Chapter Five
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The Processor: Datapath & Control

+ We'reready to look at an implementation of the MIPS
+  Simplified to contain only:
- memory-reference instructi

+ Generic Implementation:
— use the program counter (PC) to supply instruction address
- get the instruction from memory
— read registers
- usethe instruction to decide exactly what to do
+ Allinstructions use the ALU after reading the registers
Why? memory-reference? arithmetic? control flow?
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More Implementation Details

+  Abstract / Simplified View:
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State Elements

- Unclocked vs. Clocked
+ Clocks used in synchronous logic
- when should an element that contains state be updated?

Falling edge

|

WH@“{SK period Rising edge
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Register #
Address I nstruction Registers Address
Register #
Inetruction - msj";‘
memory Reoister # L
e Data
Two types of functional units:
— elements that operate on data values (combinational)
- that tain state (seq ial)
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Our Implementation
+ An edgetriggered methodology
«  Typical execution:
- read contents of some state elements,
— send values through some combinational logic
— write results to one or more state elements
State State
element Combinational logic element
1 2
Clock cycle J J
[T —

Register File

Read register —
number 1 —l
- Built using D flip-flops Registerd | aef” )
Regater 1 |—p1+{ 1y
Read register L [ ]
| rumber 1 Read T u [}~ Readdsal
Read register data 1 [Register n—
numb ar 2
Register 1 o+
Redister file N
Wit Read .
register dlata 2
Resdregiser
Wite
= ceta Wite number 2 |
Tm
o + Read data 2
L x
/
»
\

\
R \
Do vouunderstand? What is the “Mux” above?
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Abstraction

+  Make sure you understand the abstractions!
+ Sometimes it is easy to think you do, when you don’t

Select
Select P pa—
L
U r=cxn
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I
32
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B 32 u |—=c30
B30 —=| *
Al —=
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Simple Implementation
+ Include the functional units we need for each instruction
Instruction
address
Instruction -—— PC
Instruction —
memory
a. Instruction memory b.Program counter c.Adder
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Simple Implementation

+ Include the functional units we need for each instruction

s
5 | Read
~ register 1

Read
5 R -
Reg\ster< > ead data 1
numbers register 2

ALU operation

|
“45 Registers \ (- Data
N Wite )

§ register Read | 3

[ ) data 2|\
Data < Write

L Data

"7’l RegWrite

a. Registers b.ALU

et ma aman v 19

Register File
+ Note: we still use the real clock to determine when to write
irite —f
SN
J] E—
4 Register 0
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Regstermumber —{o) MO0 | ﬂ
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et Register 1
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Sl
Regigtern—2
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Regigtern—1
FRegister data

Simple Implementation

+ Include the functional units we need for each instruction

MemW\rite
Read
—| Address data [
:16 Sign
Data extend
: memol
| Write 4
data
MemRead
a. Data memory unit b. Sign-extension unit
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Building the Datapath
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«Use multi to stitch them togeth
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Control

Selecting the operations to perform (ALU, readiwrite, etc.)
Controlling the flow of data {multiplexor inputs)
+ Information comes from the 32 bits of the instruction

+  Example:

add $8. $17. $18 Instruction Format:

[000000] 10001 ] 10010] 01000] 00000f100000]

@l rs I rt I xd Ishamt“funct' T\l?l_@

+  ALU's operation based &n instruction typa anc‘ function code )

Control

Leres?
- e.g., what should the ALU do with this instruction —) ¢N<* |
Examplé: w$1, 100($2)

Ll 2 [ 1 [ 100 |

‘( OD;‘ Is | rt | 16 bit offset ‘/\‘(_’1
= —— If

- ALU control input ‘ﬂééi&'h)
0000 AND
0001 OR
0010 add

0110  subtract
0111 set-on-less-than
1100 NOR

- Why s the code for subtract 0110 and not 00112
18
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Control
- Must describe hardware to compute 4-bit ALU control input
+ Describe it using a truth table (can turn into gates):
[ mwp [ Fanea | >~ ALUO’)Mquiam
MW e ey | ey ey ey vy ¢
[T o A x|xx —_—
r— o R 4uik
B F B S o1
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; e |
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FIGURE 5:13 The truth table for the three ALY control bts (called Gperation). Th npuis
ot the ALLIOp and fancion e k. Ol ot which th ALLY e
i
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[31~26] |

