COMPUTER ORGANIZATION AND DESIGN

The Hardware/Software Interface

‘ Chapter 2

Instructions: Language

of the Computer ———

-_

The MIPS Instruction Set

Used as the example throughout the book
Stanford MIPS commercialized by MIPS
Technologies ()

Large share of embedded core market

Applications in consumer electronics, network/storage
equipment, cameras, printers, ...

Typical of many modern ISAs

See MIPS Reference Data tear-out card, and
Appendixes B and E

Chapter 2 — Instructions: Language of the Computer — 3

Arithmetic Example o)

C code: @
f= @ mEGED:

Compiled MIPS code:

add t0, g, h # temp tO
add t1, 1, j # temp tl
sub f, t0, t1 # f = t0 - t

g+ h
i+ 3
1

Chapter 2— Instructions: Language of the Computer — 5

Instruction Set IS4

The repertoire of instructions of a
computer

Different computers have different
instruction sets
But with many aspects in common

Early computers had very simple
instruction sets

Simplified implementation
Many modern computers also have simple
instruction sets

Chapter 2— Instrustions: Language of the Computer — 2

Arithmetic Operations

Add and subtract, three operands

Two sources and one destination
add a, b, ¢ # a gets b + ¢
All arithmetic operations have this form
Design Principle 1: Simplicity favours

regularity
Regularity makes implementation@
Simplicity enables higher performan
lower cost -

N

Chapter 2— Instrustions: Language of the Computer — 4

Register Operands

Arithmetic instructions use register
operands
MIPS has a 32 x 32-bit register file
Use for frequently accessed data
Numbered 0 to 31
32-bit data called a “word”
Assembler names
‘ , ...,for temporary values
$s0, $s1, ..., $s7 for saved variables
Design Principle 2: Smaller is faster
c.f. main memory: millions of locations

Chapter 2— Instrustions: Language of the Computer — 6

Register Operand Example
C code:

f=0@+h -G+ 3
f,...,jin$s0, ..., $s4

Compiled IVIIP§J code:
@L\,

add $t0,
add $tl, $s3, $s4
(sub $t0, $t1

&= _ _
Pt
‘t‘é R

Chapter 2— Instructions: Language of the Computer —7

Memory Operands Ve
Main memory used for composite data

L
Arrays, structures, dynamic data 32 él%

To apply arithmetic operations

(Toad valtiesfrom memory into registers
Store result from register to memory

Memory is byte addressed [4 tﬂw

ach address identifies an 8-bit byte
NordSare aligned in memory
ddress must be a multiple of 4

MIPS is Big Endian
Most-significant byte at least address of a word
c.f. Little Endian: least-significant byte at least address

Chapter 2— Instructions: Language of the Computer — 8

Memory Operand Example 1
odl 3, $a8
lw i&e,@lw)

Compiled MIPS code:
Index 8 reqjuires offset of 32
4 bytes erw-l—
’L Tw $t0, {32($s3) # load word
add $s1,/$s , 1$to

|
] (o] A

Chapter 2— Instructions: Language of the Computer — 9

Memory Operand Example 2
C code: dushmo
A[12] = h + /AL8); 7
292 in $s2, base addr of Ain $s3

< Compiled MIPS-€ode:
lires offset of 32

32($s3) # load word
$s2, $to0

store word
1|
@ 5

f}

Chapter 2 — Instructions: Language of the Computer— 10

Registers vs. Memory
Registers are faster to access than
memory
Operating on memory data requires loads
and stores
More instructions to be executed
Compiler must use registers for variables

as much as possible

Only spill to memory for less frequently used
variables

Register optimization is important! :0/3_/

Chapter 2 — Instructions: Language of the Computer — 11

mmediate Operands

Constant data spcié'fied in an instruction

ad@ $s3, $s3, 4
No subtract immediate instruction

Just use a negati onstant
addi $s2, $51,C§2
Design Principle 3-Make the common

case fast
= Small constants are common
Immediate operand avoids a load instruction

Chapter 2 — Instructions: Language of the Computer — 12

The Constant Zero
MIPS register 0 ($zero) is the constant O
Cannot be overwritten

