
Chapter

1
Content Steering: Leveraging the Computing Con-
tinuum to Support Adaptive Video Streaming

Roberto Rodrigues-Filho (UFSC), Eduardo S. Gama (UNICAMP), Marcio
Miranda Assis (UNICAMP), Roger Immich (UFRN), Edmundo Madeira
(UNICAMP), Luiz F. Bittencourt (UNICAMP)

Abstract

Video streaming has become one of the most used Internet applications nowadays, with
numerous leading technology companies competing for dominance in a market valued in
the billions. The delivery of high-quality streaming services requires strategic utilization
of computing resources near end-users. Emerging technologies like 6G and edge-cloud
continuum infrastructures are being explored to meet the growing demands. These tech-
nologies promise to enable fast and reliable data transfer for large data volumes, with
the edge-cloud continuum facilitating service placement mobility from central cloud data
centers to edge devices near users. However, managing seamless service mobility and pre-
cise computing resource allocation for quality services remains complex. In the light of
this, the zero-touch network concept was born. It eliminates the need for manual network
configuration and it is becoming popular in this context. Specifically, in video streaming,
the integration of the Content Steering architecture from the Dynamic Adaptive Stream-
ing over HTTP (DASH) protocol with container orchestration technologies could allow
for autonomous video streaming service placement across the computing continuum, re-
ducing human involvement and optimizing computing resource use. This short course
provides a hands-on experience with the latest technology in this domain, teaching par-
ticipants about cutting-edge architectures and tools for creating and managing adaptive
video streaming applications using the latest content steering architecture introduced in
the DASH protocol. Participants will build a small edge-cloud virtual and local testbed
to explore request steering strategies for video content across the computing continuum.
The course also addresses current challenges and future research opportunities in this
evolving field.



1.1. Introduction
Video streaming content is one of the most popular forms of content on the Internet nowa-
days, with big techs fighting for a market share in the growing video streaming application
market. This scenario has motivated the research and development of new techniques and
methods for supporting the demands for video content streaming in today’s networking
infrastructures.

Over the years, many technologies have been developed to better support the
growing demands for video streaming content [51, 33, 53]. 5G networks and the expected
6G networks are recent technologies supporting fast access to this type of content [65].
Furthermore, Zero-touch Network and Service Management [40] is being investigated to
provide closed-loop autonomous control over the configuration and optimization of such
infrastructures and enable them to support resource-intensive applications such as video
streaming.

Aligned with these technological advances to create and manage better infrastruc-
tures to support the demands of contemporary services, the Edge-cloud Continuum is an
emerging infrastructure that has gained popularity in recent years. These are hierarchical
infrastructures of highly heterogeneous devices that comprehend the end-user and IoT de-
vices (e.g., laptops, smartphones, drones, sensors, actuators, etc.), a supporting network
of edge/fog computing that brings the capability of cloud services closer to end users and
extends itself to cloud datacenters [10].

This resulting computing infrastructure enables and supports a plethora of appli-
cations that generate and process high volumes of data. It enables the strategic deploy-
ment and allocation of video streaming services, bringing them closer to end-users and
thereby minimizing network latency, as noted by Gama et al. [27]. Within this contin-
uum, services and data are strategically positioned to optimize the end-user experience,
particularly in scenarios marked by high user mobility and escalating demands for video
quality. Consequently, video streaming applications running in such infrastructures can
effectively avoid network congestion and other challenges, ensuring superior quality of
experience for end-users.

This chapter, therefore, is dedicated to providing an overview of the aforemen-
tioned technology and concepts, focusing on the edge-cloud continuum infrastructure as
the bedrock for supporting video streaming applications and tackling its associated chal-
lenges. We also provide an introduction and overview of the content steering architecture
defined in the Dynamic Adaptive Streaming over HTTP (DASH) [1] protocol as a core
mechanism for steering incoming video requests to appropriate services placed closer to
end users. Finally, we present the technologies that are often used at the platform level to
manage the platform’s underlying devices and support service placement.

Furthermore, this chapter presents a GitHub 1 repository with a fully function-
ing video streaming application that leverages the content steering architecture to better
exploit resources in the edge-cloud continuum. We provide all the necessary code for
the interested reader to perform experiments with video streaming and content steering
architecture in their machines.

1https://github.com/robertovrf/content-steering-tutorial

https://github.com/robertovrf/content-steering-tutorial


The remainder of this chapter is organized as follows: Sec. 1.3 presents a def-
inition of the Edge-cloud Continuum and discusses the challenges and opportunities of
such distributed infrastructures; Sec. 1.3 details the video streaming protocols and intro-
duces the content steering architecture; Sec. 1.4 introduces the main technologies and
tools used to manage clusters on the Edge-cloud continuum; Sec. 1.5 presents the avail-
able repository with a fully functioning video streaming application; Sec. 1.6 discusses
the challenges and research opportunities for supporting video streaming applications on
the edge-cloud continuum; and finally, Sec. 1.7 concludes the chapter.

1.2. Exploiting the Edge-cloud Continuum Resources
In this section, we introduce the concept of edge-cloud computing continuum and con-
textualize how new technologies are needed to exploit the resources in the computing
continuum enabled by such infrastructures. To conclude, we define how these infrastruc-
tures support video streaming applications and the challenges involved at the platform and
service level in exploiting the underlying resources available at the infrastructure level.

1.2.1. Defining the Edge-cloud Continuum

The Edge-cloud Continuum is a hierarchical and highly heterogeneous infrastructure with
devices spread throughout a wide geographical location. It ranges from centralized cloud
computing platforms located at the core of the network extending to end-user devices
located at the edge of the network, resulting in a computing continuum.

Bittencourt et al. [10] and Peng et al. [46] have described the computing contin-
uum stemming from the development of the fog/edge computing technology created to
aggregate and process data generated by the Internet of Things (IoT) devices. A different
and possible definition stems from the perspective of service placement from the cloud
platform to devices executing closer to end users. Fig 1.1 illustrates the Edge-cloud Con-
tinuum concept, giving an overview of the infrastructure and its main characteristics.

The hierarchical edge-cloud infrastructure is represented in the aforementioned
figure, where end-user devices are placed at the bottom of the hierarchy. These devices
have an important characteristic that mainly characterizes the computing continuum. End-
user devices often have constrained resources and small network latency [49]. Examples
of these devices are sensors, household appliances (e.g., smart TVs), laptops and desk-
top computers, smartphones, autonomous vehicles, drones, and many other computing
devices.

In the second layer of the infrastructure (LAYER 2..N), we have the edge com-
puting platform [56]. These are clusters of computers located in close proximity to end-
users. These clusters of computers have more available computing resources (e.g., CPU
and storage) than the user devices but add a bit more network latency. They are also often
used as the base for Content Delivery Networks (CDN) [69, 39, 12] due to their strategic
location close to the end user and thus presenting small network latency while presenting
reasonable and available computing resources. The infrastructure of servers presented as
the second layer can extend further as a set of clusters that connects one geographic region
to the cloud. This second layer can be extended to many layers up to the cloud.



EDGE DEVICES
DATA SOURCE

LAYER 1

LAYER 2

EDGE / FOG

LAYER N

...

CLOUD

Figure 1.1. Overview of Edge-Cloud Continuum Infrastructure.

The cloud computing platform is located at the top layer. At this layer, the in-
frastructure has the characteristic of having the illusion of unlimited computing resources
while maintaining a high network latency. At this level, CPU and storage-intensive ser-
vices are better accommodated, but due to the distance between end users and the services,
there is an added network latency in response time.

The resulting edge-cloud infrastructure has been explored to support services for
systems that range from machine learning-based, virtual and augmented reality applica-
tions to video streaming, autonomous vehicles and others in recent years. The growing
popularity of such infrastructures makes deploying and managing applications in such
infrastructures crucial for supporting contemporary systems.

The development of systems to exploit resources in the edge-cloud continuum
is marked with many challenges. These challenges mainly involve monitoring services
throughout the continuum, supporting strategic service and data placement across edge
and cloud to better exploit computing resources as the demands of the application and
users change over time.

1.2.2. Exploiting the Hierarchy of Computing Resources

In order to explore the computing continuum infrastructure, systems face many chal-
lenges [10, 41]. One of the main challenges is to equip software deployed on the contin-
uum to be able to move around the infrastructure to better exploit the available resources.

This is a challenging task that involves anticipating the resource demands of ap-



plications and the unexpected changes of those needs as changes occur in the operating
environment. For instance, if the systems’ workload volume suddenly spikes or the re-
sources suddenly disconnect from the network, the executing software is required to adapt
in order to properly exploit the underlying resources.

Moreover, besides adapting in the face of unexpected changes, software executing
on the continuum should also adapt in anticipation of events. For instance, in a scenario
where users are moving (i.e., user mobility) we often can apply forecasting strategies to
predetermine the route where the users may take [2]. Especially if we consider a user’s
daily routine. In such cases, we can anticipate where to place services and data to better
exploit resources in the continuum to increase users’ Quality of Experience (QoE) as they
move.

In general, building applications to exploit the resources in an edge-cloud contin-
uum infrastructure involves many important challenges. We now present the main ones
and discuss possible directions for future research. The main challenges we present in
this section are the actual challenge of managing and properly allocating resources in the
continuum, the challenge of abstracting the complexity of programming and deploying
services capable of moving from cloud to edge to end-user devices and vice-versa, and
finally, the challenges of monitoring services across the continuum.

1.2.2.1. Resource Allocation and Optimization

Exploiting computing resources in the continuum is crucial for optimizing systems per-
formance. Although resource allocation is a classical distributed systems problem [30], it
gains new dimensions when considering the scale of edge-cloud platforms.

The resource allocation problem usually requires schedulers that implement mod-
els to receive the set of available resources as input, and the application demands and out-
puts a plan for when and where to execute the application. In the edge-cloud continuum
setting, resource allocation becomes not only difficult due to the number of constraints
and requirements from applications and the sheer number of heterogeneous resource ca-
pabilities but also due to the volatility of its operating environment.

In the edge-cloud continuum, it is not sufficient to have schedulers implementing
fixed decision-making models, but instead to have models that can adapt and evolve to
consider changes in the operating environment. Theses changes includes the addition and
removal of computing resources, end user mobility, incoming workload pattern changes,
and so on.

Furthermore, to tackle the scalability in terms of the number of devices present
in such deployment environments, we divide resource allocation tasks among controllers.
This allows schedulers to act on a specific set of devices, considering requirements and
constraints from a specific set of services, reducing the complexity of the model. This
leads to a problem of where to place such controllers and how they should cooperate to
optimize the global system’s goal instead of optimizing isolated parts of the system.

Relevant strategies have been discussed in the literature to tackle the volatility
issue when making resource allocation decisions in volatile environments [60, 15]. More-



over, different coordinating strategies have been explored to make joint decisions in mul-
tiple controllers over distributed infrastructures [19, 11, 45].

1.2.2.2. Service and Data Placement

Placing services and data on the different devices that compose the edge-cloud continuum
is essential to maintaining a high Quality of Service (QoS) for certain systems. Some
applications require services that are commonly executed on the cloud to be moved and
executed at the edge closer to users or move services from end-user devices to the cloud
when the service requires more resources.

Thus, strategically placing services and data in specific parts of the continuum is
an important task to optimize applications running on the continuum. Regarding service
mobility, many supporting technologies have gained popularity. Container technologies
and container orchestration technologies provide a platform to enable general adaptation,
including mobility. For instance, services can be wrapped inside Docker 2 containers and
deployed in any cluster on the continuum managed by Kubernetes 3.

