html
8https://docs.sd-core.opennetworking.org/master/index.html
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of the video, in flow ϕp, decreases if Bs > Bl. The intelligent agent predicts the
Bs value by ML (B̃s) and decides the slice change using Bl. At each time instant
t, the ML takes the packet loss rate, spl(t), and throughput, sth(t), KPIs from the
secondary flow, ϕs, as input. These KPIs are essential metrics that provide the ML
models with information about the quality and effectiveness of the network resources
allocated to the flows within the slice.

Figure 3 illustrates the architecture scheme used to test the paper proposal. The
decision rules use the Bl value and decide about primary flow, ϕp, changing. The
ML output, B̃s, is the predicted value of Bs. It is important to understand that
the secondary flow, ϕs, is also affected by the primary flow, ϕp, since both initially
share the same slice. Therefore, when the ϕs demands more bandwidth beyond the
best-effort slice limit, the packet loss rate of the ϕs will also increase, similar to the
loss of video quality. The flow ϕ2 in the alternative slice, s2, can be expressed as

ϕ2 =

{
0 if D(B̃) < 0

ϕp if D(B̃) > 0
(3)

where D(B̃) is the decision function used by the intelligent agent. The D(B̃) can be
characterized by

D(B̃s) =

{
+1 if B̃s >= Bl

−1 otherwise
. (4)

4.2. Dataset generation

Developing a reliable and representative dataset is key to verifying the proposed
approach. Several experiments were conducted in the network slice environment to
create this dataset, which encompasses a wide range of load conditions, reflecting the
diversity of real-world network traffic. This variety of data is essential for providing
ML models with a broad range of scenarios, allowing them to recognize the intricate
connections between KPIs and flow loads. To this end, we used real media with
H.264 encoding, 1920×1080 pixels resolution, bitrate of 3 Mbps, frame rate of 60
frames per second, and duration of 30 seconds.

Experiments that lasted one minute each were performed to promote the diversity
of network dynamics. IPerf was employed to generate traffic load to degrade network
QoS and, consequently, the video streaming service QoE. To this end, the traffic load
parameters were set up with gradual modifications (0.2 Mbps increments) so that
the dataset could include knowledge about conditions ranging from situations (from
0.6 Mbps to 3.4 Mbps) that were least harmful to QoE to highly compromising ones
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Video server Video client

ML modelDecision rules
Intelligent agent

Figure 3: Architectural scheme of the implemented testbed for Proposal evaluation: Integration of
primary and secondary flows via ML for network resource optimization.

(given the slice capabilities and the media bitrate requirements). In other words, it
means an amount of traffic that, when jointly added to the best-effort slice during
the video streaming transmission, could cause impairment to the streaming service.

For each k-th load configuration, spl,k(t) and sth,k(t) KPIs were collected, at each
time instant t, from slice sbe, including ϕp and ϕs flows. This thorough data collection
process resulted in a dataset of 9,030 distinct instances, each with its associated
KPI values and load levels. In each k-th load experiment, a secondary flow ϕs,k is
generated with a bandwidth Bs,k Mbps, where Bs,k ∈ {0.6, 0.8, 1.0, . . . , 3.2, 3.4} for
k = 1, . . . , K, where K represents the number of experiments. In total, K = 14 load
experiments were conducted. Figure 4 illustrates the scheme employed for dataset
generation.

The resulting dataset serves as the foundation for the next step, where the ML
models are trained and tested, thus equipping the intelligent agent with the ability to
make informed decisions about flow management to improve video streaming quality.

4.3. ML Training Methodology

Three ML models performed regression tasks during the training phase,
uncovering patterns in the collected data. These models were ANN, kNN, and SVM.
The training dataset included KPI values and their corresponding load levels, which
the models were adjusted to identify the connections between the input KPIs and
the flow loads. Iterative optimization strategies were used to refine the models and
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reduce the prediction errors using the data in the training dataset. This process of
refinement and cross-validation enabled the models to accurately predict the load of
secondary flows based on real-time KPI measurements. These trained ML models
form the basis of the intelligent agent’s decision-making, allowing it to assess changing
network conditions and make decisions that optimize the quality of the primary
video streaming service. Table 2 presents the hyperparameters used to train the ML
models.

Table 2: Hyperparameters used for each ML model.