Instruction [31-38] | [ MemtoReg
| ALUD
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\ Pty b
\_ L N
———— = il
nsrgeton 1] —NGegrerer 2 .
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i 141 " -
Imwm
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Control

+ simple combinational logic {truth tables)
s

ALUop
AL conrd ok E:
o o
aLuopt o
om ] I 1
o T T
s Operation2 T 15
(> Operaicn
F o EDM Output
Js=eN [ i i ™,
Operatiora_| } s
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) Regiite
Merinite
Branch
bt uom
ALUGRD
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Our Simple Control Structure

« All of the logic is combinational
- We wait for everything to settle down, and the right thing to be done
= ALU might not produce “right answer” right away
— we use write signals along with clock to determine when to write
- ‘cycle time determined by length of the longest path

State State
elerment Combinational logic element
1 2

Clock tycle J I—r

e are ignoring some dewils like setup and hold times
22
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Single Cycle Implementation HDD

Calculate cycle time assuming negligible delays except:
— memety {200ps), ALU and adders {100ps). register file access (50 ps)

vl _ lex ‘(M\L" (Lﬂ\

- e “j) (‘SM

- S (o)

— EéLrUUL ra’(%}

e ]

‘{00757

Where we are headed

-+ Single Cycle Problems:
— what if we had a more complicated instruction like floating
point?
— wasteful of area
+  One Solution:
— use a‘“‘smaller’” cycle time
— have different instructions take di bers of cycles
= a“multicycle” datapath:

t+ D,

p- Register #
Regiters
t Reaister #

Instruction

Memory o dsta
H Data
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Multicycle Approach

+ We will beunils
— ALU used to compute address and to increment PC
— Memory used for instruction and data
+  Our control signals will not be determined directly by instruction

— e.9., what should the ALU do for a “subtract” instruction?
+  We'll use afinite state machine for control

et ma man v 25

Multicycle Approach

- Break up the instructions into steps, each step takes a cycle
— balance the amount of work to be done
- restrict each cycle to use only one major functional unit
« At the end of a cycle
— store values for use in later cycles (easiest thing to do) v
— introduce additional “internal” registers

—_——
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Multicycle Approach

e
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Instructions from ISA perspective

+ Consider each instruction from perspective of ISA.
- Example:
— The add instruction changes a register.
— Register specified by bits 15:11 of instruction. ('
— Instruction specified by the PC.
— New value is the sum (“op”) of two registers.
— Registers specified by bits 2?:521 and ZHE:LG of the instruction

Reg[Memory [PC]1[15:11]] <= ReglMemory[PC][25:21]] op
Reg[Memory [PC][20:16]]

In order to accomplish this we must break up the instruction.
{kind of like introducing variables when programming)
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Breaking down an instruction

« ISA definition of arithmetic: \g

Reg [Memory [PC]1[15:111] <= ReglMemory[PC][25:21]1]1 op
Reg[Memory [PC1[20:16]1]

- Could break down to: Tﬂrt—fl

- IR <= Memory [PC]

—~A <= Regl[IR[25:211] |
- B <= Reg[IR[20:16]] )— P
- ALUQut <= A op lyﬁf

- Reg[IR[15:11]1] <= ALUOut

Idea behind multicycle approach

+  We define each instruction from the ISA perspective (do this!)

+ Break it down into steps following our rule that data flows through at
most one major functional unit (e.g., balance work across steps)

Introduce new registers as needed (e.g, A, B, ALUOut, MDR, etc.)
- Finally try and pack as much work into each step
{avoid unnecessary cycles)

while also trying to share steps where possible
{minimizes control, helps to simplify solution)

+ Result: Ourbook’s multicycle Implementation!
s
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Step 1: Instruction Fetch

+ UsePC to get instruction and put it in the Instruction Register.
+ Increment the PC by 4 and put the result back in the PC.
« Can bhe described succinctly using RTL "Register-Transfer Language™

IR <= Memoxy[PC];
PE)<= PC + 4;

Can we fignre ont the vahies of the control signals?

What is the advantage of pdating the PC now?