Furthermore, it is possible to see a trend in the industry to create stateless ser-
vices to facilitate the exploitation of containers and container orchestration as a support-
ing platform for adaptation. A stateless service is a component that retains no infor-
mation on previous requests or users’ sessions and thus can be moved and replicated
throughout the infrastructure with no changes to its implementation. Due to being state-
less and self-contained, microservice-based architectures [31, 25, 26] and Function-as-a-
Service [55, 57] have gained popularity in contemporary software systems and are widely
used in the edge-cloud continuum.

However, not every service can be developed with no state. Many services require
access to state information to compose a functioning system. In this context, engineers
carefully design services that carry no state but are highly dependent on data stored in a
cloud database. In these settings, the service is free to exploit the underlying platform to
be freely replicated without maintaining state consistency across its replicas, but it suffers
from performance degradation when placed far from the database on which it depends.

These data-dependent services can still be created as microservices or using a
programming model such as Function-as-a-Service. They can also still leverage the
container-orchestration platform underneath it to be placed in different devices across
the distributed infrastructure. In a setting where the edge and cloud seamlessly integrate,
we observe a significant decline in performance when these services are deployed on an
edge node to facilitate rapid access from user devices. This is because the service keeps
constantly accessing (updating or fetching) data in the cloud, adding network latency to
transfer data to/from the cloud, defeating the purpose of placing the service closer to end
users.

As a response to this problem, recent research has focused on the implementation
of the concept now known as stateful Function-as-a-service (FaaS) [48]. Using this, the

2Docker: Container Technology - https://docker.com
3Kuberbetes: Container Orchestrator - https://kubernetes.io

https://docker.com
https://kubernetes.io


functions can move to the edge, and access replicated data that is now copied to the edge.
Likewise, similar strategies also support data access on the edge to microservice-based
solutions [50].

1.2.2.3. Monitoring in the Edge-Cloud Continuum

In order to make precise service placement decisions and allocate resources on the contin-
uum, a key challenge is to collect the correct metric based on which placement decisions
will be based. In an ever-changing environment such as the edge-cloud continuum, an
important task is monitoring the correct metric at the correct location and reporting the
collected information to the decision-making component in time.

The edge-cloud continuum operating environment demands a highly adaptive and
flexible solution for monitoring metrics. This is due to the constant changes that affect dif-
ferent aspects of the environment. Changes in the workload pattern and volume dictated
by the way users interact with the system, changes in the devices on the infrastructure –
new devices are integrated into the platform or functioning devices become unavailable,
changes regarding the mobility of users, and so on.

These changes require the system to accommodate the new operating environment
conditions to maintain a high-quality user experience. As the system changes, the compo-
nents responsible for monitoring the system must change accordingly. For instance, if ser-
vices are replicated or placed in different parts of the infrastructure, the monitoring system
should adapt accordingly to collect data to support further decision-making. Therefore,
edge-cloud continuum infrastructures require monitoring solutions that can adapt to the
location where they collect metrics, the type of metric they collect, and how they process
and make the collected information available to the decision-making component.

Adaptive monitoring solutions have been the focus of many research over the
years [22, 62, 70, 4]. These research papers explore the requirements for creating adaptive
monitoring systems, the mechanisms to support such adaptation, and the dimensions of
the monitoring that need adaptation according to the scenario and environment in which
the system is deployed. However, few initiatives tackle the end-to-end engineering chal-
lenges for deploying and managing adaptive monitoring solutions at the scale of the edge-
cloud continuum, the most relevant presented by Colombo et al. [16].

Despite the few initiatives exploring an end-to-end solution, many technologies
have been developed for monitoring services and data in the edge-cloud continuum. The
review conducted by Verginadis [66] presents an interesting overview of many of such
technologies describing Prometheus 4, Datadog 5, Zabbix 6 and Elastic Stack 7.

In the end, besides the scale on which these monitoring solutions are required
to operate when deployed over edge-cloud continuum infrastructures, these tools should
also consider the sheer levels of heterogeneity for monitoring the highly diverse devices

4

5https://www.datadoghq.
6https://www.zabbix.com.
7https://www.elastic.co/elastic-stack

https://www.datadoghq
https://www.zabbix.com
https://www.elastic.co/elastic-stack


that compose the continuum. That entails the application of different techniques to probe
different metrics from different devices.

1.2.3. Computing Resource Demands for Video Streaming Applications

In the remainder of this chapter, we will focus on exploring service placement across the
edge-cloud continuum to support video streaming applications. As the foundation of the
explored approach, we leverage the Content Steering [1] architecture to exploit resources
on an edge-cloud continuum infrastructure for video streaming.

Particularly for video streaming applications, the edge-cloud continuum infras-
tructure offers a great range of computing resources to accommodate the ever-increasing
demands of end users [28]. Considering the data volume, Internet connection quality, and
mobility of end users, systems are required to adapt to new operating conditions.

Current architectures to support video streaming solutions consider the placement
of video content in CDNs. This data placement closer to where the end users are con-
nected reduces the network latency for the users to access the desired content. This helps
increase the quality of experience for the end user. Many video streaming solutions use
multi-CDNs hosting copies of video content and have user players directly fetch video
content from specific CDNs closer to the end user using specific URLs.

HSL 8 and DASH-IF 9 [58] have proposed and implemented a content steering ar-
chitecture to determine which CDN the video player is fetching data during video playing.
This gives the player more flexibility in adapting where the video is being fetched. Par-
ticularly in scenarios with user mobility or when the number of users increases, content
steering can assist in balancing the request load from one location to another, reducing
network congestion while increasing the quality of experience for end users.

Content-steering architectures are very useful when considering the placement of
video streaming services across the continuum. Over the next sections, we discuss how
to leverage such architecture to steer video content requests to specific services placed
throughout the continuum. This, in turn, opens the possibility for a more flexible and
adaptive infrastructure capable of handling video streaming to millions of users.

Finally, edge-cloud continuum infrastructures are also ideal for scaling content-
steering solutions, as we can place different steering controllers across the infrastructure.
This strategic placement of content steering controllers can act on a specific network
region, reducing the number of users handled per controller and allowing this solution to
scale drastically to accommodate millions of users worldwide.

1.3. Video Streaming Architecture Overview
This section investigates the mechanisms and structures that support video data transmis-
sion within network infrastructures. Section 1.3.1 presents a vision from encoding video
content into digital formats to optimizing data packets for continuous delivery. Each com-
ponent within these architectures ensures a seamless viewing experience for end users. In
Section 1.3.2, we designed an architecture for Content Steering Services. Initially, a cen-

8HTTP Live Streaming (RFC 8216)
9Dynamic Adaptive Streaming over HTTP Industry Forum



tralized steering server orchestrates operations, followed by an Edge-Cloud Continuum
approach. The service’s main objective is to show users’ directness to a video streaming
service in real-time, balancing the load and improving scalability.

1.3.1. Adaptive Video Streaming

Although traditional video delivery methods have their merits, they face certain limita-
tions when it comes to connection-oriented protocols like Real-Time Messaging Protocol
(RTMP/TCP) [64] or Real-time Transport Protocol (RTP/UDP) [?] for connectionless
protocols. Typically, the media server pushes the media to the client in these protocols.
However, these methods require help scaling the infrastructure, depending on specific
vendors, and having high maintenance costs necessitating complex and expensive servers.
Over time, new technologies have emerged to overcome these limitations and enhance
video streaming [8]. One of the most popular solutions is HTTP Adaptive Streaming
(HAS), which offers several benefits over traditional methods. Adaptive streaming is a dy-
namic video delivery technique that adjusts the video playback quality in real time based
on the user’s network conditions, with the primary goal of providing seamless viewing
playback by adapting to changes in available bandwidth.

Dynamic Adaptive Streaming over HTTP (DASH) [59] and Apple’s HTTP Live
Streaming (HLS) [44] are two of the most popular HAS solutions in use today. These
methods, which handle over half of all video streams, are particularly prevalent in on-
demand and live streaming platforms. Figure 1.2 depicts the basic workflow concept of
a HAS service for video streaming involves the video source transmitting the raw video
data to the HAS servers, which then encode it to produce multiple representations of a
single video.

Encoder

Video
Source

HAS server

RF,1

RF,2

RF,M

Video F

HAS Players

RF,1

RF,2

RF,M

Video F

Request

Response

Internet

Bandwidth

Figure 1.2. Overview of typical HTTP adaptive streaming server. The server pro-
vides the media segments in different representations. The client requests media
segments in desired representations and measurement of throughput and buffer
fill level.

In the context of HAS, videos are divided into short segments, typically lasting
one to ten seconds. The encoder then encodes each segment into different versions with
varying resolutions or bitrates. The Media Presentation Description (MPD) manifest file



keeps track of the storage location of these segments on a server. When a user watches a
video, their HAS player utilizes this information, internet speed, and device capabilities
to select the best version to stream. This process of segmentation and encoding is a
key aspect of HAS, enabling it to adapt to the user’s network conditions and provide a
seamless viewing experience.

Different coding formats can encode the video, such as Advanced Video Coding
(AVC), High Efficiency Video Coding (HEVC), Versatile Video Coding (VVC), VP9,
and AOMedia Video 1 (AV1). These codecs generate multiple encoded representations
of the video at different bitrates, catering to diverse network bandwidths. Clients re-
questing the video content can seamlessly download segments from these encoded rep-
resentations. The client-side player intelligently selects the appropriate bitrate based on
real time network conditions and dynamically switches between representations to ensure
smooth playback. The downloaded segments are then concatenated within the playback
buffer and processed by a standard decoder for video rendering. This process ensures a
conforming bitstream compatible with decoders on various client devices.

AVC, commonly known as H.264, is a foundational video compression standard
developed by the ITU-T Video Coding Experts Group (VCEG) and the ISO/IEC Mov-
ing Picture Experts Group (MPEG). Its widespread adoption owes to its versatility and
compatibility across various platforms. However, despite its widespread use, AVC must
improve to achieve optimal compression efficiency for high-resolution and high-quality
video content.

HEVC, also known as H.265, emerges as the successor to AVC, aiming to address
its predecessor’s shortcomings and meet the increasing demand for higher quality video
at lower bitrates. Developed by the same organizations responsible for AVC, HEVC in-
troduces advanced encoding techniques such as larger block sizes, improved motion com-
pensation, and more efficient entropy coding. Consequently, HEVC offers substantially
improved compression efficiency, making it an attractive choice for various applications,
including ultra-high-definition television (UHDTV), video streaming, and mobile video.
Despite its advantages, HEVC adoption has been hindered by licensing issues, particu-
larly in terms of royalties.

VP9 and AV1 are open and royalty-free video compression formats. They offer
comparable compression efficiency to HEVC while remaining accessible and free. As a
result, open-source implementations find widespread use in web browsers, online video
platforms, and streaming services. However, some devices and platforms may limit adop-
tion due to the need for more hardware support.

VVC, known as H.266, emerges as the latest generation video compression stan-
dard. VVC represents a significant leap in compression efficiency compared to previous
standards, offering enhanced support for high-resolution video, HDR content, and immer-
sive multimedia experiences. While VVC demonstrates remarkable compression gains,
its adoption may face challenges due to licensing issues and the need for hardware sup-
port. Despite these challenges, VVC holds promise for applications requiring the highest
compression efficiency and quality in video delivery.



