
Chapter 1

Introduction

• This course is all about how computers work

• But what do we mean by a computer?

– Different types: desktop, servers, embedded devices

– Different uses: automobiles, graphics, finance, genomics…

– Different manufacturers: Intel, Apple, IBM, Microsoft, Sun…

– Different underlying technologies and different costs!

• Analogy: Consider a course on “automotive vehicles”

– Many similarities from vehicle to vehicle (e.g., wheels)

– Huge differences from vehicle to vehicle (e.g., gas vs. electric)

• Best way to learn:

– Focus on a specific instance and learn how it works

– While learning general principles and historical perspectives

Why learn this stuff?
• You want to call yourself a “computer scientist”

• You want to build software people use (need performance)

• You need to make a purchasing decision or offer “expert” advice

• Both Hardware and Software affect performance:

– Algorithm determines number of source-level statements

– Language/Compiler/Architecture determine machine instructions
(Chapter 2 and 3)

– Processor/Memory determine how fast instructions are executed
(Chapter 5, 6, and 7)

• Assessing and Understanding Performance in Chapter 4

What is a computer?

• Components:
– input (mouse, keyboard)
– output (display, printer)
– memory (disk drives, DRAM, SRAM, CD)
– network

• Our primary focus: the processor (datapath and
control)
– implemented using millions of transistors
– Impossible to understand by looking at each transistor
– We need...

Abstraction

• Delving into the depths
reveals more information

• An abstraction omits unneeded detail,
helps us cope with complexity

What are some of the details that
appear in these familiar abstractions?

How do computers work?
• Need to understand abstractions such as:

– Applications software
– Systems software
– Assembly Language
– Machine Language
– Architectural Issues: i.e., Caches, Virtual Memory, Pipelining
– Sequential logic, finite state machines
– Combinational logic, arithmetic circuits
– Boolean logic, 1s and 0s
– Transistors used to build logic gates (CMOS)
– Semiconductors/Silicon used to build transistors
– Properties of atoms, electrons, and quantum dynamics

• So much to learn!

Instruction Set Architecture

• A very important abstraction

– interface between hardware and low-level software

– standardizes instructions, machine language bit patterns, etc.

– advantage: different implementations of the same architecture

– disadvantage: sometimes prevents using new innovations

True or False: Binary compatibility is extraordinarily important?

• Modern instruction set architectures:
– IA-32, PowerPC, MIPS, SPARC, ARM, and others

Historical Perspective

• ENIAC built in World War II was the first general
purpose computer
– Used for computing artillery firing tables

– 80 feet long by 8.5 feet high and several feet wide

– Each of the twenty 10 digit registers was 2 feet long

– Used 18,000 vacuum tubes

– Performed 1900 additions per second

–Since then:

Moore’s Law:

transistor capacity doubles
every 18-24 months

ENIAC

