Redes complexas – MO804 (MC908) Modularidade e Detecção de Comunidades

Modularidade

Prof. Dr. Ruben Interian

Instituto de Computação, UNICAMP

Resumo

Revisão do conteúdo

- Revisão do conteúdo
- Modelo de configuração
- Modularidade
- Detecção de comunidades
- **Aplicações**

Resumo

- Revisão do conteúdo
- 2 Modelo de configuração
- Modularidade
- 4 Detecção de comunidades
- 6 Aplicações

Revisão do conteúdo

000000

<u>Homofilia</u> – tendência dos vértices de ter vínculos com outros vértices semelhantes.

Revisão do conteúdo

<u>Homofilia</u> – tendência dos vértices de ter vínculos com outros vértices semelhantes.

O que é "semelhantes"?

- Representação mais simples: dois vértices são "semelhantes" se pertencem ao mesmo grupo.
- Os vértices possuem atributos numéricos. Podemos usar a "similaridade" entre os atributos dos vértices.

Revisão do conteúdo

Homofilia – tendência dos vértices de ter vínculos com outros vértices semelhantes.

O que é "semelhantes"?

- Representação mais simples: dois vértices são "semelhantes" se pertencem ao mesmo grupo.
- Os vértices possuem atributos numéricos. Podemos usar a "similaridade" entre os atributos dos vértices.

Como avaliar a homofilia em uma rede real?

- Para um vértice?
- Para a rede inteira?

Como avaliar a homofilia de um vértice?

- Seja G = (V, E) um grafo, e seja $A = \{A_1, \dots, A_k\}$ uma coleção de k grupos de nós que formam uma partição do conjunto V.
- A homofilia de um nó v pode ser definida como a razão $h(v) = \frac{d_i(v)}{d(v)}$ entre o número de vizinhos de v que estão no seu grupo, e o grau de v.
- Se os grupos não influenciam na estrutura de arestas, então $h(v) \approx \frac{|A_i|}{|V|} = w_i$ é o valor **esperado** para h(v).
- Qual deve ser a **diferença** entre h(v) e w_i para que possamos afirmar que há homofilia? Analisamos a significância estatística de ter $d_i(v)$ adjacentes do mesmo grupo dentre os d(v) adjacentes.

Como avaliar a homofilia da rede inteira?

Atributos categóricos:

- Avaliar a diferença entre o número de arestas entre vértices de diferentes grupos, e o valor esperado do número de arestas entre vértices de diferentes grupos em uma rede sem homofilia.
- Se uma aresta é colocada aleatoriamente no grafo, então a chance de:
 - Escolher dois vértices de X é w_x^2 , e escolher dois vértices de Y é w_y^2 .
 - Escolher vértices de grupos diferentes é 2w_xw_y.
- Se a proporção de arestas intra-grupo é significativamente **maior** do que $w_x^2 + w_y^2$, então **há evidência** de homofilia.

Como avaliar a homofilia da rede inteira?

Modularidade

Atributos numéricos:

Usar o coeficiente de assortatividade numérico.

$$r=\frac{\frac{1}{m}\sum_{(u,v)}(x_u-\mu)(x_v-\mu)}{\sigma^2}.$$

- O coeficiente de assortatividade calcula o coeficiente de correlação de Pearson dos valores associados aos dois extremos das arestas do grafo.
- O valor de r varia de -1 a 1: um valor próximo de 1 indica homofilia. O valor zero indica que não há homofilia. Um valor próximo de -1 indica heterofilia.

Revisão do conteúdo

Pendências. No caso de atributos categóricos:

Pergunta 1: A diferença entre os números real e esperado de arestas intra-grupo na rede é **significativa**, **suficiente** para afirmar que há homofilia?

Modularidade

Pergunta 2: Podemos criar um **indicador simples** (um número) para a homofilia de uma rede?

Pergunta 3: O que fazer se temos mais de 2 grupos?