1.3.1.1. Application-Network Interaction in Video Streaming

Regarding the HAS paradigm, video streaming applications are traditionally built upon
the Transmission Control Protocol (TCP) [21]. Within this paradigm, application-layer
Adaptive Bitrate (ABR) logic operates independently from the transport layer. While
ABR logic dynamically adjusts streaming quality based on available bandwidth, TCP
congestion control regulates data flow to avoid network congestion. However, the lack of
coordination between these mechanisms often results in inefficiencies and concerns about
fairness. ABR logic, which operates independently at the application layer, has a ten-
dency to adjust the streaming quality too frequently without taking into account the net-
work conditions monitored by TCP congestion control. This can lead to unfair bandwidth
allocation among different sessions and can also cause instability in network utilization.

Additionally, uncoordinated adjustments by both mechanisms can exacerbate con-
gestion issues instead of alleviating them [47]. To tackle these difficulties, an integrated
approach is necessary wherein ABR logic and TCP congestion control cooperate to opti-
mize resource allocation and improve network stability. By synchronizing these control
loops and promoting communication between layers, it becomes possible to mitigate in-
efficiencies and ensure a fair bandwidth distribution among streaming sessions, thereby
enhancing an overall users’ QoE [42].

The emergence of the Quick UDP Internet Connections (QUIC) transport pro-
tocol, as presented in [34], has opened up new avenues for improving the interaction
between video streaming applications and transport functionalities. While certain studies
advocate for QUIC as a promising solution for video streaming, others engage in debates
comparing it to TCP [54]. Furthermore, concerted efforts have been made to enhance
QUIC’s support tailored to video streaming applications.

A recent study [13] has evaluated QUIC’s performance in the context of real time
video streaming and found instances where QUIC exhibited excessive reliability, lead-
ing to suboptimal performance compared to TCP. QUIC performs better than the TCP
protocol, where low-throughput use cases are necessary. However, in some cases, there
are degradations compared to TCP and previous generations of HTTP, where the network
bandwidth is poor or there is a variation in the bandwidth, as is typically experienced
during mobility. The dynamics of application-network interaction for video streaming,
particularly concerning integrating emerging transport protocols like QUIC, represent fer-
tile ground for future investigation. Understanding these interactions and developing in-
tegrated solutions tailored to the specific needs of video streaming applications present
exciting avenues for future research and innovation in this domain.

1.3.1.2. Bitrate Adaptive Schemes

Within the domain of client-server multimedia delivery, Bitrate Adaptation Schemes can
be classified into client, server(s), network, and mixed-based adaptation. However, in this
work, we limit our scope to client-based adaptation, representing most approaches [8].
These schemes delegate the client player to autonomously select the optimal video seg-
ment representation based on the network conditions. This selection process hinges on



one or more metrics, with available bandwidth and playback buffer health being the most
common. Client-based adaptation schemes aim to achieve a seamless viewing experience
by dynamically adjusting the bitrate of the streamed video. They strive to balance main-
taining high video quality with mitigating the effects of fluctuating bandwidth, thereby
preventing buffering stalls and ensuring smooth playback.

Within the domain of client-server multimedia delivery, Bitrate Adaptation Schemes
can be classified into client, server(s), network, and mixed-based adaptation. However,
this work limits our scope to client-based adaptation, representing most approaches [8].
These schemes delegate the client player to autonomously select the optimal video seg-
ment representation based on the network conditions. This selection process hinges on
one or more metrics, with available bandwidth and playback buffer health being the most
common. Client-based adaptation schemes aim to achieve a seamless viewing experience
by dynamically adjusting the bitrate of the streamed video. They strive to balance main-
taining high video quality with mitigating the effects of fluctuating bandwidth, thereby
preventing buffering stalls and ensuring smooth playback.

In general, available bandwidth- and buffer-based adaptation suffers from poor
QoE due to unreliable bandwidth estimation methods and long-term bandwidth fluctua-
tions. Meanwhile, in mixed-based adaptation, the client selects bitrate using bandwidth,
buffer occupancy, segment size, and duration metrics. Thus, many studies can develop
complex algorithms to select the following segments. Among the studies in mixed-based
adaptation, we highlight some studies that have adopted predictive strategies based on the
past and current states of the player context as well as the device context to determine
the next segment’s bitrate [5, 38]. Meanwhile, in Bentaleb et al. [6], a Game Theory
Adaptive bitrate scheme was developed. This technique employs a cooperative game in
coalition form, enabling the clients to reach a consensus on the ABR selection process by
formulating it as a bargaining process. Consequently, this approach enhances the viewer’s
QoE and ensures video stability.

Another movement noted in academia is the increasing popularity of Learning-
based schemes, which benefit from the latest advancements in machine learning tech-
niques [32, 68, 7]. Learning-based schemes can derive effective strategies without mak-
ing any assumptions about the environment. However, their performance heavily depends
on the quality of the training data. Since network environments can be diverse, and their
dynamics change over time, predicting future states accurately requires more effort. Ad-
ditionally, implementing learning-based schemes on constrained devices is impractical
due to their high storage and computational costs.

1.3.2. Content Steering Server-based Design Architecture

Designing a video streaming architecture requires a distinct approach, especially when
considering the involvement of multiple content delivery networks (CDNs), each oper-
ating independently with its multimedia contents. CDNs currently play a vital role in
delivering media content to end users. They can replicate their content across numerous
locations or deploy distributed servers to retrieve content from a central source. Such fea-
tures imply that designing a video streaming architecture entails thorough planning and
coordination.



However, CDNs have limitations when it comes to the network edge. Some CDNs
may only provide coverage in some relevant regions, while others may face internal ca-
pacity constraints. Moreover, some CDNs may need more caches to support the effective
delivery of extensive video collections to the target audience. As a result, some works
are utilizing dynamic “CDN switching” technologies to adjust content delivery paths for
streaming dynamically.

To address the growing demand for streaming services, the technical communities
responsible for developing prominent streaming standards have devised a system where
every end user regularly contacts a central manager, the content steering server. End users
receive instructions on which CDN to retrieve the content during each interaction. The
steering server implements a load balancing strategy based on user feedback and collected
global metrics. This strategy can balance long-term business logic and short-term QoE
maximization.

In order to explain how the Content Steering protocol mechanism operates, we
provide the manifest files for both HLS and DASH locations for CDNs and the Steering
Server during a streaming session. We will use the manifest files in 1.1 and 1.2. In
these examples, we will use https://cdn.com as the CDN server and https://
steeringserver.com as the content steering server. The examples here demonstrate
only a single CDN server, although multiple tags can implement it.

1 #EXTM3U
2 #EXT-X-CONTENT-STEERING:SERVER-URI="https://steeringserver.com"
3 #EXT-X-STREAM-INF:BANDWIDTH=1280000,PATHWAY-ID="cdn"
4 https://cdn.com/hi/video.m3u8
5 #EXT-X-STREAM-INF:BANDWIDTH=1280000,PATHWAY-ID="cdn-2"
6 https://cdn-2.com/hi/video.m3u8

Listing 1.1. HLS manifest

2 <BaseURL serviceLocation="cdn">https://cdn.com/</BaseURL>
3 <BaseURL serviceLocation="cdn-2">https://cdn-2.com/</BaseURL>
4 <ContentSteering defaultServiceLocation="cdn" queryBeforeStart="true">
5 https://steeringserver.com
6 </ContentSteering>

Listing 1.2. HLS manifest

The manifest file received by the user also contains metadata from steering ele-
ments. HLS/DASH streaming players seamlessly detect the presence of steering servers
and initiate communication with them throughout the streaming session. They send HTTP
GET requests to the specified steering server indicated in the manifest, potentially incor-
porating additional parameters, such as throughput and the pathway utilized by the user.

In this example, the response contains two servers identified by the PATHWAY-
PRIORITY array. These servers are capable of providing the requested video segments.
It prioritizes the EdgeCache server, while the CDN server has a lower priority. The speci-
fications of the EdgeCache are detailed in the PATHWAY-CLONES with an original CDN
base, and the edge node address rules are given by the URI-REPLACEMENT, with the
host replaced by a URL in HOST.

https://cdn.com
https://steeringserver.com
https://steeringserver.com


1 {
2 "VERSION": 1,
3 "TTL": 10,
4 "RELOAD-URI": "https://steeringserver.com?session=abc",
5 "PATHWAY-PRIORITY": ["EdgeCache", "CDN", "CDN-2],
6 "PATHWAY-CLONES": [
7 {
8 "BASE-ID": "CDN",
9 "ID": "EdgeCache",

10 "URI-REPLACEMENT": {
11 "HOST": "https://edgecacheserver.com",
12 }
13 },
14 {
15 "BASE-ID": "CDN",
16 "ID": "EdgeCache",
17 "URI-REPLACEMENT": {
18 "HOST": "https://edgecacheserver.com",
19 }
20 }
21 ]
22 }

Listing 1.3. Json response.

The client receives these instructions with a Time-To-Live (TTL) of 10 seconds,
indicating the response interval for requesting the next update. Reducing response time is
crucial for enabling many additional system utilities. Thus, when TTL becomes shorter
than the size of the player’s buffer, this automatically enables QoE optimizations, such as
buffering prevention or allowing clients to use higher-quality streams.

This callback mechanism ensures timely adjustments to the streaming pathways
based on network conditions or nodes’ availability. Shorter response times are critical for
different network congestion adaptations, such as fault-tolerant, mobility, and many other
applications.

This syntax for steering server responses and client-server interactions remains
consistent for both HLS and DASH systems. Consequently, a single server can manage
content steering operations for both protocols. For detailed specifications regarding the
response format within the Steering response, refer to the guidelines outlined in [1].

Within this multimedia service inside the Edge-Cloud Continuum, the architecture
of video streaming systems emerges as a dynamic ecosystem comprising different compo-
nents. These components include client-side elements, CDNs, edge cache servers, origin
servers, and steering servers. Together, they form a network of agents working seam-
lessly to ensure efficient content delivery. Each stage in this multimedia delivery step
significantly influences end users’ QoE. The concept of Content Steering on the Edge-
Cloud Continuum addresses the dynamism of edge computing environments and enables
applications to exploit edge-cloud computing resources better. In this Section, our sur-
vey focuses on the key aspects of the distribution process, firstly, in a centralized steering
server in the cloud. Then, we integrated the service with the Edge-Cloud Continuum.



1.3.2.1. Centralized Steering Server-based Design

In a Centralized Steering Server-based design, a single entity executes the load balancing
strategy in content delivery. This design’s workflow typically involves achieving some
beneficial effect. For example, it may perform fault tolerance control through the video
streaming servers, increasing the system’s reliability. It may also perform CDN load
balancing, enabling broader distribution.

We can note some limitations. The first one is scalability. As the number of clients
and concurrent requests increases, the centralized steering server may encounter scalabil-
ity challenges. Managing a large volume of client requests and dynamically directing
them to the optimal CDN in real time requires substantial computational resources and
network bandwidth. Scaling up the steering server infrastructure to accommodate grow-
ing demand can take time and effort. Let us assume, for example, that we have an event
watched by 1M of concurrent viewers. Then, with 10 seconds TTL, the steering server
must process at least 100K requests per second. That is a high number, conventional
hardware, and some non-trivial logic required for deriving each steering response; it may
easily overload a single server or a cluster of servers.

Maintaining and operating a centralized steering server infrastructure incurs sig-
nificant ongoing costs. These costs include hardware acquisition, network infrastructure
expenses, software development, and maintenance. Such expenses can be considerable,
as operating costs can escalate rapidly as the system scales to accommodate more clients
and higher traffic volumes.