Useful for common operations

E.g., move between registers
add $t2, $s1, $zero

Chapter 2 — Instructions: Language of the Computer — 13

d/Binary Integers

Given an n-bit number
X=X 42" 4%, _, 2" 4 x, 2" +%,2°

Range:\0to +2" - 1

Example
0000 0000 0000 0000 0000 0000 0000 1011,
=0+ .. +1X224+0x22+1x21 +1x20
=0+...+8+0+2+1=11

Using 32 bits

A—/

0to +4,294,967,295
-t

Chapter 2 — Instructions: Language of the Computer — 14

2s-Complement Signed Integers

Given an n-bit number
X=X, 2" %, 2" 4%, 2"+ % 2°

Range: —2"-1to +2n-1-1
= BT Ty
Example

1111 1111 1111 1111 1111 1111 1111 1100,
=1 X2+ 1x230 4+ +1x2240x2140x 20
=-2,147,483,648 + 2,147,483 644 = —4,,

Using @
—2.147 483,648 to +2,147,483,647

Chapter 2 — Instrustions: Language of the Computer — 15

2s-Complement Signed Integers
Bit 31 is sign bit

1 for negative numbers

0 for non-negative numbers
—(—2n="1 can't be represented
Non-negative numbers have the same unsigned
and 2s-complement representation
Some specific numbers

0: 0000 0000 ... 0000

=111 1111 L 1111

Most-negative: 1000 0000 ... 0000

Mostpositive: 0111 1111 ... 1111

Chapter2 — Language of the puter — 16

Signed Negation

Complement and add 1
Complement means 1 — 0,0 — 1
X+x=1111...111,=-1
X+1=—x

Example: negate +2
+2 = 0000 0000 ... 0010,
2= 11111111 . 1101, 41

=111 1111 1110,

Chapter 2 — Instructions: Language of the Computer — 17

Sign Extension
Representing a number using more bits

Preserve the numeric value
In MIPS instruction set

addi? extend immediate value \V) | Su/

Tb, Th: extend loaded byte/halfword

beq, bne: extend the displacement
Replicate the sign bit to the left

c.f. unsigned values: extend with Os
Examples: 8-bit to 16-bit &0

+2: 0000 0010 => 000 0010
=2 =>
2: 1111 1110 w_‘

Chapter 2 — Instructions: Language of the Computer— 18

Representing Instructions

Instructions are encoded in binary
Called machine code

MIPS instructions
Encoded as 32-hit instruction words

Small number of formats encoding operation code
(opcode), register numbers, ...

= Regularity!

Register numbers
$t0 — $t7 arereg's 8 — 15
$t8 — $t9 are reg's 24 - 25
$s0 - $s7 are reg's 16 — 23

Chapter 2 — Instructions: Language of the Computer — 19

| MXample

} op | rs | rt | rd | shamt | funct
6 bits 5 bits 5 bits 5 bits 5 bits 6 bits

—padd $t0, $s1, $s2

P,
[speciali $s1 I $s2 | $t0 | 0 |/add
.Y
[o TQ/[(e)[7e)] o [=2]

[<oooo0o. [10001 | 10010 [01000 | ooooo [(teo00g)}] &

00000010001100100100000000100000), = 02324020,4

L\#iﬂ%"\m

MIPS R-format Instructions
T P

op I\ ‘rs\| \H\\L\\Ld\\l shamt | funct |

6 hits 5 bits 5bits 4' 5 hits 5 bits 6 bits

Instruction fields 3 Wk ¢

op: operation code (opcode)

rs: first source register number '

rt: second source register number L

rd: destination register number

shamt: shift amount (00000 for now) Z

funct: function code (extends opcode)

T

s NN ASS

Chapter 2 — Instructions: Language of the Computer — 20

Chapter 2 — Instructions: Language of the Computer — 21

Hexadecimal

Base 16
Compact representation of bit strings
4 bits per hex digit

0 |0000 |4 |0100 |8 |1000 |c |[1100
1 (0001 |5 |0101 |9 (1001 |d |1101
2 |0010 |6 |0110 |a |1010 |e |[1110
3 o011 |7 |joM1 (b 1011 |f 1111

Example: ggag 6420
1111100 1010 1000 0110 0100 0010 0000
L

Chapter 2 — Instructions: Language of the Computer — 22

31 h Instructions
@ u\&\‘”\/
—

| op | s | it | constant or address' |
6 hits 5 bits 5 bits 16 bits

Immediate arithmetic and load/store instructions
rt: destination or source register number
Constant: —2'5 to +215 - 1
« Address: offset added to base address in rs
Design Principle 4: Good design demands good
compromises