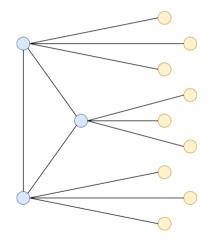
Resumo

Revisão do conteúdo

- Modelo de configuração

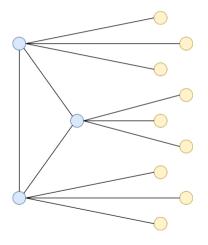
Revisitando a homofilia:

- Número de arestas dentro / entre os grupos:
 3 arestas no grupo azul, 9 entre os grupos.
 - :



Revisitando a homofilia:

- Número de arestas dentro / entre os grupos:
 3 arestas no grupo azul, 9 entre os grupos.
- Número esperado de arestas no grupo azul se não houvesse homofilia (rede aleatória):



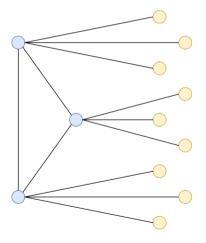
Revisão do conteúdo

Revisitando a homofilia:

- Número de arestas dentro / entre os grupos: 3 arestas no grupo azul, 9 entre os grupos.
- Número esperado de arestas no grupo azul se não houvesse homofilia (rede aleatória):

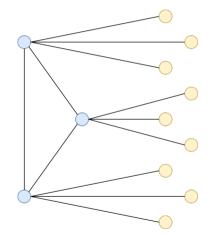
$$w_{\text{azul}}^2 \approx (\frac{1}{4})^2 = \frac{1}{16}$$

 \Rightarrow o esperado é $\frac{12}{16} = \frac{3}{4}$ arestas no grupo azul.

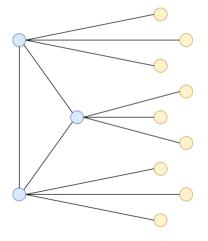


Revisão do conteúdo

- O esperado, em um grafo aleatório, é $\frac{3}{4}$ de aresta no grupo azul.
- Mas, se temos dois vértices de grau 5 em um grafo com 12 vértices, qual é a chance deles estarem conectados?...

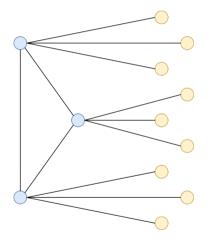


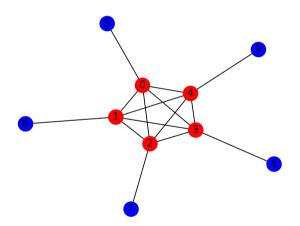
- O esperado, em um grafo aleatório, é ³/₄ de aresta no grupo azul.
- Mas, se temos dois vértices de grau 5 em um grafo com 12 vértices, qual é a chance deles estarem conectados?...
- A chance deles não estarem conectados é pequena. Entre 2 vértices azuis, é bem mais provável a aresta existir do que não existir!



- O esperado, em um grafo aleatório, é $\frac{3}{4}$ de aresta no grupo azul.
- Mas, se temos dois vértices de grau 5 em um grafo com 12 vértices, qual é a chance deles estarem conectados?...
- A chance deles não estarem conectados é pequena. Entre 2 vértices azuis, é bem mais provável a aresta existir do que não existir!
- Vértices de grau maior e menor precisam de uma análise diferenciada.

Precisamos considerar isso no nosso modelo!

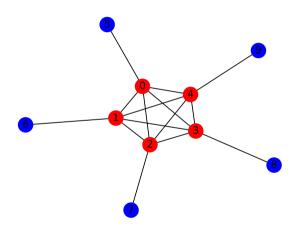




Nesta rede:

 Número de arestas dentro dos grupos:

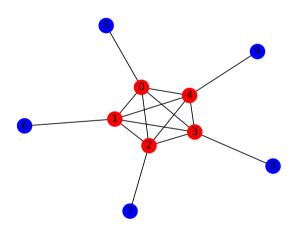
Revisão do conteúdo



Nesta rede:

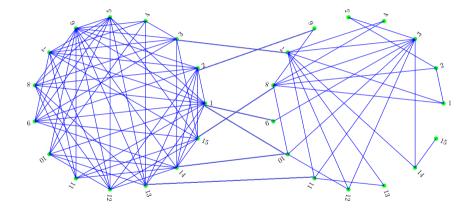
- Número de arestas dentro dos grupos: 10.
- Número esperado de arestas dentro dos grupos:

Revisão do conteúdo

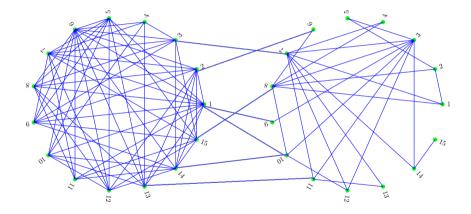


Nesta rede:

- Número de arestas dentro dos grupos: 10.
- Número esperado de arestas dentro dos grupos: ≈ 7.5 (6,7).
- Na verdade, este tipo de estrutura é esperada, se considerados os graus...



Homofilia revisited



Não parece correto aleatorizar todas as arestas!

