Chapter 1

Introduction

This course is all about how computers work
But what do we mean by a computer?

— Different types: desktop, servers, embedded devices

— Different uses: automobiles, graphics, finance, genomics...

— Different manufacturers: Intel, Apple, IBM, Microsoft, Sun...

— Different underlying technologies and different costs!
Analogy: Consider a course on “automotive vehicles”

— Many similarities from vehicle to vehicle (e.g., wheels)

— Huge differences from vehicle to vehicle (e.g., gas vs. electric)
Best way to learn:

— Focus on a specific instance and learn how it works

— While learning general principles and historical perspectives

Why learn this stuff?

You want to call yourself a “computer scientist”
You want to build software people use (need performance)
You need to make a purchasing decision or offer “expert” advice

Both Hardware and Software affect performance:
— Algorithm determines number of source-level statements

— Language/Compiler/Architecture determine machine instructions
(Chapter 2 and 3)

— Processor/Memory determine how fast instructions are executed
(Chapter 5, 6, and 7)

Assessing and Understanding Performance in Chapter 4

What is a computer?

* Components:
— input (mouse, keyboard)
— output (display, printer)
— memory (disk drives, DRAM, SRAM, CD)
— network
e Our primary focus: the processor (datapath and
control)
— implemented using millions of transistors
— Impossible to understand by looking at each transistor
— We need...

High-level
language

Abstraction =

* Delving into the depths
reveals more information

language
program
(for MIPS)

 An abstraction omits unneeded detail,
helps us cope with complexity

Binary machine
language
program

(for MIPS)

What are some of the details that
appear in these familiar abstractions?

swap(int v[], int k)
{int temp;
temp = v[Kk];
VIK] = vik+1];
v[k+1] = temp;
}

Compiler

L

swap:

muli $2, $5,4
add $2, $4,$2
w $15, 0($2)
w $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)
jr $31

l

Assembler

!

0000000010100001000000000001 1000
000000000001 10000001100000100001
10001100011000100000000000000000
10001100111100100000000000000100
10101100111100100000000000000000
10101100011000100000000000000100
00000011111000000000000000001000

How do computers work?

* Need to understand abstractions such as:
— Applications software
— Systems software
— Assembly Language
— Machine Language
— Architectural Issues: i.e., Caches, Virtual Memory, Pipelining
— Sequential logic, finite state machines
— Combinational logic, arithmetic circuits
— Boolean logic, 1s and Os
— Transistors used to build logic gates (CMOS)
— Semiconductors/Silicon used to build transistors
— Properties of atoms, electrons, and quantum dynamics

e So much to learn!

Instruction Set Architecture

 Averyimportant abstraction
— interface between hardware and low-level software
— standardizes instructions, machine language bit patterns, etc.
— advantage: different implementations of the same architecture
— disadvantage: sometimes prevents using new innovations

True or False: Binary compatibility is extraordinarily important?

e Modern instruction set architectures:
— 1A-32, PowerPC, MIPS, SPARC, ARM, and others

Historical Perspective

 ENIAC built in World War Il was the first general
purpose computer
— Used for computing artillery firing tables
— 80 feet long by 8.5 feet high and several feet wide
— Each of the twenty 10 digit registers was 2 feet long
— Used 18,000 vacuum tubes
— Performed 1900 additions per second

—Since then:
Moore’s Law:

transistor capacity doubles
every 18-24 months

ENIAC

\!l..ﬁ,r.w.,,}
ALY

I N //. .