Different formats complicate decoding, but allow 32-bit
instructions uniformly
Keep formats as similar as possible

Chapter 2 — Instructions: Language of the Com puter — 23

Stored Program Computers

Instructions represented.in
binary;-justilike.data
Instructions and data stored
in memory
Programs can operate on
programs

e.g., compilers, linkers, ...
Binary compatibility allows
compiled programs to work
on different computers

Standardized ISAs
S

| Coompier |
1
Frrsrees | (machine code) |

Chapter 2 — Instructions: Language of the Computer — 24

Logical Operations

Instructions for bitwise manipulation

Operation C Java MIPS

Shift left << << sT1

Shift right >> >>> srl
Bitwise AND & & and, andi
Bitwise OR | | or, ori
Bitwise NOT ~ ~ hor

Useful for extracting and inserting
groups of bits in a word

Chapter 2 — Instructions: Language of the Computer — 25

Shift Operations

| op | rs | it | rd | shamt I funct |
6 bits 5 bits 5 bits 5bits 5 bits 6 bits
shamt: how many positions to shift

Shift left logical
Shift left and fill with O bits
sT1 by i bits multiplies by 2f /
Shift right logical
Shift right and fill with 0 bits
srl by i bits divides by 2/ (unsigned only)

Chapter 2 — Instructions: Language of the Computer — 26

AND Operations

Useful to mask bits in a word
Select some bits, clear others to 0

and $t0, $t1, $t2

$t2 ‘0000 0000 0000 0000 0000 1101 1100 0000 |

$t1 ‘0000 0000 0000 0000 0011 1100 0000 0000 |

$t0 ‘0000 0000 0000 0000 0000 1100 0000 0000 |

Chapter 2 — Instructions: Language of the Computer — 27

NOT Operations

Useful to invert bits in a word
Change 0to1,and1to 0

MIPS has NOR 3-operand instruction
aNORb==NOT (aORDb)

nor $t0, $tl, $zero - ———[Regster 0: aways
read as zero

$t1 |0000 0000 0000 0000 0011 1100 0000 0000 ‘

$t0 |11111111111111111100001111111111 ‘

Chapter 2 — Instructions: Language of the Computer — 29

OR Operations

Useful to include bits in a word
Set some bits to 1, leave others unchanged

or $t0, $t1, $%t2

$t2 ‘0000 0000 0000 0000 0000 1101 1100 0000 |

$t1 ‘0000 0000 0000 0000 0011 1100 0000 0000 |

$t0 ‘0000 0000 0000 0000 0011 1101 1100 0000 |

Chapter 2 — Instructions: Language of the Computer — 28

Conditional Operations

Branch to a labeled instruction if a
condition is true

Otherwise, continue sequentially
beg rs, rt, L1

if (rs == rt) branch to instruction labeled L1;
bne rs, rt, L1
. if (rs 1= r1t) branch to instruction labeled L1;
j L1

unconditional jump to instruction labeled L1

Chapter 2 — Instructions: Language of the Computer — 30

Compiling If Statements

C code: B)
if Goni) ooy [@
else f = g-h; []

f, g, ... in$s0, $s1, ST
Compiled MIPS code

bne $s3 $s4, /E@
add $s0, $s1, $s2 =——
h] Ex1't
Else: sub $s0, $sl1, $s2
Exit: Y

"" Assembler calculates addresses |

Chapter 2 — Instructions: Language of the Computer — 31

Compiling Loop Statements
C code:

while (save[i] == k)@

iin $s3, k in $s5, address of save In $s6
Compiled MIPS code:, —

gW %tg , $ 2 Ao = saelD)
ne $t0, $s5, Exit
addi $s3. $33, 1. 1ok

j Loop
Exit: - ———— \)

>L00p. Esll; g%];l_ s6 -ﬂtl ’r:‘\i saeli)

4 {42\

Basic Blocks

A basic block is a sequence of instructions
with

No embedded branches (except at end)

No branch targets (except at beginning)

=T A compiler identifies basic
blocks for optimization

An advanced processor
can accelerate execution
of basic blocks

Chapter 2 — Instructions: Language of the Computer — 33

Branch Instruction Design

Why not bt, bge, ete?
Hardware for <, 2, ... slower than =, #

Combining with branch involves more work
per instruction, requiring a slower clock