Revisão do conteúdo

Objetivo: Criar um indicador numérico simples para a homofilia de uma rede, que contempla o caso de ter um número arbitrário de grupos, e que considere os diferentes graus dos vértices dessa rede.

Para isso, vamos estudar o modelo de configuração.

Modelo de configuração:

O que é uma rede aleatória na qual os graus dos vértices estão previamente definidos?

Modularidade

• A distribuição dos graus é fixa. Cada vértice v_i na rede tem grau $d(v_i) = k_i$. Temos: $\sum_i k_i = 2|E| = 2m$.

Modelo de configuração:

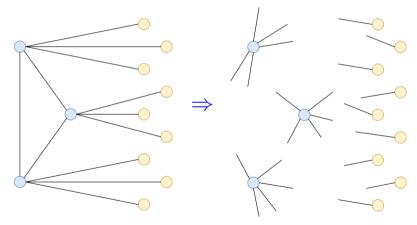
O que é uma rede aleatória na qual os graus dos vértices estão previamente definidos?

Modularidade

- A distribuição dos graus é fixa. Cada vértice v_i na rede tem grau $d(v_i) = k_i$. Temos: $\sum_i k_i = 2|E| = 2m$.
- Vamos a associar a cada vértice v_i uma quantidade k_i de objetos chamados stubs. ou meia-arestas ("metades de arestas"). Haverá 2m stubs ao todo.

Revisão do conteúdo

Associamos a cada vértice v_i uma quantidade k_i de objetos chamados stubs.



Procedimento:

- Escolher dois **stubs**, dentre os 2m, e conectá-los, criando uma aresta.
- Depois, escolher **outro par** dentre os 2m 2 **stubs** restantes.
- ... Assim até todos os stubs acabarem.

Resultado:

Procedimento:

Revisão do conteúdo

- Escolher dois **stubs**, dentre os 2m, e conectá-los, criando uma aresta.
- Depois, escolher **outro par** dentre os 2m-2 **stubs** restantes.
- Assim até todos os stubs acabarem.

Resultado: um grafo no qual o conjunto de arestas é gerado a partir de um emparelhamento dos stubs, há m arestas, e cada vértice v_i possui grau k_i .

Procedimento:

Revisão do conteúdo

- Escolher dois **stubs**, dentre os 2m, e conectá-los, criando uma aresta.
- Depois, escolher **outro par** dentre os 2m-2 **stubs** restantes.
- Assim até todos os stubs acabarem

Resultado: um grafo no qual o conjunto de arestas é gerado a partir de um emparelhamento dos stubs, há m arestas, e cada vértice v_i possui grau k_i .

Em particular, poderíamos fazer as escolhas aleatoriamente:

- Cada seguência de escolhas aleatórias gera um grafo.
- Cada stub tem a mesma probabilidade de se conectar a qualquer outro.

Revisão do conteúdo

O modelo de configuração de um grafo é o espaço (conjunto) de todos os emparelhamentos possíveis entre os *stubs*. Cada emparelhamento define um conjunto de arestas E, e um grafo G = (V, E).

O modelo de configuração de um grafo é o **espaço** (conjunto) **de todos os emparelhamentos** possíveis entre os *stubs*. Cada emparelhamento define um conjunto de arestas E, e um grafo G = (V, E).

Observações:

• A rede gerada dessa forma pode conter um laço ou uma aresta múltipla!

Revisão do conteúdo

O modelo de configuração de um grafo é o espaço (conjunto) de todos os emparelhamentos possíveis entre os *stubs*. Cada emparelhamento define um conjunto de arestas E, e um grafo G = (V, E).

Observações:

- A rede gerada dessa forma pode conter um laço ou uma aresta múltipla!
- Evitar laços e arestas múltiplas leva a problemas!

Revisão do conteúdo

O modelo de configuração de um grafo é o espaço (conjunto) de todos os emparelhamentos possíveis entre os *stubs*. Cada emparelhamento define um conjunto de arestas E, e um grafo G = (V, E).

Observações:

- A rede gerada dessa forma pode conter um laço ou uma aresta múltipla!
- Evitar laços e arestas múltiplas leva a problemas!
- Felizmente, a densidade de laços e arestas múltiplas geradas **tende a zero** quando o número de nós na rede $n \to \infty$. Portanto, podemos negligenciar este fato: consideraremos apenas os grafos simples que um modelo de configuração define.

Probabilidade de uma aresta entre dois vértices v_i e v_j no modelo de configuração:

• Chance de um stub específico se conectar com outro stub específico: $\frac{1}{2m-1}$.