Model Hyperparameters

ANN

Hidden Layers: 2 (20, 10)
Activation Function: ReLU
Learning Rate: 0.001
Epsilon: 1e-8
Optimizer: Adam

kNN

Distance Function: Euclidean
Number of Neighbors: 3
Neighbor Weights: Uniform
Leaf Size: 10

SVM

Kernel: RBF
Regularization Parameter (C): 1.0
Kernel Degree: 3
Epsilon: 0.1
Gamma: Auto

iPerf server iPerf client

dataset

Video server Video client

Figure 4: Experimental scheme for sataset generation: Collecting spl,k(t) and sth,k(t) KPIs from
sbe slice across K = 14 load configurations.
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During the training phase, a k-fold cross-validation approach was employed for
each machine learning model, with k set to 10. This methodology is a commonly used
practice for assessing the performance of ML models and ensuring robust evaluation.
This approach divides the dataset into ten (10) equally sized subsets, or folds. The
model is trained and evaluated 10 times, each using a different fold as the validation
set and the remaining nine as the training set.

k-fold cross-validation is a beneficial technique for assessing and selecting models
in machine learning, as it helps to reduce the risk of overfitting. It also provides a
more comprehensive evaluation of the model’s performance, as it is tested on multiple
subsets of data. This ensures that the model’s performance metrics are more accurate
and reflect its ability to generalize. Ultimately, k-fold cross-validation is a valuable
tool for model evaluation and selection in machine learning.

4.4. ML Test Methodology

Following the training phase, tests were conducted to evaluate the models and
compare their performance to the traditional approach, in which a decision system
decides when to switch the primary flow, ϕp, to another slice based on the throughput
of the secondary flow, ϕs. Since the secondary flow, ϕs, is the variable component of
the system, it is essential. On the other hand, the ML proposed in this work considers
the throughput of the secondary flow, ϕs, and the associated packet loss rate. This is
noteworthy as ML can anticipate the need for a flow switch by considering an extra
variable.

Five separate experiments were conducted to evaluate the performance of the
tests, with the traffic load on iPerf ranging from 1.6 Mbps to 3.6 Mbps in 0.1 Mbps
increments. Each increment lasted for 60 seconds, resulting in 21 minutes (1260
seconds) for each experiment. In this evaluation, the architectural parameters were
set to Bp = 3 Mbps and Bbe = 5 Mbps. The outputs of the three ML models were
recorded for each experiment, allowing for a comparison between the conventional
agent and ML-based approaches and providing insight into their effectiveness.

The conventional agent was characterized as a decision system that evaluates both
the packet loss rate, spl(t), and the throughput, sth(t), of the secondary flow, ϕs, at
each time instant t. Based on predefined threshold values, this system determines
whether to move the primary flow, ϕp, to the alternative slice, s2. Tests were
conducted for two decision rules, called R1 and R2. The rule R1 is based solely
on the throughput of the secondary flow, and the R2 is based on both metrics, i.e.,
the packet loss rate and the throughput of the secondary flow. The decision function
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associated with R1 rule can be expressed by

D1(sth(t)) =

{
+1 if sth(t) >= Bl

−1 otherwise
(5)

and the decision function associated with R2 rule is expressed as

D2(spl(t), sth(t)) =

{
+1 if sth(t) >= Bl AND spl(t) >= Pl

−1 otherwise
. (6)

The flow ϕ2 in the alternative slice, s2, can be expressed as

ϕ2 =

{
0 if D1(sth(t)) < 0

ϕp if D1(sth(t)) > 0
(7)

and

ϕ2 =

{
0 if D2(spl(t), sth(t)) < 0

ϕp if D2(spl(t), sth(t)) > 0
(8)

for R1 and R2, respectively.
Figure 5 illustrates the conventional agent in the test scheme. These experiments

aim to compare the effectiveness of the conventional approach against the proposed
ML-based strategy, considering different decision criteria.

5. Assessment Results

The results were conducted in two stages. Initially, the outcomes related to the
training of the ML techniques described in the methodology section will be presented.
Subsequently, the test results of the trained models will be discussed.

5.1. ML Training Results

The effectiveness of the ML models in forecasting bandwidth utilization of
composite secondary flows in a network slicing environment was evaluated using
R-squared (R2) as a metric. R2 gauges the accuracy of the models to the data, with
values closer to 1.0 indicating a strong correlation.

As shown in Table 3, the results for each ML model are as follows:

• ANN achieved a mean R2 of approximately 0.9945 and a low standard
deviation of 0.0015, highlighting a strong and consistent fit to the dataset.
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Figure 5: Conventional agent test scheme: Comparing the conventional approach against the
ML-based strategy using diverse decision criteria.