All'instructions penalized! #—
beq and bne are the common case
This is a good designr'compromise

Chapter 2 — Instructions: Language of the Computer — 35

Chapter 2 — Instructions: Language of the Computer — 32

More Conditional Operations

Set result to 1 if a condition is true
Otherwise, setto 0 l&(

st rm rt
ifrd 1) else rd = 0;

s1ti rs, constant
|f(r_s’<ﬂn_st@t) =1 elsert=0;

Use in combination with beq, /

s1t $t0, $s1, 3s2 # if ($s1 < 552)
bne $t0, $zero, L # branch to L L

-

Chapter 2 — Instructions: Language of the Computer — 34

Signed vs. Unsigned

Signed comparison: s1t, sTti
Unsigned comparison: s1tu, s1tui
Example -
$s0 = 1111 1111 1111 1111 1111 1111 1111 1111
$s1 = 0000 0000 0000 0000 0000 0000 0000 00014
sTt $t0, $s0, $s1 # signed
St
-1<+1=%0=1
sltu $t0, $s0, $s1 # unsigned
+4,294,967,295 > +1 = $t0 = 0

Chapter 2 — Instructions: Language of the Computer — 36

Procedure Calling
Steps required
Place parameters in registers
Transfer control to procedure
Acquire storage for procedure
Perform procedure’s operations

Place result in register for caller
Return to place of call

Chapter 2 — Instructions: Language of the Computer — 37

Register Usage
$a0 — $a3: arguments (reg's 4 —7)

$v0, $v1: result values (reg's 2 and 3)

overwritten by callee

$s0 — $s7: saved
Must be saved/restored by callee

$gp: global pointer for static data (reg 28)

$sp: stack pointer (reg 29)

$fp: frame pointer (reg 30)
return address (reg 31)

Chapter 2 — Instructions: Language of the Computer — 38

Procedure Call Instructions
\)'d

Procedure call: jump and link
jal)ProcedureLabel
Address of following instruction put i@
Jumps to target address (j)
Procedure return: jump register
$ra
Copies $ra to p_rgg@m_counier?(’

Can also be used for computed jumps
e.g., for case/switch statements
—_—

Chapter 2 — Instructions: Language of the Computer — 39

Leaf Procedure Example
C code:

int leaf_example (int g, h, i, j)

{ int f;
f=C0@+h -G+)
return f;

b
Arguments g, ..., jin $a0, ..., $a3

fin $s0 (hence, need to save $s0 on stack

Result in $v0

Chapter 2 — Instructions: Language of the Computer — 40

Leaf Procedure Example

MIPS code:
leaf_example:
addi $sp, $sp, -4
swW $SO, 0($Sp) Save $s0 on stack
add $t0, $a0, %al
add 1, $3_2, $a3 Procedure body
sub ($s0) $to, $t1
add FIv0, $s0, $zero | Resut
Tw $s0, 0($sp)
add1 $sp, $Sp, 4 Restore $s0

jr $ra (Return\

—_—

Chapter 2 — Instructions: Language of the Computer — 41

Non-Leaf Procedures

\/ Procedures thal(call other proceduresl
For nested call, caller needs to save on the
stack: -
Its return address

Any arguments and temporaries needed after
the call

Restore from the stack after the call

Chapter 2 — Instructions: Language of the Computer — 42

Non-Leaf Procedure Example

C code:
int fact (int n)

if (n < 1) return f;
else return n * fact(n - lg;
! N 1

Argument nin $a0
Result in $v0

Chapter 2 — Instructions: Language of the Computer — 43

Local Data on the Stack

High adgress

$fp— $fp—

r~ 0= [Saved argument
registers (if any)
‘Saved retum address

Saved saved
registers (if any)
Local arrays and
L., - | structures (if any)

Low address
a b. c

Local data allocated by callee
e.g., C automatic variables
Procedure frame (activation record) ’B
age

Used by some compilers to manage stack stor

Non-Leaf Procedure Example

MIPS code:
fact: =
addi $sp, $sp, -8 # adjust stack for 2 items
sw $ra, 4(8sp) # save return address
sw $a0, 0(%sp) # save argument —
#

sTti $t0, $a0, 1 test for n <1
beq $t0, $zero, L1

addi $v0, $zero, 1

if so, result is 1

—=addi $sp, $sp, 8 pop 2 items from stack
jr $ra and return
~> L1: addj $a0, $a0, -1 eTse decrement n
al) fact recursive call