Probabilidade de uma aresta entre dois vértices v_i e v_j no modelo de configuração:

Modularidade

- Chance de um stub específico se conectar com outro stub específico: $\frac{1}{2m-1}$.
- Chance de um stub de v_i se conectar com um dos stubs de v_j : $\frac{k_j}{2m-1}$.

Probabilidade de uma aresta entre dois vértices v_i e v_j no modelo de configuração:

- Chance de um stub específico se conectar com outro stub específico: $\frac{1}{2m-1}$.
- Chance de um stub de v_i se conectar com um dos stubs de v_j : $\frac{k_j}{2m-1}$.
- Chance de um vértice v_i com k_i stubs se conectar com o vértice v_j : $\frac{k_i k_j}{2m-1}$.

Probabilidade de uma aresta entre dois vértices v_i e v_i no modelo de configuração:

- Chance de um stub específico se conectar com outro stub específico: $\frac{1}{2m-1}$.
- Chance de um stub de v_i se conectar com um dos stubs de v_j : $\frac{k_j}{2m-1}$.
- Chance de um vértice v_i com k_i stubs se conectar com o vértice v_j : $\frac{k_i k_j}{2m-1}$.
- No limite (se m é grande), podemos ignorar o valor -1 do denominador:

$$p_{ij}=\frac{k_ik_j}{2m}.$$

Resumo

Revisão do conteúdo

- Revisão do conteúdo
- 2 Modelo de configuração
- Modularidade
- 4 Detecção de comunidades
- 6 Aplicações

Revisão do conteúdo

A modularidade é uma forma estatisticamente mais precisa de avaliar a homofilia de uma rede.

- A modularidade é baseada no modelo de configuração.
- É um indicador numérico para a homofilia de uma rede.
- Não assume que há um número específico de grupos.

Revisão do conteúdo

• Seja $A = \{A_1, \dots, A_k\}$ uma coleção de k grupos de nós, e s_i é o grupo do nó v_i . (A é uma partição do conjunto de vértices V.)

Modularidade

000000000000000000

Revisão do conteúdo

• Seja $A = \{A_1, \dots, A_k\}$ uma coleção de k grupos de nós, e s_i é o grupo do nó v_i . (A é uma partição do conjunto de vértices V.)

Modularidade

• No modelo de configuração, a chance de uma aresta entre v_i e v_i existir é: $\frac{k_i k_j}{2m}$. Qual é o valor esperado do número total de arestas entre vértices que pertencem ao mesmo grupo?

Revisão do conteúdo

- Seja $A = \{A_1, \dots, A_k\}$ uma coleção de k grupos de nós, e s_i é o grupo do nó v_i . (A é uma partição do conjunto de vértices V.)
- No modelo de configuração, a chance de uma aresta entre v_i e v_i existir é: $\frac{k_i k_j}{2m}$. Qual é o valor esperado do número total de arestas entre vértices que pertencem ao mesmo grupo?

$$\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\delta(s_i,s_j),$$

onde $\delta(s_i, s_i) = 1$ se $s_i = s_i$, e $\delta(s_i, s_i) = 0$ se $s_i \neq s_i$ (delta de Kronecker).

• Número esperado de arestas entre vértices no mesmo grupo:

$$\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\;\delta(s_i,s_j).$$

Modularidade

• **Número esperado** de arestas entre vértices no mesmo grupo:

$$\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\;\delta(s_i,s_j).$$

Modularidade

• Número real de arestas entre vértices no mesmo grupo?

Revisão do conteúdo

• **Número esperado** de arestas entre vértices no mesmo grupo:

$$\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\;\delta(s_i,s_j).$$

• Número real de arestas entre vértices no mesmo grupo?

$$\sum_{(v_i,v_j)\in E} \delta(s_i,s_j) = \frac{1}{2} \sum_{ij} a_{ij} \delta(s_i,s_j),$$

onde $a_{ii} = 1$ se há aresta entre v_i e v_i .