A prolonged TTL diminishes the usefulness and efficiency of content steering
mechanisms. Although a long TTL may be suitable for basic load balancing and CDN
management, more is needed for other critical objectives such as QoS and QoE opti-
mizations. It may also compromise the speed of fault tolerance responses. For example,
when clients experience buffering issues during content delivery, redirecting them to an
alternative CDN after a long delay may not effectively mitigate the buffering problem.

1.3.2.2. Content Steering at the Edge-Cloud Continuum

Leveraging edge and cloud resources allows for greater scalability and flexibility in con-
tent delivery infrastructure. Edge servers can handle localized spikes in demand and de-
liver content closer to end-users, while cloud resources provide additional capacity and
support for global content distribution. Overall, Content Steering at the Edge-Cloud Con-
tinuum offers speed, scalability, reliability, and personalization, enabling organizations to
deliver content more efficiently and effectively to end users worldwide.

Figure 1.3 illustrates the proposed Edge-Cloud Steering implementation. The de-
sign consists of two stages. In the first stage, the cloud steering master has its load balanc-
ing strategy given the list of CDN servers. They also decide which regional edge steering
server should take responsibility for the user in the next TTL turn. Once a request ar-
rives, the master node sends the response based on the list of CDN and edge steering
server URLs. In the second stage, the system makes subsequent steering decisions at
TTL intervals for each streaming session. Edge computing platforms implement all oper-



HAS Players

CDN 2

Content
Provider

CDN 1

Regional
Edge 2

Regional
Edge 1

Regional
Edge 3

...

R1,1

R1,2

R1,M

Video 1

RF,1

RF,2

RF,M

Video F

F video files, 
Each has M different representations 

Steering
Master

Steering
Servers

V
id

eo
 F

B
an

dw
id

th

Time

Figure 1.3. Overview of Content Steering at the Edge-Cloud Continuum: Direct-
ing user requests to edge-based content delivery systems, leveraging real-time
network conditions and user proximity.

ations. This approach shows great potential in addressing the limitations of a centralized
approach [24, 20]:

• Scalability: This implementation achieves scalability levels comparable to CDNs
or platforms responsible for executing edge functions. By distributing processing
tasks across multiple edge points, it can seamlessly accommodate growing demands
without compromising performance;

• Cost-Efficient Deployment: Deploying this implementation becomes significantly
more economical due to reduced bandwidth and per-request costs at CDNs or edge
platforms compared to the higher egress traffic costs associated with cloud plat-
forms. This cost-effectiveness makes it a more viable option for organizations seek-
ing efficient content delivery solutions;

• Enhanced Responsiveness: The two-phase implementation enhances responsive-
ness by enabling lower TTL between clients and servers. This reduced latency fa-
cilitates quicker interactions between users and content servers, leading to smoother
content delivery experiences.

Reducing response times is paramount for unlocking additional functionalities
within the system. When TTL values become shorter than the size of the player’s buffer
(e.g., 1-30 seconds), it automatically enables QoS and QoE optimizations. For instance,
it helps prevent buffering issues and allows clients to access higher quality streams seam-
lessly. Moreover, shorter response times are essential for supporting mobile applications,
disaster recovery scenarios, and various other use cases requiring swift and efficient con-
tent delivery.



1.4. Managing Clusters on the Edge-cloud Continuum
In IoT and Edge Computing environments, resources are limited and heterogeneous.
Choosing technologies that provide the best experience in relation to the orchestration
and execution of the proposed services is one of the main points of attention in this sce-
nario. This section will cover the technologies used to accomplish this in the context of
this short course, highlighting the container approach, its orchestration through Kuber-
netes and how both were used to implement the Edge Computing infrastructure used.

1.4.1. Introducing Containers

Containerization is a lightweight virtualization technology that enables the encapsulation
of services and applications in small standard units. Unlike traditional machine virtual-
ization, where a virtual machine is instantiated with the entire operating system, libraries
and other dependencies, the container encompasses only the application (or service) of
interest and the dependencies necessary for its execution. Scalability is enhanced using
this approach, as containers consume less resources and generate lower overheads when
compared to virtual machines. Each container is defined from an image, built on a stacked
layer structure, where each change in the subsequent layer creates a new layer. Except for
the topmost layer, all the others are read-only and can be reused to compose other images.
Containers share the same kernel and isolate application processes from the rest of the
operating system.

In this context, Docker10, CoreOS and other interested parties in the container
industry established the Open Container Initiative (OCI) with the purpose of defining
standard specifications for container technologies. Currently, OCI proposes 3 standards:
runtime, image and container distribution. Therefore, OCI allows compatibility among
all artifacts produced in compliance with the proposed standards. Among the use cases
related to comply with OCI, we highlight Internet of Things and Edge Computing, which
are closely related to this short course.

The container technology stands out for offering distinguished characteristics in
relation to other virtualization approaches, namely: portability, volatility, and resource
consumption. Portability is evident in the way containers are built, as the application is
encapsulated with all the dependencies necessary for its execution, a container will have
the same execution behavior in any environment in which it is provisioned. Regarding
volatility, due to the ephemeral nature of the container, all possible data persistence is
carried outside the container. Therefore, in case of execution issues related to a failed
container, it is not necessary to carry out debugging to identify the fundamental prob-
lem affecting its functioning, but rather to destroy it and create a new instance without
the need to take care of application data, which can be costly. Finally, as previously de-
scribed, as it is an environment with a small number of additional processes and services,
as opposed to virtual machines, the container consumes fewer resources, optimizing the
physical resources available on the host system.

Fig.1.4 shows the main differences between containers in relation to virtualization
based on virtual machines.

10Docker is a container platform: https://www.docker.com/

https://www.docker.com/


Figure 1.4. Containers vs Virtualization based on Virtual Machines.

It is important to note that running containers also require a runtime, the most fa-
mous of which is Docker. Container runtimes can be classified into two types: low-level
and high-level. Low-level runtimes adhere to OCI specifications. Among them are runC,
crun, runhcs, and containerd. On the other hand, there are runtimes that have an extra
layer, because they present more functionalities than the minimum enough for just run-
ning containers. Examples of these high-level runtimes are Docker, Podman and CRI-O.
For a runtime to execute an image of interest, a container image should be passed to the
runtime. In the context of containers, images are stored in repositories that are referenced
to the runtime at execution time. These repositories, also known as Registries, are well-
structured and can be public or private. In the first case, the stored images are open to the
public. In the second case, the images are made available to a specific audience, for exam-
ple, one company employee; therefore, most of the time, they are available only through
access credentials. Container image repository implementations include Red Hat’s Har-
bor and Quay.

Containers enable the creation of a new application development paradigm based
on microservices. This paradigm enables splitting application components into a number
of relatively small services that, unlike paradigms with monolithic approaches, address
the architecture and organization of applications by dividing the whole implementation
into small, well-defined, and concise units according to the functions they perform in the
application. The microservices communication is performed through well-defined APIs.



1.4.2. Managing Containers Lifecycle with Container Orchestrators

Containers are virtualized environments that offer several possibilities for use. Even
though they offer a set of positive characteristics, they also bring challenges in managing
their entire lifecycle in a simple way. In addition, containers alone do not deliver all the
properties expected in the micro-services paradigm, being just one component that sup-
ports the paradigm. Properties such as elasticity and resilience are not delivered by con-
tainer runtimes alone. To fill these gaps, orchestrators emerged, such as Docker Swarm,
for example, to support containers lifecycle management (creation, replicas, garbage col-
lector, removal of containers, etc.), among the orchestrators. A container orchestrator
that has established itself as a market standard due to its versatility and effectiveness is
Kubernetes11.

The Kubernetes container orchestrator is an open-source project hosted by the
Cloud Native Computing Foundation (CNCF). It is a well-documented orchestrator with
an active community of developers and a growing set of funding entities (IBM, Google,
Oracle, among others). There are currently several Kubernetes distributions, in which
companies insert a set of functionalities into Vanilla Kubernetes (community version
hosted at CNCF), and deliver them to interested parties through usage subscriptions. The
main available Kubernetes distributions are Red Hat, Rancher, and VMware Tanzu.

When it comes to deployment architectures, Kubernetes is a highly distributed and
flexible orchestrator. Composed of Nodes, it allows the orchestrator deployment to have
specialized Nodes, making the organization as complex as needed; on the other hand, the
same Kubernetes can be instantiated in an all-in approach – with just one Node assuming
all responsibilities for orchestrating the environment. Among the types of Nodes provided
by Kubernetes, two are considered fundamental and are present in most deployment ar-
chitectures, which are the Worker Nodes and Control Nodes. Worker Nodes contain the
computing resources that will be consumed by user workloads, while Control Nodes have
the components related to the control of the entire environment and the orchestration ser-
vices themselves (scheduling, for example). An interesting feature of Kubernetes is that
even if the Control Nodes become unavailable, the workloads running on the Worker
Nodes will continue to be active (even though with some restrictions). As it is organized
into Nodes, the insertion of new Nodes, both workers (more resources) and Control, is a
trivial task.

In the context of the workloads, unlike simple container runtime environments,
in Kubernetes the smallest processing unit is a POD. A POD comprises one or more
containers and a set of metadata that defines parameters related to the containers them-
selves (labels, the quantity of replicas, the quantity of resources required for execution,
etc.), as well as the orchestrator’s behavior over the POD. Considering the microservices
paradigm, the POD corresponds to a microservice. A notable feature of PODs is that all
containers in a POD share the same address space, so they can communicate through the
localhost. Furthermore, this behavior allows the creation of some design patterns: the
sidecar. This pattern allows the user to provide an auxiliary container that complements
or adapts certain functionalities of the main container (the microservice). For example,
given a microservice that logs the events of its execution to syslog, but the log aggregation

11Kubernetes is a container-orchestrator: https://kubernetes.io/

https://kubernetes.io/


software used does not understand this protocol, in this scenario it would be possible to
implement a sidecar to receive the syslog protocol on localhost, translating the protocol
and sending it to the observability environment.

Kubernetes approaches the maintenance of the desirable state and the theory of
controls as the core of its activities on PODs. Through these two approaches, Kubernetes,
in control cycles (reconciliation cycle), checks whether the PODs running in the envi-
ronment are in the desirable state. The respective desired states of each POD are defined
through a structure called replica set. This object allows the indication of how many repli-
cas of the POD of interest should exist at a given time. For example, if a replica set of
a POD A is indicated as 2, two instances of POD A will be running. If a problem occurs
and one of the replicas becomes unavailable, in the next reconciliation cycle a new POD
A is automatically instantiated. In addition to the replica set, there are other objects that
are defined around the POD and allow controlling the behavior regarding the deployment
and execution of PODs, namely Deployment, StatefulSet, and DaemonSet. All of them
use the Replica Set in their operation. Deployment operates mainly at the replica layer,
and it can indicate the volumes used, number of POD replicas, among other properties. In
addition to the properties and resources defined in Deployment, StatefulSet addresses a
shortcoming in container environments, namely ephemerality. In StatefulSet, Kubernetes
persists both network and volume address (resource location). Therefore, if a StatefulSet
POD becomes unavailable, when Kubernetes instantiates it again (reconciliation cycle),
it returns to using the network and volumes used by the POD that became unavailable.
Finally, the Daemonset also offers the properties and resources defined in Deployment.
Added to this, this object guarantees that each Kubernetes Node will receive at least one
instance of the POD of interest. Through this approach, a POD can interact directly with
the Kubernetes Node environment. A classic use case for Daemonset is to serve as a
deployment model for log event collectors.

Kubernetes is intended to deliver complex tasks through trivial definitions. In this
brief description of the main features it is clear that the use of Kubernetes is currently
essential in the context of the use of containers.