Tw $a0, 0(3sp)
Tw $ra, 4@@sp)

restore original n
and return address

e e o e e o

addi $sp, $sp, 8~ # pop 2 items from stack
~» mul_$v0, $a0, §v0) # muTtiply to get result
jr $ra s % and return

—

Chapter 2 — Instructions: Language of the Computer — 44

Chapter 2 — Instructions: Language of the Computer — 45

Memory Layout

Text: program code

Static data: global 7
i X Stack

variables |
e.g., static variables in C, T
constant arrays and strings Dynanic data
$gp initialized to address so- 1000 5000 Static data
allowing *offsets into this —
segment pe—= 0020 0000 T

Dynamic data: heap
E.g., malloc in C, new in
Java e
Stack: automatic storage

Chapter 2 —Instructions: Language of the C omputer — 46

Character Data

Byte-encoded character sets
128 characters

95 graphic, 33 control
Latin-1: 256 characters

ASCII, +96 more graphic characters
hicode: 32-hit character
Used in Java, C++ wide characters, ...
Most of the world's alphabets, plus symbols
UTF-8, UTF-16: variable-length encodings

Chapter 2 — Instructions: Language of the Computer — 47

Byte/Halfword Operations

Could use bitwise operations
MIPS byte/halfword load/store
String processing is a common case
1b rt, offset(rs) Th rt, offset(rs)
- Sign extend to 32 bits in—rt
@rt, offset(rs) @ rt, offset(rs)

Zero extend to 32 bits inrt
(sh)rt, offset(rs) @t, offset(rs)
" Store just rightmost byte/halfword

Chapter 2 — Instructions: Language of the Computer — 48

String Copy Example

C code (naive):
Null-terminated string
void strcpy (char x[], char y[])

{ int 1i;

Nio=0;

(while ((x[il=y[i1)!="\0"
i+=1; 4

¥

Addresses of x, y in $a0, $a1
iin$s0
Rl

Chapter 2 — Instructions: Language of the Computer — 49

String Copy Example

MIPS code:

strcpy:
addi $sp, $sp, -4
sw $s0, 0(3sp)

- add $s0, $zero, Jzer
Ll: add 3$tl, $s0, Sal
Tbu $t2, 0($tl)

add $t3, $s0, Sa0
sb $t2, 0(3t3)
beq $t2, $zero, L2
~——addi §s0, $s0, 1
j L1l
= [L2: Tw $s0, 0(8sp)
addi $sp, $sp, 4
jr Sra

adjust stack for 1 item

addr of y[i] in $tl

: $t2 = y[i]

addr of x[i] in $t3

x[1] = y[i]

exit loop if y[i] == 0
i=1i+1

next iteration of Toop
restore saved 3s0

pop 1 item from stack
and return

SRR

Chapter 2 — Instructions: Language of the Computer — 50

32-bit Constants

Most constants are small
16-bit immediate is sufficient
For the occasional 32-bit constant
Tui rt, constant
Copies 16-bit constant to left 16 bits of rt
Clears right 16 bits o;{t to 0

Thi $s0, 61 [0000 0000 0111 1101]9000 0000 0000 0000 |

ori $s0, $s0, 2304 [00000000 0111 1101000 1001 0000 0000 |
- | S—
134

Chapter 2 — Instructions: Language of the Computer — 51

Branch Addressing ™

Branch instructions specify
Opcode, two registers, target address
Most branch targets are near branch
Forward or backward &, Tf‘omr.’m
I

—
OxOIH op | rs | it | constant or address I

6 bits 5 bits 5 hits 16 bits
7
[

\« PC already incremented by 4 by this time

Chapter 2 — Instructions: Language of the Computer — 52

Jump Addressing

Jump (j and jal) targets could be
anywhere in text segment
Encode full addressin instruction ?gr M#QJ

address I
6 bits 26 hits

(Pseudo)Direct jump addressing
Target address = PC31___28©(address x 4)

kmg—/ C{)Tl [ql{'vm ‘.
PR ae

Chapter 2 — Instructions: Language of the Computer — 53

Target Addressing Example
Loop code from earlier example
Assume Loop at location 80000
© s ot rd h fud
Loop: s11 1, ssz,@ 80000 | 0 | @ |49 | 9 P_q(‘ 0 @
add $t1, §t1, §s6 8OO AP IEEE
Tw $t0, 0(ft1) 80008 BB | 1w (g
bne §t0, $s5, exit 80012| 5 21 /E)
addi 53, 353, 1 U A0IG) B | 18 hodo] 1
3 Laop 80020 | 2 20000} adok_ I
Exit: 8002