- We forgot an important part of the definition of arithmetic! b 5
- PC <= PC + 4 W
oot o vt po e 29
Five Execution Steps
|_u‘ o\ +f‘
E) Instruction Fetch ¥
B J Instruction Decode and;Register Fetch
() Execution,Memory:Address,Computatian, or Branch Completion
@ Memory Access)or R-type instruction completion
OWrile-back step N_jp [,UJ
INSTRUCTIONS ‘TAKE FROM 3 -5 CYCLES!
PrapT——1
Step 2:«instruction Decode and Register Fetch
- Read registers rs and rt in case we need them
+ Compute the branch address in case the instruction is a branch
+ RTL:
A <= Reg[IR[25p2L]];
B <= Reg[IR[20:16]]; A(UO
ALUOut <= BC + (sign-extend(IRII5501) << 2); (b l{ﬂ,
+  We aren't setting any control lines based on the instruction type t)—
{we are busy "decoding” it in our control logic)
33
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Step 3 (instruction dependent)
+ ALU is performing one of three functions, based on instruction type
+  Memory Reference:
ALUOut <= A + sign-extend(IR[15:0]); L‘\L
- Retype:
ALUOut <= A op B;
« Branch:
if (A=
34
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Step 4 (R-type or memory-access)

- Loads and stores access memory

MDR <= Memory [ALUOut]; IUJ

Memory [ALUOut] <=

+ R-type instructions finish

Reg[IR[15:11]1] <= ALUOut; ()41}'\ SUL’ ) S‘l ’ﬂh'l'/

The write actually takes place at the end of the cycle on the edge

35
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Write-back step

Reg[IR[20:16]] <= MDR; qw

Which instruction needs this?

36
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Summary:

Instiction fetn IR <= Memon{Fe] <=
PO<=PC A
A<= Reg [IR[25:21]]
8 <= Re (IR[20:16]]
ALYOUL <= PC + (Sign4xtend (RIISI0 <= 2)

Instruction decode/reg ster fetch

Execullon, 00ress computalion. | ALUOW <= 400 B ALUOUE <= A + signextend I (A == B) PG < )
branch,Jump comeleton (RI15:0D PC <= ALUOW | (IR[25:0]],2'000)
Memoty 9co6ss o RUpe Reg [R[25:11]] <= Load: MOR <= Memon{ALUOU]
complation Aluout

~Wlemory [ALUOut] <=
Memory r¢ad completon 7] Loa: ReglR(20:16]] <= MOR

FIGURE 5.30 Summary of the steps taken to execute fons take from three to five exacution steps. The
first two steps are independent of the instruction class. After these st from one tothree 1 depending on
the instruction class. The empty entries for the Memory access step or the Memory read completion step indicate that the particular instruction class
takes fewer cycles. In a multicycle implementation, a new instruction will be started as soon as the current instruction completes, so these cycles are
not idle or wasted . As mentioned earlier the register il actually reads every cycle, but as long as the IR does not change, the values read from the reg-
ister file are identical. Tn particular, gister B during the sge. for a branch or Retyp wis the same as
the volue stored into B dusing the Execution stage and then used in the Memory access stage for a store word instruction.
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Simple Questions

How many cycles will it take to execute this code?

Label:

What is going on during the 3th cycle of executinn?/
In what cycle does the actual addition of $t2 and $t3 takes place?a

LoWw N

s

1w $t2, 0(5t3)

1w $3, 4(5t3)

beq $t2, $t3, Label

add $t5, $t2, §t3 —
sw St5, 8(5t3)

#assume not

e ff‘@"
')Cc' U"L

0
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Review: finite state machines

- Finite state machines:
— aset of states and
- next state function (determined by current state and the input)
— output function (determined by current state and possibly input)

we 1
_g..,,..

— We'll use a Moore machine (output based only on current state)

Wt
e

44
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Review: finite state machines

- Example:

B. 37 A friend would like you 10 build an “electromic eye” foruse as a fake security
device. The device consists of three lights lined up in a row, controlled by the ontguts
Lefy, Middie, and Right, whick, if assersed, indicate that a light should be on. Only one
Eightis on at a fime, and the light “moves” from left to right and then from right fo Ieft,
dhus scaring away diieveswho believe that the device is monitoring their activity. Draw
the grophical representation for the finite state machine used o specify the electronic
eve. Note that the maie of the epe’s mavement will be controlled by the clock speed twhich
should not be 100 greas) and that there are essentially na inputs.