1.4.3. Setting up a Kubernetes-based Cluster for Edge-Cloud Infrastructures

The edge-cloud computing continuum is a structure of heterogeneous devices (large ca-
pacity servers, access points, repeaters, among others) that can be arranged hierarchically
in layers. The hierarchical distribution can include n-tiers, with a spectrum that goes from
the upmost level (where the public or private cloud is located) to the bottommost layer.
Considering a bottom-up approach, the bottommost layer contains the devices that end
users interact with (smart TVs, smartphones, tablets, laptops, etc.). The intermediary tiers
are composed of a collection of servers placed close to end-user devices, running back-
end services close to data sources. Finally, the topmost layer are the cloud platforms,
where all the resource-intensive back-end services run, exploiting the cloud platform’s
illusion of infinite computing resources available (e.g. storage, CPU, network , etc.).

A characteristic of the hierarchical structures of the edge-cloud computing contin-
uum is that each layer devices are subject to their respective network latency and compu-
tational capacity when communicating with other devices. Lower layer devices, as they



are closer to end users, are subject to lower latencies when communicating with end users.
Conversely, devices in the highest layer are subject to larger latencies resulting from net-
working devices processing and queueing as well as link medium propagation delays, as
they are further away from the end user. Considering resource capacity, devices closer
to end users often have limited computing resources, and as we move upwards through
the layers, we have devices with more capacity available. Therefore, properly managing
the balance between network latency and resource availability is crucial to supporting
applications that demand a high-quality end-user experience.

The balance between network latency and computing resources is often achieved
through service allocation and offloading strategies. As already mentioned, as these are
heterogeneous layers considering the latency and computational capacity of the devices,
to support the allocation of services in the different layers, lightweight and flexible ex-
ecution environments are often used. In this scenario, containers and Kubernetes play a
fundamental role in this type of environment.

1.4.3.1. Reference Infrastructure Model

To demonstrate the flexibility of using containers and the Kubernetes orchestrator in the
edge-cloud computing continuum scenario, a reference infrastructure model was created
consisting of three layers structured in a binary tree topology. The root of the tree is in the
first layer, being composed of a node representing the cloud. In the second, intermediate
layer, two nodes are present. And finally, in the lower layer, four nodes are present (Fig.
1.5). In this last layer, network latency is minimal when accessed by users. This topology
ensures that nodes can only interact with their child nodes or parent nodes, not having
access to other nodes in the cluster. This arrangement makes it possible to adequately
simulate the hierarchy formed in real edge-cloud computing continuum infrastructures. It
is possible to use virtualized environments to emulate devices in a real environment. In
this reference model, infrastructure resources were deployed on a cloud server managed
by OpenStack.

Kubernetes is the container orchestrator of choice for the reference model. Each
of the tier nodes is managed by a Kubernetes instance. These instances are composed of
an all-in model, with the Master and Worker operating in a single unit. Therefore, Ku-
bernetes is responsible for container deployment and container lifecycle management –
services deployed in this environment run inside Docker containers. Additionally, tools
such as Prometheus are used to monitor consumed and available resources and node ser-
vice analysis. Surveys collected by Prometheus are made available to application-level
services to decide how to adapt application services to better accommodate workload
volume, infrastructure resource allocation, and end-user mobility.

The reference infrastructure model reflects the structure presented in the topology
diagram presented in the above-mentioned figure. There are seven nodes organized hi-
erarchically in a tree. Some layer 2 nodes interfaces are used only when installing the
environment (for example, to download packages and container images). We do not need
external access to these nodes during the execution of the experiments. So, the networks
interfaces from this nodes (1 and 2 - layer 2) must be removed after installing the environ-



Figure 1.5. Topology diagram.

ment. In this model, two deployment and installation tools were mainly used: Terraform
and Kubespray. Terraform was used to prepare virtual machines and networks in the
OpenStack environment. Kubespray was used to install a Kubernetes cluster on previ-
ously created virtual machines. It forms a total of 7 virtual machines, each of which runs
an all-in Kubernetes cluster instance.

Terraform is an open-source tool offered by HashiCorp. This tool allows the imple-
mentation of infrastructure environments described as code, i.e. Infrastructure as Code
(IaC). Terraform encapsulates all the logic and APIs of the environment of interest and
describes it as a provider. Such providers are used to make API calls abstractly to the
implemented code. This makes the maintenance, support and migration process to other
providers easier with Terraform. In the test scenario, the OpenStack provider and Ter-
raform were used to configure and instantiate all the necessary resources.

To start the Terraform environment, the following steps should be followed where
ten files will be created:

1 $ cd terraform/
2
3 ## Download files related to the OpenStack provider:
4 $ terraform init
5
6 ## Create the action plan. All changes to the OpenStack
7 ## environment will be displayed here:



8 $ terraform plan
9

10 ## Execute the previously created action plan:
11 $ terraform apply

• 00-variable.tf: file with the definitions of the variables that will be used by the
other resources. In this file, the value of FLOATING_IP_POOL must be changed
with the floating pool of IPs that the infrastructure is using:

1 variable "floating_ip_pool" {
2 type = string
3 default = "FLOATING_IP_POOL"
4 }

• 10-ssh-key.tf: defines the public key (rsa type) that will be used to access the cre-
ated virtual machines instances. In the entry below, the value of PUBLIC_KEY
must be set to a public key.

1 resource "openstack_compute_keypair_v2" "user_key" {
2 name = "access-key"
3 public_key = "PUBLIC_KEY"
4 }

• 20-network.tf: file with definitions about the network aspects used in the rest of
the environment.

• 30-security-groups.tf: security groups used. Initially, all ports are closed. In Open-
Stack (provider used), opening is carried out through Security Groups.

• 40-flavor.tf: definition of the set of resources used in virtual machines (flavor). This
definition is made in terms of vCPU, memory and disk.

• 50-image.tf: operating system image used in the environment’s virtual machines.
Some images presented in OpenStack providers have a limitation regarding network
interfaces (1 in this case). This behavior can lead to network availability issues
when more than one interface is configured. Neutron (Openstack’s network service)
tries to configure the presented interfaces, indicated by Terraform, but only the first
one is defined successfully. It is recommended to use more modern OS images that
allow the configuration of multiple network interfaces (e.g. Almalinux 8, CentOS,
etc.).

• 60-instances.tf: definitions of VM instances and security groups. Floating IPs (pre-
viously allocated in the Openstack infrastructure) are also configured. Regarding
floating IPs, if they are not present and need to be allocated on demand, it is neces-
sary to uncomment the resource below (inserted in the file).

1 #resource "openstack_networking_floatingip_v2" "fip_pool" {
2 # count = 7
3 # pool = var.floating_ip_pool
4 # description = "Floating IP to project Ericson"
5 #}



As previously described, 7 nodes will be provisioned. Therefore, 7 floating IPs are
needed for the initial configuration of the environment. Consequently, 7 entries like
the one shown below must be present for the respective nodes.

1 resource "openstack_compute_floatingip_associate_v2"
2 "fip_associate_node11" {
3 floating_ip = "177.220.85.224"
4 instance_id = openstack_compute_instance_v2.vm_node_11.id
5 fixed_ip = "192.168.200.210"
6 }

• provider.tf: defines the provider that will be used (OpenStack). This provider’s
credentials can be defined in the file itself or in the cloud.yaml file.

• clouds.yaml: Settings and access credentials for the Openstack provider, used to
provide the reference model infrastructure. This file can be obtained directly from
the Openstack graphical interface (Horizon Dashboard).

• versions.tf: Defines the Terraform versions that will be used.

Kubespray: is an open source tool intended for deploying and managing Kubernetes
clusters. The tool works with public cloud, on-premises, bare metal, and staging solutions,
making it ideal for managing highly available clusters across multiple different platforms.
It is comprised of Ansible playbooks, inventory, provisioning tools, and domain knowl-
edge for generic OS/Kubernetes cluster configuration management tasks. Kubespray in
the context of the reference model is used to provision 7 clusters. For each cluster there
is an inventory with its respective configuration.

• Node Cloud: cluster-root/

• Node 1 layer 2: cluster-node2-1/

• Node 2 layer 2: cluster-node2-2/

• Node 1 layer 3: cluster-node3-1/

• Node 2 layer 3: cluster-node3-2/

• Node 3 layer 3: cluster-node3-3/

• Node 4 layer 3: cluster-node3-4/

After installing kubespray and its dependencies, each folders from the list above
must be copied to invetory/. Preparing the environment for running kubespray is as fol-
lows:

1 ## Clone the repository:
2 $ git clone https://github.com/kubernetes-sigs/kubespray.git
3 $ cd kubespray
4



5 ## Copy the kubernetes cluster inventory files to the inventory
6 folder. REPOSITORY is set with this git project folder:
7 $ cp -r ${REPOSITORY}/artefacts/kubespray/cluster-* ./invetory/
8
9 ## Create virtual environment:

10 $ python3 -m venv venv
11
12 ## Activate the environment:
13 $ source venv/bin/activate
14
15 ## Install the dependencies:
16 $ pip install -r requirements.txt

It is necessary to configure the network addresses as defined in Terraform. Below
is an example configuration.

1 all:
2 hosts:
3 node1:
4 ansible_host: 177.220.85.224
5 ip: 192.168.200.210
6 access_ip: 192.168.200.210
7 children:
8 kube_control_plane:
9 hosts:

10 node1:
11 kube_node:
12 hosts:
13 node1:
14 etcd:
15 hosts:
16 node1:
17 k8s_cluster:
18 children:
19 kube_control_plane:
20 kube_node:
21 calico_rr:
22 hosts: {}

Ansible_host must be defined with the floating IP address of the virtual machine
that Kubespray (Ansible components) will access to perform the installation of the kuber-
netes node. The other two addresses (ip and accessip) must be of the internal interface, in
this case the interface that is associated with the floating IP. Another necessary configura-
tion is to define the docker repositories where the images will be obtained. This must be
done in inventory/CLUSTER_NODE/group_vars/all/containerd.yml.

The following entries must be inserted at the end of the file:
1 (...)
2 containerd_registries:
3 "docker.io":
4 - "https://mirror.gcr.io"
5 - "https://registry-1.docker.io"
6 \end{verbatim}
7



8 Once all configurations have been made, Kubespray must be run for each
node of interest.

9 \begin{verbatim}
10 $ ansible-playbook -i inventory/cluster-root/hosts.yaml -u
11 almalinux -b -v --private-key="${KEYS_FOLDER}/id_rsa" cluster.yml
12
13 -i: inventory with de node cluster address, quantity of nodes,
14 kubernetes version and other configurations.
15 -u: user used by OS to execute the activities.
16 -b: become a root if necessary.
17 -v: verbose mode.
18 --private-key: file with private key to access the VM

After running Kubespray for each new node, it is necessary to verify that the en-
vironment was correctly installed. This must be performed for each of the Kubernetes
clusters created. Within each virtual machine in the reference model, it is initially neces-
sary to obtain the Kubernetes credentials, copy them to an appropriate location, and verify
that the cluster is operational (1 node and the operational services PODs should be ready).