Chapter 2 — Instructions: Language of the Computer — 54

Branching Far Away

If branch target is too far to encode with

16-bit offset, assembler rewrites the code

Example

beq $s0,%$s1, L1 1
!

bne $s0,%$s1, L2 .
j Ll é/flo(?“’s
L2: .

Chapter 2 — Instructions: Language of the Computer — 55

Addressing Mode Summary

1. Immaciate addressing

oon)

2 Rogiser addressiog

[elslel=]-F=
In]

3. Basa addressing

[oo]m [] Adkess |

s 0—
Com 10—

: iarory
—] \

[“‘—«L—‘M

B |

5 Pravdsaioctasdoseng
[o] navwm omory

Chapter 2 — Instructions: Language of the Computer — 56

Translation and Startup

G program |
}—l; Many compilers produce
s object modules directly

Assambly language program
P s

[Macine angraga o | [Cofoa U ovine fracrine angiego |

@@ L Static linking
Executable: Machine language program
¢ Loader

Chapter 2 — Instructions: Language of the C omputer — 59

Assembler Pseudoinstructions

Most assembler instructions represent
machine instructions one-to-one
Pseudoinstructions: figments of the
assembler's imagination

move $t0, $tl — add $t0, $zero, $t1

b1t $t0, $tl, L — slt $at, $t0, $tl
bne $at, $zero, L

$at (register 1): assembler temporary

Chapter 2 — Instrustions: Language of the Computer — 60

C Sort Example

lllustrates use of assembly instructions
for a C bubble sort function

Swap procedure (leaf)
void swap(int v[], int k)

int temp;
temp = v[k];
v[k] = v[k+1];
v[lk+1] = temp;
¥
vin $ag, kin $a1, temp in $t0

Chapter 2 — Instructionhs: Language of the Computer — 61

The Procedure Swap

swap: s11 $tl1, 3Jal, 2

$tl = k * 4
add $t1l, 3ao0, $t1 =

$tl = v+(k¥4)
(address of v[kl)

w $t0, 0(3tl)
w 3t2, 4(3tl)

$t0 (temp) = v[k]
$t2 = v[k+l]

sw $t2, 0($tl)
sw §t0, 4(stl)

v[k] = $t2 (v[k+1])
V[k+l] = 3t0 (temp)

HH | W o B

jr S$ra return to calling routine

Chapter 2 — Instructions: Language of the Computer — 62

The Sort Procedure in C

Non-leaf (calls swap)
void sort (int v[], int n)

{

int 1, j;
for (1 =0; i<n;i+=1) {
for (j =i 1

j >= 0 && v[j] > v[j + 11;
j-=1D {
swap(v,j);

}
vin $a0, kin $a1, iin $s0, jin $s1

Chapter 2 — Instructions: Language of the Computer — 63

The Full Procedure

sort: addi $sp,%sp, -20
sw §ra, 16(§sp)
sw §53,12 (§sp)
sw §s2, 8(3sp)
sw §s1, 4(3sp)
sw §s0, 0(§sp)

make room on stack for 5 registers
save §ra on stack
save §s53 on stack
save §s2 on stack
save §s1 on stack
save §s0 on stack

restore $50 from stack
restore $51 from stack
restore $52 from stack
restore $53 from stack
restore $ra from stack
restore stack pointer
return to calling routine

oW W R R W

exitl: Tw §50, 0(Ssp)
Tw 351, 4(5sp)

Tw 352, 8(5sp)

Tw 953,12 ($5p)

Tw §ra,16($sp)

addi $sp, $sp, 20

3 Gra

P EE T

Chapter 2 — Instructions: Language of the Computer — 65

Effect of Language and Algorithm

I

Cimone. o oz /03 Javaint | Javamn
25 a
1
o
os
Cimone. o oz 03 Javedet Javammn
3000 1 [0 Quidksort vs. Bubblesort Speedup]
300
2000 1|
1500 ||
1000 ||
500
Cinone /01 o2 €03 dmvejat Jevanrm