Diferença entre o número real e número esperado de arestas dentro dos grupos:

$$\frac{1}{2}\sum_{ij}\mathsf{a}_{ij}\;\delta(\mathsf{s}_i,\mathsf{s}_j)-\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\;\delta(\mathsf{s}_i,\mathsf{s}_j)=\frac{1}{2}\sum_{ij}\left(\mathsf{a}_{ij}-\frac{k_ik_j}{2m}\right)\delta(\mathsf{s}_i,\mathsf{s}_j).$$

Revisão do conteúdo

Diferença entre o número real e número esperado de arestas dentro dos grupos:

$$\frac{1}{2}\sum_{ij}a_{ij}\,\,\delta(s_i,s_j)-\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\,\,\delta(s_i,s_j)=\frac{1}{2}\sum_{ij}\left(a_{ij}-\frac{k_ik_j}{2m}\right)\delta(s_i,s_j).$$

Normalizando (dividindo pelo número de arestas *m*):

$$Q = \frac{1}{2m} \sum_{ii} \left(a_{ij} - \frac{k_i k_j}{2m} \right) \delta(s_i, s_j).$$

Diferença entre o número real e número esperado de arestas dentro dos grupos:

Modularidade

•000000000000000

$$\frac{1}{2}\sum_{ij}a_{ij}\,\,\delta(s_i,s_j)-\frac{1}{2}\sum_{ij}\frac{k_ik_j}{2m}\,\,\delta(s_i,s_j)=\frac{1}{2}\sum_{ij}\left(a_{ij}-\frac{k_ik_j}{2m}\right)\delta(s_i,s_j).$$

Normalizando (dividindo pelo número de arestas *m*):

$$Q = \frac{1}{2m} \sum_{ii} \left(a_{ij} - \frac{k_i k_j}{2m} \right) \delta(s_i, s_j).$$

O valor Q é chamado de **modularidade**.

$$Q = \frac{1}{2m} \sum_{ij} \left(a_{ij} - \frac{k_i k_j}{2m} \right) \delta(s_i, s_j)$$

Modularidade

•0000000000000

A modularidade Q avalia, dado um grafo G e uma partição A dos vértices, o número real de arestas intra-grupo existentes.

A modularidade subtrai do número real de arestas intra-grupo, o número esperado dessas arestas em uma rede com os mesmos vértices, os mesmos grupos e os mesmos graus dos vértices, mas com as arestas colocadas aleatoriamente.

Revisão do conteúdo

$$Q = \frac{1}{2m} \sum_{ij} \left(a_{ij} - \frac{k_i k_j}{2m} \right) \delta(s_i, s_j)$$

A modularidade Q avalia, dado um grafo G e uma partição A dos vértices, o número real de arestas intra-grupo existentes.

A modularidade subtrai do número real de arestas intra-grupo, o número esperado dessas arestas em uma rede com os mesmos vértices, os mesmos grupos e os mesmos graus dos vértices, mas com as arestas colocadas aleatoriamente.

A modularidade foi proposta por Mark Newman, da Universidade de Michigan, autor de vários trabalhos de grande impacto no século XXI na área de redes complexas.

Revisão do conteúdo

Resumo da fórmula:

$$Q = rac{1}{2m} \sum_{ij} \left(a_{ij} - rac{k_i k_j}{2m}
ight) \delta(s_i, s_j), ext{ onde}$$

- m = |E| > 0 é o número de arestas na rede;
- $a_{ij} = 1$ se há aresta entre v_i e v_j , senão 0;
- $k_i = d(v_i)$ é o grau do vértice $v_i \in V$;
- $\delta(s_i, s_j) = 1$ se v_i e v_j estão no mesmo grupo, senão 0.

Revisão do conteúdo

Resumo da fórmula:

$$Q = rac{1}{2m} \sum_{ij} \left(a_{ij} - rac{k_i k_j}{2m}
ight) \delta(s_i, s_j), ext{ onde}$$

- m = |E| > 0 é o número de arestas na rede;
- $a_{ii} = 1$ se há aresta entre v_i e v_i , senão 0;
- $k_i = d(v_i)$ é o grau do vértice $v_i \in V$:
- $\delta(s_i, s_i) = 1$ se v_i e v_i estão no mesmo grupo, senão 0.

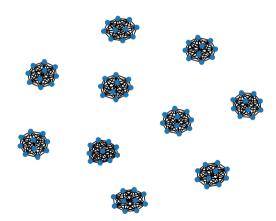
Os valores da modularidade estão no intervalo $\left[-\frac{1}{2},1\right)$.

Revisão do conteúdo

Pergunta: Para qual rede e partição dos nós o valor da modularidade pode ser ≈ 1 ?

Revisão do conteúdo

Pergunta: Para qual rede e partição dos nós o valor da modularidade pode ser ≈ 1 ?



Revisão do conteúdo

Pergunta: Para qual rede e partição dos nós o valor da modularidade pode ser ≈ 0 ?

Revisão do conteúdo

Pergunta: Para qual rede e partição dos nós o valor da modularidade pode ser ≈ 0 ?