• kNN also exhibited exceptional performance with a mean R2 value of around
0.9951 and a standard deviation of 0.0018, showcasing an exceptional and
consistent fit to the data.

• SVM demonstrated a mean R2 value of approximately 0.9940 with a standard
deviation of 0.0015, indicating a robust and consistent alignment with the
observed data. This performance reflects minimal variability, positioning the
SVM model closely alongside the other models presented.

After analyzing the mean and standard deviation of the R2 for three techniques
namely ANN, kNN, and SVM, it was observed that the differences in the R2 means
were insignificant. Additionally, the standard deviations for ANN and SVM were the
same, with only a slightly higher value for kNN. From a mathematical perspective,
these minor differences do not provide sufficient evidence to declare any technique as
superior to the others. However, these findings underscore the effectiveness of these
models in supporting dynamic network traffic management within a network slicing
framework.

Table 4 displays extra performance metrics for the most successful folds of each
machine learning model. These metrics are essential for evaluating the models’
capacity to forecast bandwidth utilization in a network-slicing setting. The metrics
taken into account include Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and the Coefficient of Determination (R2 Score).

22



Table 3: Mean R-squared (R2) and Standard Deviation (SD) for ML each model used in this work.

Model Mean of R2 SD
ANN 0.9945 0.0015
kNN 0.9951 0.0018
SVM 0.9940 0.0015

Table 4: Performance metrics for best folds of ML models.

Model MSE RMSE R2 Score
ANN 0.0047 0.0683 0.9937
kNN 0.0028 0.0530 0.9962
SVM 0.0046 0.0678 0.9938

For the ANN model, it showcased an MSE of 0.0047, an RMSE of 0.0683, and
an R2 Score of 0.9937 in its best fold. These metrics reflect the model’s proficiency,
where the lower MSE and RMSE values indicate minimal prediction errors. At the
same time, the high R2 Score signifies the model’s capacity to effectively explain
variations in the data. In the other way, the kNN model demonstrated remarkable
results, with an MSE of 0.0028, an RMSE of 0.0530, and an R2 Score of 0.9962 in its
best fold. These metrics demonstrate the model’s impressive predictive capabilities,
with low MSE and RMSE values indicating minimal prediction errors and a high R2

Score indicating the model’s remarkable capacity to explain data variability. Lastly,
the SVM model revealed an MSE of 0.0046, an RMSE of 0.0678, and an R2 Score
of 0.9938 in its best fold. These results align closely with the ANN model and
demonstrate SVM’s remarkable performance in terms of prediction accuracy and
fitting to the data.

The ML models demonstrated remarkable accuracy in forecasting bandwidth
utilization in a network-slicing environment. The kNN model was particularly
impressive, with the lowest MSE and RMSE values. All models achieved R2 Scores
close to 1.0, indicating their remarkable capacity to explain data variations. These
findings confirm the efficacy of these models in enabling dynamic network traffic
management within a network-slicing framework.

The plots in Figure 6 demonstrate the accuracy of the three ML models in
predicting bandwidth utilization. The x-axis of each graph shows the model’s
predictions, while the y-axis displays the actual values from the dataset. The diagonal
line in the center of each plot is the estimated regression line, and the data points close
to this line indicate the model’s accuracy. All three models have data points tightly
clustered around the regression line, indicating their solid predictive capabilities.
This visual evidence confirms the effectiveness of the ANN, kNN, and SVM models
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in predicting network traffic in network-slicing environments.
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(a) ANN regression model.
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(b) kNN regression model.
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(c) SVM regression model.

Figure 6: Predicted values.

Figures 7a, 7b, and 7c show the mapping done by the ML techniques at different
throughput and packet loss rate points. These maps visually demonstrate the
connection between the two key metrics. The maps created by each technique
(ANN, kNN, and SVM) have distinct patterns and decision boundaries. These
visualizations provide useful information on how each ML model categorizes different
parts of the feature space, helping to comprehend their respective advantages and
drawbacks in this context. The mappings generated by the ML models reveal distinct
approaches to interpreting the relationship between throughput and packet loss
rate. The ANN model utilizes its layered structure to capture intricate, non-linear
associations, leading to consistent, continuous mappings. On the other hand, kNN,
being an instance-based approach, produces mappings characterized by localized
decision regions, making it vulnerable to local changes in the feature space. Focusing
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on finding optimal hyperplanes, SVM generates mappings with distinct decision
boundaries, providing a more organized and separable view of the data. These
distinctions in mapping characteristics come from the unique techniques underlying
each ML technique, emphasizing the significance of selecting the most appropriate
model for a given problem domain.