45
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Implementing the Control

Value of control signals is dependent upon:
- what instruction is being executed
— which step is being performed

Use the information we've accumulated to specify a finite state machine

Implementation can be derived from specification

46
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I e Instruction decode/
Graphical Specification of FSM - e

0/ ALl
br

s e ] Al |
ARzl | ALusrep = 1 |

Witpeon | AL <00 )

o

+ Note:
— don't care if not mentioned
— asserted if name only
— otherwise exact value

N
\ PCames 00/

- How many state
bits will we need?

PCutaCond |
\ PCSoume =01
& v

Marmaryrest
4 completon step)

4
[ Regoa=

Feg i
| Mermioeg:

- Gk Mo Farttan Pkl

Finite State Machine for Control

Tel=

- Implementation:

T==]

Control logic

Outputs

= [=l=]=[=l=l==]

EE

=]

Inputs

=

Instruction register State register
opoods fisld

PLA Implementation

+ Ifl picked a horizontal or vertical line could you explain it?
s

e
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ROM Implementation

- How many inputs are there?
6 bits for opcode, 4 bits for state =10 address lines
{i.e., 210 =1024 different addresses)

+  How many outputs are there?
16 datapath-control outputs, 4 state bits = 20 outputs

+ ROMis 20 x 20 = 20K bits (and a rather unusual size)
—

+ Rather wasteful, since for lots of the entries, the outputs are the
same
—i.e.. opcode is often ignored

e magm man wowen O 1

[rnp—— 1
ROM Implementation
+ ROM ="Read Only Memory"
— values of memory locations are fixed ahead of time
- A ROM can be used to implement a truth table
— ifthe address is m-bits. we can address 2" entries in the ROM.
— our outputs are the bits of data that the address points to.
m n
ﬁl—r 71—>
—
1)
mis the "height”, and n is the "width"
ot o i an 50
ROMvs PLA
+ Breakup the table into two parts
— 4 state bits tell you the 16 outputs, 24 x 16 bits of ROM
— 10 bits tell you the 4 next state bits, 2 x 4 bits of ROM
— Total: 4.3K bits of ROM
« PLAis much smaller
— can share product terms
— only need entries that produce an active output
— can take into account don't cares
- Size is (#inputs x #product-terms) + (Foutputs x #product-terms)
For this example = (10x17)+{20x17) = 510 PLA cells
+ PLA cells usually about the size of a ROM cell (slightly bigger)
52
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Another Implementation Style

- Complexinstructions: the "next state” is often current state + 1

ol
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Details
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- What are the “microinstructions™?
a0t o bt P DO
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) Reglace state pumber by 0 P ——
Microprogramming
-+ A specification methodology
— appropriate if hundreds of opcodes, modes, cycles, etc.
- signals specified symbolically using microinstructions
ALU Register PCWrite
Label | control |SRC1| SRC2| control | Memory control
Fetch  |Add PC_ |4 Read PC |ALU Seq
|Add PC_ [Extshft [Read Dispatch 1
memt  |Add A Extend Dispatch 2
Lw2 Read ALU Seq
[wiite MDR Fetch
sw2 [rite ALU Feich
Riomati [Func code |A B Seq
[Wiite ALU Fetch
BEQ1  |Subt A B ALUCut-cond _|Fetch
[JUMP1 [Jump address |Fetch
«  Willtwo implementations of the same architecture lurve the same nicroc ode?
+ What would a niicroasseinbler do?
rnp————1
Historical Perspective
+ Inthe ‘60s and ‘70s microprogramming was very important for
implementing machines
+ This led to more sophisticated ISAs and the VAX
+ Inthe ‘80s RISC processors based on pipelining became popular
+ Pipelining the microinstructions is also possible!
. I i of IA-32 ar s since 436 use:
— “hardwired control” for
{few cycles, FSM control implemented using PLA or random logic)
— “microcoded control” for more complex instructions
{large numbers of cycles, central control store)
+ The IA-64 architecture uses a RISC-style ISA and can be
implemented without a large central control store
60
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Chapter 5 Summary

+ If we understand the instructions...
We can build a simple processor!

- Ifinstructions take different amounts of time, multi-cycle is better

+ Datapath implemented using:
- Combinational logic for arithmetic
— State holdi tor

« Control implemented using:

bits

— Combinational logic for single-cycle implementation

— Finite state machine for multi-cycle implementation

o0 Horgam Kaman Bublkien
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