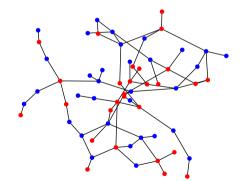
Resposta 1: Se a partição contém um único grupo, Q = 0. Por quê?

Revisão do conteúdo

Pergunta: Para qual rede e partição dos nós o valor da modularidade pode ser ≈ 0 ?

Resposta 1: Se a partição contém um único grupo, Q = 0. Por quê?

Resposta 2: Se o número de arestas nos grupos não é maior do que "o esperado".

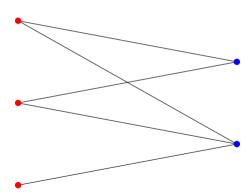


Pergunta: Para qual rede e partição dos nós o valor da modularidade pode ser $\approx -\frac{1}{2}$?

Modularidade

0000000000000000000

Pergunta: Para qual rede e partição dos nós o valor da modularidade pode ser $\approx -\frac{1}{2}$?



Revisão do conteúdo

Qual é a complexidade computacional do cálculo da modularidade pela fórmula?

$$Q = \frac{1}{2m} \sum_{ii} \left(a_{ij} - \frac{k_i k_j}{2m} \right) \delta(s_i, s_j)$$

Qual é a complexidade computacional do cálculo da modularidade pela fórmula?

Modularidade

00000000000000000

$$Q = \frac{1}{2m} \sum_{ij} \left(a_{ij} - \frac{k_i k_j}{2m} \right) \delta(s_i, s_j)$$

A complexidade é $O(n^2)$. O custo é alto para redes esparsas!

Revisão do conteúdo

Como calcular a modularidade de forma eficiente?

Revisão do conteúdo

Como calcular a modularidade de forma eficiente?

Solução: fórmula "centrada em comunidades". Primeiro, vamos reescrever a fórmula:

$$Q = \frac{1}{2m} \sum_{ij} \left(a_{ij} - \frac{k_i k_j}{2m} \right) \delta(s_i, s_j)$$

$$Q = \frac{1}{2m} \sum_{k} \sum_{i \ i \in \Delta_k} \left(a_{ij} - \frac{k_i k_j}{2m} \right)$$

$$Q = \frac{1}{2m} \sum_{k} \sum_{i, j \in A_k} \left(a_{ij} - \frac{k_i k_j}{2m} \right)$$

Revisão do conteúdo

$$Q = \frac{1}{2m} \sum_{k} \sum_{i,j \in A_k} \left(a_{ij} - \frac{k_i k_j}{2m} \right)$$

$$Q = \frac{1}{2m} \sum_{k} \sum_{i,j \in A_k} a_{ij} - \frac{1}{2m} \sum_{k} \sum_{i,j \in A_k} \frac{k_i k_j}{2m}$$

$$Q = \sum_{k} \sum_{i,j \in A_k} \frac{a_{ij}}{2m} - \frac{1}{4m^2} \sum_{k} \sum_{i,j \in A_k} k_i k_j$$

Revisão do conteúdo

$$Q = \frac{1}{2m} \sum_{k} \sum_{i,j \in A_k} \left(a_{ij} - \frac{k_i k_j}{2m} \right)$$

$$Q = \frac{1}{2m} \sum_{k} \sum_{i,j \in A_k} a_{ij} - \frac{1}{2m} \sum_{k} \sum_{i,j \in A_k} \frac{k_i k_j}{2m}$$

$$Q = \sum_{k} \sum_{i,j \in A_k} \frac{a_{ij}}{2m} - \frac{1}{4m^2} \sum_{k} \sum_{i,j \in A_k} k_i k_j$$

O valor $\sum_{i,j\in A_k} \frac{a_{ij}}{2m}$ é $2\times$ o número de arestas no grupo A_k , dividido por 2m. Ou seja, é a fração real de arestas dentro do grupo A_k . Vamos chamar este valor de e_k :

$$\sum_{i,j\in A_k}\frac{a_{ij}}{2m}=e_k.$$

Revisão do conteúdo

$$Q = \sum_{k} e_k - \frac{1}{4m^2} \sum_{k} \sum_{i,j \in A_k} k_i k_j$$

$$\sum_{i,j\in A_k} k_i k_j = \sum_{i\in A_k} \sum_{j\in A_k} k_i k_j = \sum_{i\in A_k} k_i \sum_{j\in A_k} k_j = \left(\sum_{i\in A_k} k_i\right)^2$$