1 ## Create the Kubernetes config file:
2 $ mkdir .kube
3 $ sudo cp /etc/kubernetes/admin.conf .kube/config
4 $ sudo chmod 666 .kube/config
5
6 ## Check the kubernetes master node:
7 $ kubectl get nodes
8 NAME STATUS ROLES AGE VERSION
9 node1 Ready control-plane 18h v1.25.5

10
11 ## Check the kubernetes system PODs:
12 $ kubectl get pods -n kube-system
13 NAME READY STATUS REST-
14 calico-kube-controllers-75748cc9fd-ttdm8 1/1 Running 0
15 calico-node-z8cg9 1/1 Running 0
16 coredns-588bb58b94-k2qrs 1/1 Running 0
17 dns-autoscaler-d8bd87bcc-djvm8 1/1 Running 0
18 kube-apiserver-node1 1/1 Running 1
19 kube-controller-manager-node1 1/1 Running 2
20 kube-proxy-t4b97 1/1 Running 0
21 kube-scheduler-node1 1/1 Running 2
22 nodelocaldns-9vk68 1/1 Running 0

Some other settings may be needed, such as checking and setting host names and
inserting them in /etc/hosts since, there is no DNS server for the environment. It may also
require some OS tuning. These details are beyond the scope of this document.

1.5. Adaptive Video Streaming Application for the Edge-cloud Continuum
To enhance the readers’ understanding of the framework behind the content steering ser-
vice distributed across the Edge-Cloud Continuum, we present a detailed case study fo-
cusing on a video streaming service hosted on a CDN platform within the Institute of
Computing (IC) at UNICAMP. We aim to illustrate alternative video provisioning points
for users. To achieve this, we examine a scenario where the CDN, hosted in the Cloud,



redirects users to an edge server on the local machine. Various factors could prompt this
redirection, including recurrent congestion issues within users’ home networks.

Fig. 1.6 illustrates the basic elements that a fully functioning video streaming ap-
plication running on the edge-cloud continuum contemplates. We provide all necessary
software with detailed instructions for the reader to execute the system on their machine.
Moreover, the interested reader may use the available system to conduct their own exper-
iments and analysis.

Internet

User's
Machine

CDN
 server

IC/UNICAMP

Cache
Service

Cache
Service

Content
Steering

Player

Master
Content
Steering

Video
Content
Docker

Container

Legend

Figure 1.6. Main elements of the video streaming application. A local machine
running a video player, two cache services and a content steering, connected to
a CDN with video content and a master content steering.

The video streaming application we provide has four main basic components: i)
the CDN servers where the main content and the master content steering are hosted, ii) the
cache servers running on the reader’s machine, as an illustration of cache servers deployed
in multiple locations over the edge of the network, iii) the edge content steering module
responsible for steering video content in a specific location of the edge-cloud continuum,
and iv) the user’s video player, that in this case also runs on the user’s machine.

The CDN servers are placed in the IC-Unicamp dependencies, and their content
should be accessible to the reader. Note that any CDN can be used as a replacement for
the one we have set up to demonstrate our video streaming application. We provide a
detailed description of how to set up and configure a CDN in case the reader wants to
use their own settings. The CDN hosts both the video content and an executing master
content steering service. The client’s video player always contacts the master content
steering and collects content from the CDN in the first round, later it connects to the local
content steering and starts fetching content from the local cache service.

The cache services are provided in the form of Docker container images to facil-
itate the system’s execution. The cache services in our scenario are different points for
content provision. Thus, the video player can fetch video content directly from the cache
services in the same network instead of fetching content from a distant CDN server.



We also make available a content steering service that should be executed on the
reader’s local machine. We provide both the Docker image and the source code. This con-
tent steering service is responsible for steering the user’s video player to specific cache
services in the reader’s machine. In our video streaming systems example, this content
steering represents the module responsible for adapting and handling content steering in
a specific geographic location in a real-life deployment in a full-scale edge-cloud contin-
uum infrastructure.

Moreover, the content steering module is also responsible for monitoring the cache
service metrics and detecting when a specific cache service is down or not responding.
When this occurs, the content steering redirects the video player to fetch information
from another cache service or the closest CDN server. In our practical experiment, we
can observe such behavior after deploying the system and stopping the Docker container
running the cache service that provides the content to the video player.

Finally, we provide a fully functioning video player that implements the content
steering protocol. The video player accesses the CDN server to fetch the manifest file
with the information on where to fetch the video content. After the first interaction with
the CDN node, the video player receives a URL for a local cache service and fetches the
video content from the local cache service.

1.5.1. Repository Description

The complete materials, algorithms, tools, and tutorials for installing and running the
application can be accessed on Github 12. To obtain the code and materials, you must
perform a process named clone, which downloads the source code. We recommend using
Ubuntu version 22.04 since the setup instructions are tailored for it.

After the cloning process, a directory named content-steering-tutorial should have
been created. From the repository’s root directory, folders for the video streaming and
steering services and a dataset folder containing the multimedia content should be created.
To streamline the execution of experiments, we provide some shell scripts to automate the
process.

1.5.2. Running the Streaming Services

Now we are initiating video streaming and steering microservices. It’s assumed that the
reader is familiar with Docker. To start the video streaming containers, we create two
replicas of the service using the command:

1 $ docker compose -f steering-service/docker-compose.yml up -d

Listing 1.4. Command to create the streaming services.

If you wish to configure the number of replicas, modify the replica count within
the docker-compose.yml file in the streaming-service directory. Now, ascertain the IPs
assigned to each service and associate them with the domains created in /etc/hosts.

You can then verify the features of local video streaming. Remember that our
focus is on Content Steering features. Therefore, our experiments use a straightforward

12https://github.com/robertovrf/content-steering-tutorial

https://github.com/robertovrf/content-steering-tutorial


1 $ docker compose -f steering-service/docker-compose.yml up -d

Listing 1.6. Command to create the steering service.

HTTP server to serve static multimedia content. This approach allows us to observe
the services functioning autonomously, independent of others. Then, you can access the
dash. js player and try to load the manifest using the URL format:

1 https://<streaming-domain>/<streaming-path>/manifest.mpd

Listing 1.5. URL to watch the video in any Dash player.

Replace <streaming-domain> with your streaming domain and <streaming-path>
with the path to your video.

1.5.3. Running the Steering Service

To create the Content Steering service, we follow similar commands to those used for
the streaming service setup. Within the steering-service folder, you find the docker-
compose.yml file containing the default configurations for local steering creation.

The Content Steering mechanism involves real-time monitoring of deployed con-
tainers. Various tools for resource monitoring within containers have been proposed,
including docker stats, Prometheus, and Google’s cAdvisor. In this tutorial, we utilize the
docker package to collect resource usage metrics from containers and determine the avail-
ability of video streaming services. The steering collects the Docker stats metrics from
the containers with running stats every two seconds. It is recommended that the reader
investigate the steering-service/src/monitoring.py code to understand metrics capture.

The communication to the steering service occurs via an HTTP GET method, as
discussed in Section 1.3. We have set up a basic Flask application with a single route
handling GET requests at the root URL, running on port 30500. Listing 1.7 provides the
code snippet responsible for managing these requests (steering-service/src/app.py). When
a user initiates a request to the content steering, the service identifies active edge servers
using the getNodes() method from monitoring in line 7. Subsequently, the algorithm
updates the list with the selected edge servers and the target server, presenting them as the
output for the user’s request. The parser method constructs the message (lines 9-14). The
return incorporates essential components such as the TTL and the RELOAD-URI, which
specify the URI for reloading the steering service’s configuration as needed. Finally, we
use the jsonify function to convert the message into JSON.

1 @app.route(’/’, methods=[’GET’])
2 def do_get(name):
3
4 trg = request.args.get(’_DASH_pathway’, default=’’, type=str)
5 thr = request.args.get(’_DASH_throughput’, default=0.0, type=float)
6
7 nodes = _monitoring.getNodes()
8
9 message = _dash.parser(

10 target = trg,



1 $ ./create_certs.sh <streaming-domain>

Listing 1.8. Command to generate certificates.

11 nodes = nodes,
12 uri = BASE_URI,
13 request = request
14 )
15
16 return jsonify(message), 200

Listing 1.7. Main method from the steering service.

1.5.4. Running the Testbed

In the initial experiment, the localhost environment was set up using Docker tools. Start
by modifying your local host’s file, found at /etc/hosts, to assign custom domain names for
the streaming services you intend to create. After that, execute the script create_certs.sh
to generate certificates and activate HTTPS for each streaming service in localhost:

Next, retrieve a DASH video from the dataset provided by [63] and store it in the
specified folder named “dataset”. The dataset offers a range of codec choices, includ-
ing AV1, AVC, HEVC, and VVC. You may utilize wget or any other suitable method
to download the video. We used the “Eldorado” video encoded in AVC with 4-second
segments for our experiments.

1.5.5. Running the Video Player

We can test our experiment once we have deployed the necessary components mentioned
earlier. Our next step would be to request a video from a scenario where the CDN, located
in the Cloud, serves as the initial source. As the user watches the video, they can switch
between servers autonomously. This enables us to evaluate our edge servers’ efficiency
and effectiveness in delivering high-quality content.

To gain a better understanding of how the transition from the cloud-based content
source to the edge servers works, we can utilize the player available at 13. This player lets
us visualize how the user’s playback experience changes as they switch between servers.

1.6. Challenges and Opportunities
As we can now create and configure a Kubernetes-based cluster over the edge-cloud con-
tinuum, deploy and perform (re)placement of video streaming services over the infrastruc-
ture to improve the quality of experience, we start facing new and interesting challenges.

In this section, we discuss three of the main challenges we consider the most
important: content steering optimization, the concept of zero-touch networks and their
related challenges, and the issues that arise when considering user mobility.

13Content Steering - https://reference.dashif.org/dash.js/latest/samples/
advanced/content-steering.html

https://reference.dashif.org/dash.js/latest/samples/advanced/content-steering.html
https://reference.dashif.org/dash.js/latest/samples/advanced/content-steering.html


1.6.1. Content-Steering Optimization

The content steering problem is an interesting and challenging problem that needs to be
addressed. Especially in the edge-cloud continuum settings, where content steering has
to handle high volumes of video request content. Thus, the content steering optimization
problem can be formulated as follows:

Problem: Given a set of users requesting video content and a set of CDN servers, how
to best steer user requests to load balance them among the available servers considering
user and server location, network congestion, video quality, and network bandwidth to
maximize user quality of experience.

A version of this problem has been tackled in the literature. Gama et al. [29]
has presented the challenge and provided an Integer Linear Programming (ILP)-based
solution. In the context of video streaming over edge-cloud continuum infrastructures,
however, it is crucial to consider the volatile and dynamic nature of edge-cloud continuum
infrastructures, where changes constantly and unexpectedly occur at the infrastructure,
platform, and service levels and based on user behavior and request patterns. In such
scenarios, the content steering policy needs to be constantly updated.

Therefore, static optimization solutions for content steering that are defined pre-
deployment are not sufficient. The adoption of models to drive content steering is required
to evolve over time to include changes in content popularity, user behavior, varying re-
quest volumes, and sudden network congestion, to name a few sources of unexpected
events.

The application of machine learning, specifically reinforcement learning strate-
gies, is desired in such volatile settings. This is because reinforcement learning tech-
niques define their models as the agent interacts with the environment; in this case, the
content steering orchestrator defines which CDN server the users will fetch the content
from. This is crucial in situations where the content steering orchestrator encounters un-
expected scenarios where it is required to optimally load balance the incoming requests
to the available CDN servers, for instance, a CDN server becomes unavailable or there is
a sudden spike in requests in a specific geographic location.

An interesting line of research is to enable autonomous learning for both content
steering policy and content steering orchestrator placement. This would enable the def-
inition of where in the edge-cloud continuum to place a content steering orchestrator to
content steering for a set of users while, at the same time, enabling the recently placed
orchestrator to learn the best policy to steer incoming requests.

Autonomous learning solutions, such as the one outlined here, could help tame
the increasing complexity of exploiting the underlying edge-cloud continuum resources
while supporting the executing services for video streaming applications.