Chapter 2 — Instructions: Language of the Computer — 67

The Procedure Body
T S

move [$50, $zere

Save a0 into §52
save §al into 53
1-0

Move
params

Outer loo]

foritst: 90, §s0, $53 §t0 = 0 if $50 > $53 (5 = n)

[F——beq $%0, §zero, exitl # go to exitl if $s0 = $53 (1 = n)
addi $s0, -1 j=i-1

for2tst: slti . 951, 0 $t0 = 1 if $s1 < 0 (j < 0}

F— bre 9t0, §zero, exit? # go to exit? if $s1 < 0 (§ < 0}

511 $t1, §s1, 2 Fe1= 5 % 4
add $t2; §s2, $t1 $t2 = v + (j ¥ 4) @
Tw §t3, 0(§t2) $t3 = v[il

Tw o Std, 4(5t2) §t4 = v[j + 1]

st §t0, $t4, $t3 §t0 = 0 if $t4 > $t3

go to exitZ if §t4 > $t3

1st param of swap is v (old $a0)
2nd param f swap is 3

call swap procedure

& cal
i1
Jump to test of inner laop | B

beg $t0, $zero, exitz

addi §s1, $s1, -1

R T S S

5 for2tst
exitl: addsi §s0, §s0, 1 Ga= 1
S e e et [Ecteriooy

Chapter 2 — Instructions: Language of the Computer — 64

40000

25 120000
N | 100000
80000
15 —
60000
*] 40000
05 — 20000
o o
nona o1 02 o3 nona 01 02 o0z
180000 —{_ Oclockcydes |—— 2 ocP1
160000
140000 1— 15 ___
120000 +—
100000 1— R
80000 1|
60000 ||

20000

Effect of Compiler Optimization

| Compiled with gcc for Pentium 4 under Linux ‘

ssow0 | D

SHEE - -1
o :

none o1 oz o3 none o1 oz 03

Chapter 2 — Instructions: Language of the Computer — 66

Lessons Learnt

Compiler optimizations are sensitive to the
algorithm
Java/JIT compiled code is significantly
faster than JVM interpreted

Comparable to optimized C in some cases
Nothing can fix a dumb algorithm!

Chapter 2 — Instructions: Language of the Computer — 68

11

Fallacies

Powerful instruction = higher performance
Fewer instructions required
But complex instructions are hard to implement

May slow down all instructions, including simple ones

Compilers are good at making fast code from simple
instructions

Use assembly code for high performance
But modern compilers are better at dealing with
modern processors
More lines of code = more errors and less
productivity

Chapter 2 — Instructions: Language of the Computer — 69

Pitfalls

Sequential words are not at sequential
addresses
Increment by 4, not by 1!
Keeping a pointer to an automatic variable
after procedure returns
e.g., passing pointer back via an argument
Pointer becomes invalid when stack popped

Chapter 2 — Instructions: Language of the Computer — 71

Concluding Remarks

Measure MIPS instruction executions in
benchmark programs
Consider making the common case fast
Consider compromises

Instruction class MIPS examples SPEC2006 Int SPEC2006 FP
Arithmetic add, sub, addi 16% 48%
Data transfer w, sw, 1b, 1bu, 35% 36%

Th, Thu, sh, Tui
Logical and, or, nor, andi, 12% 4%
ori, s11, srl

Cond. Branch beq, bne, sit, 34% 8%

s1ti, sltiu
Jump i, jr, jal 2% 0%

Chapter 2 — Instructions: Language of the Computer — 73

12

Fallacies

Backward compatibility = instruction set
doesn’t change
But they do accrete more instructions

1000
900
2 800
£ 700
£ 600
£ s00 -
E
% 300
Z] 200
100

0
EYY XY EVFEF VIRV

Year

Chapter 2 —Instructions: Language of the C omputer — 70

Concluding Remarks

Design principles
Simplicity favors regularity
Smaller is faster
Make the common case fast
Good design demands good compromises
Layers of software/hardware
Compiler, assembler, hardware