(a) ANN mapping. (b) kNN mapping.

(c) SVM mapping.

Figure 7: Comparison of throughput and packet loss rate mappings by different machine learning
models.

5.2. ML Test Results

Figures 8 and 9 depict the measured throughput values and cumulative packet
loss rate over the entire simulation without using any decision scheme for primary
flow switching. These results validate the experiment, as they demonstrate that
as the bandwidth of the secondary flow increases, the cumulative packet loss rate
and measured throughput also rise. Figure 10 illustrates the optimal decision points
for switching the primary flow to slice s2. It is observed that before 2 Mbps, the
packet loss rate begins to escalate, emphasizing the importance of the decision system
anticipating this change. However, conventional decision systems rely solely on a
priori knowledge regarding the maximum bandwidth limit, (Bl), that the secondary
flow, ϕs, can achieve, which is determined by measuring the throughput of the
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secondary flow as described in Equations (5) and (6) for decision rules R1 and R2,
respectively.

Thus, it is already evident that conventional systems will exhibit high packet
losses before switching the primary flow to slice s2. On the other hand, as will be
shown in the forthcoming results, the ML-based intelligent agent will proactively
respond to packet loss, initiating the switch just before the bandwidth limit, Bl,
resulting in superior performance in terms of packet loss compared to conventional
techniques. For the tested experiment, the value is approximately Bl = 2 Mbps,
considering that the best-effort slice, sbe has a bandwidth of Bbe = 5 Mbps, and the
video associated with the primary flow, ϕp, has a bandwidth of Bp = 3 Mbps.

Figure 8: The measured throughput associated with the 5 test experiments conducted. The graph
depicts the average throughput value every 5 seconds.

Figure 11 presents each decision strategy’s cumulative packet loss rate
distribution until the switch time to slice s2. It can be observed that the
ML-based strategies exhibited lower cumulative loss compared to conventional
decision strategies based on rules R1 and R2. This is attributed to the anticipatory
switching performed by the ML model. Figures 12 and 13 display the distribution of
anticipation time for ML-based decision techniques about the conventional decision
based on R1 and R2, respectively. It is crucial to emphasize that the ML prediction
criterion was based on training from the previously generated data, as previously
outlined. Tables 5, 6 and, 7 summarize the statistical results of the distributions
presented in Figures 11, 12, and 13.

The R1 strategy had an average cumulative loss rate of approximately 0.6011%,
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Figure 9: The cumulative packet loss rate and the bandwidth of the secondary flow associated with
the 5 experiments without using any decision system for switching the ϕp.

Table 5: Statistical results of each decision strategy’s cumulative packet loss rate until switching to
slice s2, associated with all 5 experiments using Bl = 2 Mbps and Pl = 2%.

Decision Mean (%) Standard deviation (%) Median (%)
R1 0.6011 0.2092 0.6527
R2 0.4678 0.5777 1.0190
ANN 0.0917 0.0897 0.0787
kNN 0.1269 0.0866 0.0907
SVM 0.0287 0.0092 0.0287

with a standard deviation of 0.2092% and a median of 0.6527%. In contrast, the R2

strategy had an average cumulative loss rate of about 0.4678%, with a much higher
standard deviation of 0.5777%, and a median of 1.0190%, indicating a considerable
variation in performance. On the other hand, the machine learning approaches
demonstrated significantly better performance. The ANN strategy achieved an
average cumulative loss rate of only 0.0917%, with a standard deviation of 0.0897%
and a median of 0.0787%. The kNN strategy recorded an average rate of 0.1269%,
with a standard deviation of 0.0866% and a median of 0.0907%, while the SVM
strategy had the lowest average cumulative loss rate, at just 0.0287%, with a standard
deviation of 0.0092% and a median of 0.0287%.

The ML techniques displayed a consistent performance in anticipation time for the
R1-based strategy. The ANN approach had an average anticipation time of around
52.6 seconds, with a standard deviation of 14.9 seconds and a median of 58.6 seconds.
Similarly, the kNN strategy had an average anticipation time of approximately 52.6
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Figure 10: The cumulative packet loss rate plotted against the bandwidth of the secondary flow
associated with the 5 experiments without using any decision system for switching the ϕp.

Table 6: Statistical results of the anticipation time for the ML-based decision strategies compared
to the conventional R1-based strategy. The distribution was based on the five experiments using
Bl = 2 Mbps.