$$Q = \sum_{k} e_k - \frac{1}{4m^2} \sum_{k} \sum_{i,j \in A_k} k_i k_j$$

$$\sum_{i,j\in A_k} k_i k_j = \sum_{i\in A_k} \sum_{j\in A_k} k_i k_j = \sum_{i\in A_k} k_i \sum_{j\in A_k} k_j = \left(\sum_{i\in A_k} k_i\right)^2$$

$$Q = \sum_{k} e_k - \frac{1}{4m^2} \sum_{k} \left(\sum_{i \in A_k} k_i \right)^2 = \sum_{k} e_k - \sum_{k} \left(\frac{\sum_{i \in A_k} k_i}{2m} \right)^2$$

$$Q = \sum_{k} e_k - \frac{1}{4m^2} \sum_{k} \sum_{i,j \in A_k} k_i k_j$$

$$\sum_{i,j\in A_k} k_i k_j = \sum_{i\in A_k} \sum_{j\in A_k} k_i k_j = \sum_{i\in A_k} k_i \sum_{j\in A_k} k_j = \left(\sum_{i\in A_k} k_i\right)^2$$

$$Q = \sum_{k} e_k - \frac{1}{4m^2} \sum_{k} \left(\sum_{i \in A_k} k_i \right)^2 = \sum_{k} e_k - \sum_{k} \left(\frac{\sum_{i \in A_k} k_i}{2m} \right)^2$$

O valor $\frac{\sum_{i \in A_k} k_i}{2m} = a_k$ é o grau total do grupo, dividido por 2m.

Outra interpretação: é a **fração de stubs** incidentes aos vértices no grupo k.

Revisão do conteúdo

Forma mais fácil de calcular a modularidade:

$$Q=\sum_k(e_k-a_k^2).$$

- e_k : número de arestas no grupo A_k , dividido por m. Representa a fração real de arestas dentro dos grupos.
- a_k : grau total do grupo k, dividido por 2m (ou fração de stubs incidentes aos vértices do grupo k no modelo de configuração).

Forma mais fácil de calcular a modularidade:

$$Q=\sum_k(e_k-a_k^2).$$

Modularidade

- e_{k} : número de arestas no grupo A_{k} , dividido por m. Representa a fração real de arestas dentro dos grupos.
- a_k : grau total do grupo k, dividido por 2m (ou fração de stubs incidentes aos vértices do grupo k no modelo de configuração).

Complexidade computacional do cálculo da modularidade pela fórmula "eficiente"?

Forma mais fácil de calcular a modularidade:

$$Q=\sum_k(e_k-a_k^2).$$

Modularidade

- e_k : número de arestas no grupo A_k , dividido por m. Representa a fração real de arestas dentro dos grupos.
- a_k : grau total do grupo k, dividido por 2m (ou fração de stubs incidentes aos vértices do grupo k no modelo de configuração).

Complexidade computacional do cálculo da modularidade pela fórmula "eficiente"?

- Complexidade O(n+m). O custo é linear!

Modularidade: versão eficiente

Revisão do conteúdo

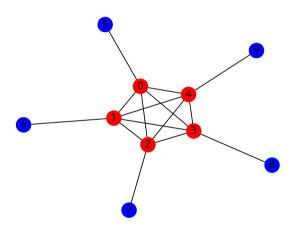
Exemplo, se temos três grupos:

$$Q = \sum_{k} (e_k - a_k^2) = (e_1 - a_1^2) + (e_2 - a_2^2) + (e_3 - a_3^2).$$

Cada um desses termos representa a contribuição de um grupo à modularidade da rede inteira!

Modularidade

Revisão do conteúdo



Nesta rede:

- Número de arestas dentro dos grupos: 10.
- Número esperado de arestas dentro dos grupos (*old*): 7,5.
- Valor da modularidade: -0,05.

Revisão do conteúdo

Pendências:

- ? **Pergunta 1**: A diferença entre os números real e esperado de arestas intra-grupo na rede é **significativa**, **suficiente** para afirmar que há homofilia?
 - Um valor de modularidade a partir de 0,3 geralmente é considerado um indicador da existência de uma estrutura de comunidades na rede.
- ✓ **Pergunta 2**: Podemos criar um **indicador simples** (um número) para a homofilia de uma rede?
- ✓ Pergunta 3: O que fazer se temos mais de 2 grupos?