MIPS: typical As
c.f. x86

Chapter 2 — Instructions: Language of the Computer — 72

EXTRAS

Chapter 2 — Instructions: Language of the Computer — 74

ARM & MIPS Similarities

ARM: the most popular embedded core
Similar basic set of instructions to MIPS

ARM MIPS

Date announced 1985 1985
Instruction size 32 bits 32 bits
Address space 32-bit flat 32-bit flat
Data alignment Aligned Aligned
Data addressing modes 9 3
Registers 15 x 32-bit 31 x 32-bit
Input/output Viemory Viemory

mapped mapped

Chapter 2 — Instructions: Language of the Computer — 75

Instruction Encoding

wo (o | o | Gonar™ |

w N ~ P P]
i o \

wes [INRE

Chapter 2 — Instructions: Language of the Computer — 77

The Intel x86 ISA

Further evolution...
486 (1989): pipelined, on-chip caches and FPU
Compatible competitors: AMD, Cyrix, ...
Pentium (1993). superscalar, 64-bit datapath

Later versions added MMX (Multi-Media eXtension)
instructions

The infamous FDIV bug
Pentium Pro (1995), Pentium 1l (1997)
New microarchitecture (see Colwell, The Pentium Chronicles)
Pentium 111 (1999)
Added SSE (Streaming SIMD Extensions) and associated
registers
Pentium 4 (2001)
New microarchitecture
Added SSE2 instructions

Chapter2z —

f the Com puter — 79

13

Compare and Branch in ARM

Uses condition codes for result of an
arithmetic/logical instruction
Negative, zero, carry, overflow

Compare instructions to set condition codes
without keeping the result

Each instruction can be conditional

Top 4 bits of instruction word: condition value
Can avoid branches over single instructions

Chapter 2 — Instructions: Language of the Computer — 76

The Intel x86 ISA

Evolution with backward compatibility

8080 (1974): 8-bit microprocessor
Accumulator, plus 3 index-register pairs

8086 (1978): 16-bit extension to 8080
Complex instruction set (CISC)

8087 (1980): floating-point coprocessor
Adds FP instructions and register stack

80286 (1982): 24-bit addresses, MMU
Segmented memory mapping and protection

80386 (1985). 32-bit extension (now 1A-32)
Additional addressing modes and operations
Paged memory mapping as well as segments

Chapter 2 — Instructions: Language of the Computer — 78

The Intel x86 ISA

And further. ..

EMB4T — Extended Memory 64 Technology (2004)
AMD®4 adopted by Intel (with refinements)
Added SSE3 instructions

Intel Core (20086)
Added SSE4 instructions, virtual machine support

Advanced Vector Extension (announced 2008)
Longer SSE registers, more instructions
If Intel didn’t extend with compatibility, its
competitors would!
Technical elegance # market success

Chapter 2 — Instructions: Language of the Computer — 80

Use
0

coRo

PR 1

aFRz

@PAS

@PA4

eeRs

cPRe

G#RT

ep
EFLAGS

Basic x86 Registers

ot sagmentpeiniec
Stack sogmant poiner (109 of stack]
Data segment poinisr 0
Data sagmont pointr 1
Dota sogmont pointar 2
Data sogment pointar 5
Insirucion poiner (PC)

Condiion codes

Chapter 2 — Instructions: Language of the Computer — 81

x86 Instruction Encoding

Variable length
encoding

arusiEs

[e

o ADD EAX, 78S

(o o =

LTEST EDX, aa2

oo] o |

mmociarn

Postfix bytes specify
addressing mode
Prefix bytes modify
operation

Operand length,
repetition, locking, ...

Chapter 2 — Instructions: Language of the Computer — 83

14

Basic x86 Addressing Modes

Two operands per instruction

Source/dest operand Second source operand
Register Register
Register Immediate
Register Memory
Memory Register
Memory Immediate

Memory addressing modes
Address in register
Address = Ry, + displacement
Address = Ry, + 2@ x R, (scale =0, 1,2, or 3)
Address = Ry, + 2°%¢ x R, .+ displacement

Chapter 2 — Instructions: Language of the Computer — 82

Implementing 1A-32

Complex instruction set makes
implementation difficult
Hardware translates instructions to simpler
microoperations
Simple instructions: 1-1
Complex instructions: 1-many
Microengine similar to RISC
Market share makes this economically viable
Comparable performance to RISC
Compilers avoid complex instructions

Chapter 2 — Instructions: Language of the Computer — 84