ML-based decision Mean (seconds) Standard deviation (seconds) Median (seconds)
ANN 52.5932 14.8756 58.6454
kNN 52.6471 16.3828 60.0358
SVM 52.6437 14.2399 57.9705

seconds, with a standard deviation of 16.4 seconds and a median of 60.0 seconds.
The SVM strategy showed an average anticipation time of roughly 52.6 seconds,
with a standard deviation of 14.2 seconds and a median of 58.0 seconds. These
results suggest that the ML-based strategies provide consistent anticipation times
when compared to the traditional R1-based strategy.

The R2-based strategy was found to have a consistent anticipation time, with
an average of 199.8 seconds, a standard deviation of 48.5 seconds, and a median of
213.1 seconds. Similarly, the ML techniques also demonstrated similar consistency
in anticipation time, with the ANN, kNN, and SVM strategies having an average
anticipation time of 199.8 seconds, a standard deviation of 48.5 - 49.5 seconds, and a
median of 213.1 - 213.8 seconds. These results suggest that the ML-based strategies
are comparable to the R2-based strategy regarding anticipation time.

The use of machine learning approaches is effective in making more precise
decisions than traditional rule-based decision strategies. This has resulted in a
significant decrease in the total packet loss rate, which is essential for improving the
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Figure 11: Distribution of the cumulative packet loss rate for each decision strategy until switching
to slice s2, associated with all 5 experiments using Bl = 2 Mbps and Pl = 2%.

Table 7: Statistical results of the anticipation time for the ML-based decision strategies compared
to the conventional R2-based strategy. The distribution was based on the five experiments using
Bl = 2 Mbps and Pl = 2%.

ML-based decision Mean (seconds) Standard deviation (seconds) Median (seconds)
ANN 199.756 48.4610 213.078
kNN 199.810 49.4990 213.789
SVM 199.807 48.6130 213.096

dependability and efficiency of networks in changing and ever-evolving conditions.
The SVM model has the lowest cumulative packet loss rate at 0.0287%, followed

by the ANN model at 0.0917% and the kNN model at 0.1269%. The conventional
rule-based strategies R1 and R2 have notably higher loss rates, indicating the
superiority of ML-driven decision-making. All three ML models (ANN, kNN, SVM)
have similar anticipation times, ranging from 52.6 to 199.8 seconds, demonstrating
consistent and timely decision-making.

In conclusion, the results of this study demonstrate that ML models are more
effective than rule-based strategies in terms of both cumulative packet loss rate
and anticipation time. The SVM model had the lowest loss rate, and all ML
models showed reliable and consistent anticipation times. These results highlight
the usefulness of ML-driven approaches in dynamic network environments.

Figure 14 demonstrates the mapping done by traditional decision makers based
on the rules (Equations 5 and 6) and those based on Machine Learning (intelligent
agent). The mapping shows when each decision maker changes the primary flow,
ϕp, from the best-effort slice, sbe, to the alternate slice, s2. ML techniques create a
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Figure 12: Distribution of the anticipation time for the ML-based decision strategies compared to
the conventional R1-based strategy. The distribution was based on the 5 experiments using Bl = 2
Mbps.

non-linear mapping based on the training data (Figures 14c, 14d, and 14e), while
the conventional decision maker creates a linear mapping as seen in 14a and 14b.
From the mappings, it can be concluded that ML has learned the behavior of the
tested flows and can generate a more personalized and appropriate result for the flow
switch between the slices, in this case, the shift of the primary flow, ϕp, from the
best-effort slice, sbe, to the alternate slice, s2.

6. Conclusions and Future Work

The findings of this study demonstrate the potential of machine learning-based
techniques in dynamic network settings, highlighting their capacity to improve
network traffic management and resource allocation. Using these models,
network administrators can create more adaptive and responsive network slicing
configurations, improving user experiences and operational effectiveness.

Exploring the potential of more sophisticated machine learning techniques and
ensemble methods could further enhance the accuracy and speed of the intelligent
decision-making agent. Additionally, adapting the machine learning-based system
for real-time use is a key next step, given the time constraints of network operations.
Finally, broadening the analysis to include more network performance metrics and
security considerations will help to create a more comprehensive understanding of
the effectiveness of network slicing.

30



Figure 13: Distribution of the anticipation time for the ML-based decision strategies compared
to the conventional R2-based strategy. The distribution was based on the five experiments using
Bl = 2 Mbps and Pl = 2%.
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