1.6.2. Zero-touch Network and Service Management (ZSM)

The application of closed-loop automation to bootstrap, configure, and optimize network-
ing systems led to the definition of the concept of Zero-touch Networks and Service Man-



agement (ZSM) [40, 61]. Many research papers that address the concept of the zero-touch
network come from the 5G/6G communities [9, 61, 18], given the rising complexity in
setting up, configuring, and optimizing such networks.

As an important line of research, we have the application of closed-loop au-
tomation to set up, configure, and optimize video streaming services, platforms, and the
underlying networking infrastructure to support video streaming applications in edge-
cloud continuum settings. Besides the application of machine learning techniques to
solve the content steering problem (Sec. 1.6.1), video streaming could benefit from au-
tonomous (self-adaptive, self-optimizing, self-healing) techniques. They can be used to
autonomously set up, perform placement, and optimize cache services throughout the
edge-cloud continuum, even autonomously choosing the cache replacement strategy that
best suits the cache service based on the handled requests.

Furthermore, the application of such techniques can autonomously define param-
eters in the content steering architecture. For example, adjust the parameter that defines
how often players provide information to content steering orchestrators to make decisions
on which server the player should fetch information. These parameters are currently set
manually, and it has an impact on how fast the system adapts to avoid networking con-
gestion as well as on the amount of information content steering orchestrator receives in
a timespan.

A complementary line of research is to apply Intent-based Networks (IBN) [37]
and Intent-driven Networks (IDN) [43, 23] concepts to guide zero-touch network opti-
mization and service management. As we apply autonomous mechanisms to optimize
the network, the use of high-level network intents defined by both application developers
and network administrators can be used as network goals for the closed-loop automation
mechanism to satisfy with minimum to no human intervention.

Examples of applying Intent-based Network techniques are described in many
different networking contexts, such as IoT network management [17], 5G cloud service
provision [3], and video service assurance [52]. Therefore, exploring similar techniques
in the edge-cloud continuum to set up and optimize video streaming applications presents
a fruitful direction for future research.

1.6.3. Exploring Adaptation to Accommodate User Mobility

An important challenge to tackle in this domain is to address user mobility. As users
move from location A to location B, many changes are required to take place throughout
the infrastructure, platform, and service level to maintain the quality of streaming.

User mobility has been a concern for video streaming for a while now, with papers
proposing solutions to cope with mobility dating back to 3G networks [36]. The problem
with handling mobility has not been fully addressed but rather intensified over the years.
Despite the fact that networking infrastructures are becoming faster with 5G deployments
and the expectations of 6G networks, the volume of streaming content, their unprece-
dented quality, and the number of users continue to increase, aggravating the problems
related to video streaming services in the context of user mobility.

Solutions considering caching content on the edge [14] and/or attempting to pre-



dict user mobility [67] have been explored in the literature [35]. However, there are still
opportunities to explore these approaches at the scale on which edge-cloud continuum in-
frastructures operate while streaming high-quality videos with an incredibly high number
of mobile users consuming video content.

An interesting line of research is the exploration of machine learning approaches
to identify and predict user mobility patterns and execute video prefetching to cache ser-
vices deployed close to their location. Moreover, the combination of prefetching solu-
tions based on user mobility patterns in tandem with data placement considering content
popularity amongst groups of users moving towards the same direction may increase the
quality of streaming and optimize computing resource allocation.

Finally, the exploration of prefetching solutions and handling unexpected user
behavior is also an interesting research direction, especially considering the volatile nature
of the edge-cloud continuum infrastructure. In the case of user mobility, some users may
detour from their expected predefined route and change mobility patterns from time to
time. In these cases, reactive approaches to deal with unexpected situations are desired
and expected to work in tandem with proactive approaches, where prefetching/preventive
adaptive strategies are in place.

1.7. Conclusion
This chapter presented an overview of the technologies and concepts involved in sup-
porting video streaming over edge-cloud continuum infrastructures. In particular, we
have introduced the concept of edge-cloud continuum and discussed the main challenges
and opportunities. The discussions included the infrastructures provided, the main video
streaming protocols, the concept of the content steering architecture, and the technology
used to deploy and configure platform-level management tools to control the underlying
computing resources. It was also presented a hands-on practical experiment with detailed
instructions to execute a fully functioning video streaming application using content steer-
ing.

We hope to have contributed to the community by supplying a starting point for
researchers to explore the diversity of challenges presented in deploying and managing
video streaming applications over the Edge-cloud Continuum. We also hope that the
technical material we supply on our GitHub 14 repository will facilitate the creation of
testbeds for further experiments with content steering architecture and video streaming
applications on the edge-cloud platforms.

Acknowledgements
This work was partially supported by the São Paulo Research Foundation (FAPESP),
grant 2021/00199-8, CPE SMARTNESS, and by Conselho Nacional de Desenvolvimento
Científico e Tecnológico (CNPq).

References
[1] Content steering for dash, 2022. Accessed 28-oct-2023.

14GitHub: https://github.com/robertovrf/content-steering-tutorial

https://github.com/robertovrf/content-steering-tutorial


[2] A. T. Akabane, R. Immich, R. W. Pazzi, E. R. M. Madeira, and L. A. Villas. Ex-
ploiting vehicular social networks and dynamic clustering to enhance urban mobility
management. Sensors, 19(16):3558, Aug 2019.

[3] F. Aklamanu, S. Randriamasy, E. Renault, I. Latif, and A. Hebbar. Intent-based
real-time 5g cloud service provisioning. In 2018 IEEE Globecom Workshops (GC
Wkshps), pages 1–6, 2018.

[4] F. Alessi, A. Tundo, M. Mobilio, O. Riganelli, and L. Mariani. Reprobes: An archi-
tecture for reconfigurable and adaptive probes, 2024.

[5] B. Alt, T. Ballard, R. Steinmetz, H. Koeppl, and A. Rizk. Cba: Contextual quality
adaptation for adaptive bitrate video streaming. In IEEE INFOCOM 2019 - IEEE
Conference on Computer Communications, pages 1000–1008, 2019.

[6] A. Bentaleb, A. C. Begen, S. Harous, and R. Zimmermann. Want to play dash? a
game theoretic approach for adaptive streaming over http. In Proceedings of the 9th
ACM Multimedia Systems Conference, MMSys ’18, pages 13–26, New York, NY,
USA, 2018. Association for Computing Machinery.

[7] A. Bentaleb, M. Lim, M. N. Akcay, A. C. Begen, and R. Zimmermann. Bitrate
adaptation and guidance with meta reinforcement learning. IEEE Transactions on
Mobile Computing, (01):1–14, mar 5555.

[8] A. Bentaleb, B. Taani, A. C. Begen, C. Timmerer, and R. Zimmermann. A survey
on bitrate adaptation schemes for streaming media over http. IEEE Communications
Surveys & Tutorials, 21(1):562–585, 2019.

[9] C. Benzaid and T. Taleb. Ai-driven zero touch network and service management in
5g and beyond: Challenges and research directions. IEEE Network, 34(2):186–194,
2020.

[10] L. Bittencourt, R. Immich, R. Sakellariou, N. Fonseca, E. Madeira, M. Curado,
L. Villas, L. DaSilva, C. Lee, and O. Rana. The internet of things, fog and cloud
continuum: Integration and challenges. Internet of Things, 3-4:134–155, 2018.

[11] L. F. Bittencourt, A. Goldman, E. R. Madeira, N. L. da Fonseca, and R. Sakellar-
iou. Scheduling in distributed systems: A cloud computing perspective. Computer
Science Review, 30:31–54, 2018.

[12] R. Buyya, M. Pathan, and A. Vakali. Content delivery networks, volume 9. Springer
Science & Business Media, 2008.

[13] S. Chaudhary, N. K. Shukla, P. Sachdeva, S. Chakraborty, and M. Maity. Managing
connections by quic-tcp racing: A first look of streaming media performance over
popular http/3 browsers. IEEE Transactions on Network and Service Management,
pages 1–1, 2024.

[14] Y. Chen, H. Yu, B. Hu, Z. Duan, and G. Xue. An edge caching strategy based on
user speed and content popularity for mobile video streaming. Electronics, 10(18),
2021.



[15] I. Cohen, C. F. Chiasserini, P. Giaccone, and G. Scalosub. Dynamic service provi-
sioning in the edge-cloud continuum with bounded resources. IEEE/ACM Transac-
tions on Networking, 31(6):3096–3111, 2023.

[16] V. Colombo, A. Tundo, M. Ciavotta, and L. Mariani. Towards self-adaptive peer-
to-peer monitoring for fog environments. In Proceedings of the 17th Symposium on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS ’22, pages
156–166, New York, NY, USA, 2022. Association for Computing Machinery.

[17] B. M. Cordeiro, R. Rodrigues Filho, I. G. Júnior, and F. M. Costa. Steer: An ar-
chitecture to support self-adaptive iot networks for indoor monitoring applications.
Journal of Internet Services and Applications, 14(1):107–123, 2023.

[18] E. Coronado, R. Behravesh, T. Subramanya, A. FernÃ ndez-FernÃ ndez, M. S. Sid-
diqui, X. Costa-PÃ©rez, and R. Riggio. Zero touch management: A survey of net-
work automation solutions for 5g and 6g networks. IEEE Communications Surveys
and Tutorials, 24(4):2535–2578, 2022.

[19] A. Diaconescu, B. Porter, R. Rodrigues, and E. Pournaras. Hierarchical self-
awareness and authority for scalable self-integrating systems. In 2018 IEEE 3rd
International Workshops on Foundations and Applications of Self* Systems (FAS*
W), pages 168–175. IEEE, 2018.

[20] J. Du, C. Jiang, A. Benslimane, S. Guo, and Y. Ren. Sdn-based resource allocation in
edge and cloud computing systems: An evolutionary stackelberg differential game
approach. IEEE/ACM Transactions on Networking, 30(4):1613–1628, 2022.

[21] W. Eddy. Transmission Control Protocol (TCP). RFC 9293, Aug. 2022.

[22] J. Ehlers, A. van Hoorn, J. Waller, and W. Hasselbring. Self-adaptive software sys-
tem monitoring for performance anomaly localization. In Proceedings of the 8th
ACM International Conference on Autonomic Computing, ICAC ’11, pages 197–
200, New York, NY, USA, 2011. Association for Computing Machinery.

[23] Y. Elkhatib, G. Coulson, and G. Tyson. Charting an intent driven network. In 2017
13th International Conference on Network and Service Management (CNSM), pages
1–5, 2017.

[24] R. Farahani, M. Shojafar, C. Timmerer, F. Tashtarian, M. Ghanbari, and H. Hell-
wagner. Ararat: A collaborative edge-assisted framework for http adaptive video
streaming. IEEE Transactions on Network and Service Management, 20(1):625–
643, 2023.

[25] K. Fu, W. Zhang, Q. Chen, D. Zeng, and M. Guo. Adaptive resource efficient
microservice deployment in cloud-edge continuum. IEEE Transactions on Parallel
and Distributed Systems, 33(8):1825–1840, 2022.

[26] K. Fu, W. Zhang, Q. Chen, D. Zeng, X. Peng, W. Zheng, and M. Guo. Qos-aware
and resource efficient microservice deployment in cloud-edge continuum. In 2021



IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages
932–941, 2021.

[27] E. S. Gama, L. O. N. De Araujo, R. Immich, and L. F. Bittencourt. Video streaming
analysis in multi-tier edge-cloud networks. In 2021 8th International Conference on
Future Internet of Things and Cloud (FiCloud), pages 19–25, Aug 2021.