Modularidade

Revisão do conteúdo

E em grafos com pesos nas arestas? - Não muda nada!

$$Q = \frac{1}{2W} \sum_{ij} \left(w_{ij} - \frac{w_i^T w_j^T}{2W} \right) \delta(s_i, s_j),$$

onde:

- w_{ii} são os pesos das arestas;
- W é o peso total de todas as arestas:
- w_i^T são os pesos totais das arestas incidentes ao vértice.

Resumo

- Detecção de comunidades

Revisão do conteúdo

O que é detecção de comunidades?

• Suponha agora que temos apenas o grafo G = (V, E). Não temos uma partição dos vértices definida!

Revisão do conteúdo

O que é detecção de comunidades?

• Suponha agora que temos apenas o grafo G = (V, E). Não temos uma partição dos vértices definidal

Modularidade

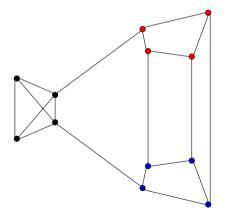
• Existem muitas formas de particionar (dividir) os vértices em grupos. É impossível checar todas elas!

Revisão do conteúdo

O que é detecção de comunidades?

- Suponha agora que temos apenas o grafo G = (V, E). Não temos uma partição dos vértices definidal
- Existem muitas formas de particionar (dividir) os vértices em grupos. É impossível checar todas elas!
- Algumas divisões (partições) são melhores do que outras. Como avaliar qual é a melhor? ⇒ Modularidade!

Revisão do conteúdo



Modularidade:

Modularidade

• Se juntamos os nós vermelhos e azuis no mesmo grupo:

$$Q \approx 0.36$$
.

• Se consideramos os 3 grupos: $Q \approx 0.40$.

Revisão do conteúdo

Ideia de todos os métodos de detecção de comunidades:

Devemos ter muitas arestas entre vértices do mesmo grupo, e comparativamente poucas arestas entre vértices de grupos diferentes.

Ideias: um "bom grupo" seria aquele no qual a densidade das arestas dentro do grupo é grande? No qual os cortes entre os grupos seriam os menores?

Ideia de todos os métodos de detecção de comunidades:

Devemos ter muitas arestas entre vértices do mesmo grupo, e comparativamente poucas arestas entre vértices de grupos diferentes.

Ideias: um "bom grupo" seria aquele no qual a densidade das arestas dentro do grupo é grande? No qual os cortes entre os grupos seriam os menores?

Os modelos mais utilizados são aqueles baseados na otimização da modularidade. Melhor partição – aquela para a qual a função Q possui o maior valor!

• O número de grupos não é fixo. Ele pode variar de 0 até |V|!

Santo Fortunato: "Community detection in graphs" (2010). \rightarrow +8900 citações no Scopus, +13600 citações no Google Scholar.

Revisão do conteúdo

A modularidade permite avaliar se uma dada divisão dos vértices em grupos é apropriada:

• Enquanto maior o valor da modularidade Q, melhor é a partição proposta.

A modularidade é a função objetivo a ser maximizada no problema de encontrar a melhor particão dos vértices em comunidades!

Revisão do conteúdo

Encontrar uma partição dos vértices em grupos que maximize o valor de modularidade é um problema **NP-difícil**!

Modularidade

U. Brandes et al., "On Modularity Clustering", *IEEE Transactions on Knowledge and Data Engineering*, v. 20, pp. 172-188 (2008).

Detecção de comunidades: pergunta de controle

Em quais tipos de grafos, **independentemente da partição dos vértices escolhida**, o valor da modularidade será zero?

Revisão do conteúdo

Detecção de comunidades: pergunta de controle

Em quais tipos de grafos, **independentemente da partição dos vértices escolhida**, o valor da modularidade será zero?

Em grafos completos.

Modularidade

Resumo

- 6 Aplicações

Aplicações

Revisão do conteúdo

A modularidade é usada no contexto da detecção de comunidades nas mais diversas áreas para identificar estruturas ou grupos de vértices presentes nessas redes:

Modularidade

- Nas redes de interação de proteínas, as comunidades agrupam proteínas que têm a mesma função específica dentro da célula;
- Na World Wide Web, os grupos correspondem a páginas relacionadas aos mesmos tópicos, interesses ou negócios:
- Identificar grupos de clientes com interesses semelhantes permite criar bons sistemas de recomendação (www.amazon.com).

Material bibliográfico

- M. Newman, M. Girvan: "Finding and evaluating community structure in networks" (2004).
- S. Fortunato: "Community detection in graphs" (2010).
- S. Fortunato, D. Hric: "Community detection in networks: A user guide" (2016).

Dúvidas

Dúvidas?