[28] E. S. Gama, R. Immich, and L. F. Bittencourt. Towards a multi-tier fog/cloud archi-
tecture for video streaming. In 2018 IEEE/ACM International Conference on Utility
and Cloud Computing Companion (UCC Companion), pages 13–14, 2018.

[29] E. S. Gama, N. B. V, R. Immich, and L. F. Bittencourt. An orchestrator architecture
for multi-tier edge/cloud video streaming services. In 2023 IEEE International Con-
ference on Edge Computing and Communications (EDGE), pages 190–196, 2023.

[30] A. Goscinski and M. Bearman. Resource management in large distributed systems.
ACM SIGOPS Operating Systems Review, 24(4):7–25, 1990.

[31] Z. Houmani, D. Balouek-Thomert, E. Caron, and M. Parashar. Enabling microser-
vices management for deep learning applications across the edge-cloud continuum.
In 2021 IEEE 33rd International Symposium on Computer Architecture and High
Performance Computing (SBAC-PAD), pages 137–146, 2021.

[32] T. Huang and L. Sun. Deepmpc: A mixture abr approach via deep learning and
mpc. In 2020 IEEE International Conference on Image Processing (ICIP), pages
1231–1235, 2020.

[33] R. Immich, L. Villas, L. Bittencourt, and E. Madeira. Multi-tier edge-to-cloud archi-
tecture for adaptive video delivery. In 2019 7th International Conference on Future
Internet of Things and Cloud (FiCloud), pages 23–30, Aug 2019.

[34] J. Iyengar and M. Thomson. QUIC: A UDP-Based Multiplexed and Secure Trans-
port. RFC 9000, May 2021.

[35] M. A. Khan, E. Baccour, Z. Chkirbene, A. Erbad, R. Hamila, M. Hamdi, and
M. Gabbouj. A survey on mobile edge computing for video streaming: Opportu-
nities and challenges. IEEE Access, 10:120514–120550, 2022.

[36] A. Kyriakidou, N. Karelos, and A. Delis. Video-streaming for fast moving users
in 3g mobile networks. In Proceedings of the 4th ACM International Workshop on
Data Engineering for Wireless and Mobile Access, MobiDE’05, pages 65–72, New
York, NY, USA, 2005. Association for Computing Machinery.

[37] A. Leivadeas and M. Falkner. A survey on intent-based networking. IEEE Commu-
nications Surveys and Tutorials, 25(1):625–655, 2023.

[38] E. Liotou, T. Hoßfeld, C. Moldovan, F. Metzger, D. Tsolkas, and N. Passas. The
Value of Context-Awareness in Bandwidth-Challenging HTTP Adaptive Streaming
Scenarios, pages 128–150. Springer International Publishing, Cham, 2018.



[39] D. Liu, Z. Wang, and J. Zhang. Video stream distribution scheme based on edge
computing network and user interest content model. IEEE Access, 8:30734–30744,
2020.

[40] M. Liyanage, Q.-V. Pham, K. Dev, S. Bhattacharya, P. K. R. Maddikunta, T. R.
Gadekallu, and G. Yenduri. A survey on zero touch network and service manage-
ment (zsm) for 5g and beyond networks. Journal of Network and Computer Appli-
cations, 203:103362, 2022.

[41] S. Moreschini, F. Pecorelli, X. Li, S. Naz, D. Hastbacka, and D. Taibi. Cloud con-
tinuum: The definition. IEEE Access, 10:131876–131886, 2022.

[42] V. Nathan, V. Sivaraman, R. Addanki, M. Khani, P. Goyal, and M. Alizadeh. End-
to-end transport for video qoe fairness. In Proceedings of the ACM Special Interest
Group on Data Communication, SIGCOMM ’19, pages 408–423, New York, NY,
USA, 2019. Association for Computing Machinery.

[43] L. Pang, C. Yang, D. Chen, Y. Song, and M. Guizani. A survey on intent-driven
networks. IEEE Access, 8:22862–22873, 2020.

[44] R. Pantos and W. May. HTTP Live Streaming. RFC 8216, Aug. 2017.

[45] M. L. M. Peixoto, T. A. L. Genez, and L. F. Bittencourt. Hierarchical scheduling
mechanisms in multi-level fog computing. IEEE Transactions on Services Comput-
ing, 15(5):2824–2837, 2022.

[46] L. Peng, A. R. Dhaini, and P.-H. Ho. Toward integrated cloud-fog networks for effi-
cient iot provisioning: Key challenges and solutions. Future Generation Computer
Systems, 88:606–613, 2018.

[47] L. Peroni and S. Gorinsky. An end-to-end pipeline perspective on video streaming
in best-effort networks: A survey and tutorial, 2024.

[48] T. Pfandzelter and D. Bermbach. Enoki: Stateful distributed faas from edge to
cloud. In Proceedings of the 2nd International Workshop on Middleware for the
Edge, MiddleWEdge ’23, pages 19–24, New York, NY, USA, 2023. Association for
Computing Machinery.

[49] F. Pisani, F. de Oliveira, E. S. Gama, R. Immich, L. F. Bittencourt, and E. Borin.
Fog computing on constrained devices: Paving the way for the future iot. Advances
in Edge Computing: Massive Parallel Processing and Applications, 35:22, 2020.

[50] C. Puliafito, C. Cicconetti, M. Conti, E. Mingozzi, and A. Passarella. Balancing
local vs. remote state allocation for micro-services in the cloud-edge continuum.
Pervasive and Mobile Computing, 93:101808, 2023.

[51] C. Quadros, E. Cerqueira, A. Neto, A. Riker, R. Immich, and M. Curado. A mobile
qoe architecture for heterogeneous multimedia wireless networks. In 2012 IEEE
Globecom Workshops, pages 1057–1061, Dec 2012.



[52] C. E. Rothenberg, D. A. Lachos Perez, N. F. Saraiva de Sousa, R. V. Rosa, R. U.
Mustafa, M. T. Islam, and P. H. Gomes. Intent-based control loop for dash video
service assurance using ml-based edge qoe estimation. In 2020 6th IEEE Conference
on Network Softwarization (NetSoft), pages 353–355, 2020.

[53] F. Santos, R. Immich, and E. R. Madeira. Multimedia services placement algorithm
for cloudâfog hierarchical environments. Computer Communications, 191:78–91,
2022.

[54] M. Seufert, R. Schatz, N. Wehner, and P. Casas. Quicker or not? an empirical anal-
ysis of quic vs tcp for video streaming qoe provisioning. In 2019 22nd Conference
on Innovation in Clouds, Internet and Networks and Workshops (ICIN), pages 7–12,
2019.

[55] K. R. Sheshadri and J. Lakshmi. Qos aware faas for heterogeneous edge-cloud
continuum. In 2022 IEEE 15th International Conference on Cloud Computing
(CLOUD), pages 70–80, 2022.

[56] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges.
IEEE Internet of Things Journal, 3(5):637–646, 2016.

[57] C. Sicari, D. Balouek, M. Parashar, and M. Villari. Event-driven faas workflows
for enabling iot data processing at the cloud edge continuum. In Proceedings of the
IEEE/ACM 16th International Conference on Utility and Cloud Computing, UCC
’23, New York, NY, USA, 2024. Association for Computing Machinery.

[58] D. Silhavy, W. Law, S. Pham, A. C. Begen, A. Giladi, and A. Balk. Dynamic cdn
switching-dash-if content steering in dash. js. In Proceedings of the 2nd Mile-High
Video Conference, pages 130–131, 2023.

[59] I. Sodagar. The mpeg-dash standard for multimedia streaming over the internet.
IEEE MultiMedia, 18(4):62–67, 2011.

[60] P. Soumplis, P. Kokkinos, A. Kretsis, P. Nicopolitidis, G. Papadimitriou, and E. Var-
varigos. Resource allocation challenges in the cloud and edge continuum. In Ad-
vances in Computing, Informatics, Networking and Cybersecurity: A Book Honor-
ing Professor Mohammad S. Obaidat’s Significant Scientific Contributions, pages
443–464. Springer, 2022.

[61] N. F. S. d. Sousa and C. E. Rothenberg. Clara: Closed loop-based zero-touch net-
work management framework. In 2021 IEEE Conference on Network Function Vir-
tualization and Software Defined Networks (NFV-SDN), pages 110–115, 2021.

[62] S. Taherizadeh, A. C. Jones, I. Taylor, Z. Zhao, and V. Stankovski. Monitoring self-
adaptive applications within edge computing frameworks: A state-of-the-art review.
Journal of Systems and Software, 136:19–38, 2018.

[63] B. Taraghi, H. Amirpour, and C. Timmerer. Multi-codec ultra high definition 8k
mpeg-dash dataset. In Proceedings of the 13th ACM Multimedia Systems Confer-
ence, MMSys ’22, pages 216–220, New York, NY, USA, 2022. Association for
Computing Machinery.



[64] M. C. Thornburgh. Adobe’s RTMFP Profile for Flash Communication. RFC 7425,
Dec. 2014.

[65] M. Uitto and A. Heikkinen. Evaluation of live video streaming performance for
low latency use cases in 5g. In 2021 Joint European Conference on Networks and
Communications & 6G Summit (EuCNC/6G Summit), pages 431–436, 2021.

[66] Y. Verginadis. A review of monitoring probes for cloud computing continuum. In
L. Barolli, editor, Advanced Information Networking and Applications, pages 631–
643, Cham, 2023. Springer International Publishing.

[67] X. Wang, T. Kwon, Y. Choi, H. Wang, and J. Liu. Cloud-assisted adaptive video
streaming and social-aware video prefetching for mobile users. IEEE Wireless Com-
munications, 20(3):72–79, 2013.

[68] H. Yousef, J. L. Feuvre, and A. Storelli. Abr prediction using supervised learn-
ing algorithms. In 2020 IEEE 22nd International Workshop on Multimedia Signal
Processing (MMSP), pages 1–6, 2020.

[69] Q. Yuan, H. Zhou, J. Li, Z. Liu, F. Yang, and X. S. Shen. Toward efficient con-
tent delivery for automated driving services: An edge computing solution. IEEE
Network, 32(1):80–86, 2018.

[70] E. Zavala, X. Franch, and J. Marco. Adaptive monitoring: A systematic mapping.
Information and Software Technology, 105:161–189, 2019.


	Introduction
	Exploiting the Edge-cloud Continuum Resources
	Defining the Edge-cloud Continuum
	Exploiting the Hierarchy of Computing Resources
	Resource Allocation and Optimization
	Service and Data Placement
	Monitoring in the Edge-Cloud Continuum

	Computing Resource Demands for Video Streaming Applications

	Video Streaming Architecture Overview
	Adaptive Video Streaming
	Application-Network Interaction in Video Streaming
	Bitrate Adaptive Schemes

	Content Steering Server-based Design Architecture
	Centralized Steering Server-based Design
	Content Steering at the Edge-Cloud Continuum


	Managing Clusters on the Edge-cloud Continuum
	Introducing Containers
	Managing Containers Lifecycle with Container Orchestrators
	Setting up a Kubernetes-based Cluster for Edge-Cloud Infrastructures
	Reference Infrastructure Model


	Adaptive Video Streaming Application for the Edge-cloud Continuum
	Repository Description
	Running the Streaming Services
	Running the Steering Service
	Running the Testbed
	Running the Video Player

	Challenges and Opportunities
	Content-Steering Optimization
	Zero-touch Network and Service Management (ZSM)
	Exploring Adaptation to Accommodate User Mobility

	Conclusion

