COMPUTER ORGANIZATION AND DESIGN

va
k‘ The Hardware/Software Interface

Chapter 4

The Processor

nstruction Execution

PC — instruction memory, fetch instruction
Register numbers — register file, read registers
Depending on instruction class

Use ALU to calculate
Avrithmetic result
Memory address for load/store
Branch target address
Access data memory for load/store

PC « target address or PC + 4

Introduction

CPU performance factors

Instruction count
Determined by ISA and compiler

CPI and Cycle time
Determined by CPU hardware

We will examine two MIPS implementations
A simplified version
A more realistic pipelined version

Simple subset, shows most aspects
Memory reference: Tw, sw
Arithmetic/logical: add, sub, and, or, sT1t
Control transfer: beq, j

Chapter 4 — The Processor— 2

Chapter 4 —The Processor—3

Performance Issues

Longest delay determines clock period
Critical path: load instruction

Instruction memory — register file —» ALU —
data memory — register file

Not feasible to vary period for different
instructions
Violates design principle
Making the common case fast
We will improve performance by pipelining

Chapter4 — The Processor— 30

Pipelining Analogy

Pipelined laundry: overlapping execution
Parallelism improves performance

o o
[s Four loads:
[s
Speedup
=8/3.5=23
I TR S 7. NOI’]-StOpZ
Speedup

=2n/0.5n+1.5=4
= number of stages

Chapter4 — The Processor— 31

Five stages, one step per stage
IF: Instruction fetch from memory
ID: Instruction decode & register read
EX: Execute operation or calculate address
MEM: Access memory operand
WB: Write result back to register

Chapter4 — The Processor— 32

Pipeline Performance

Assume time for stages is

100ps for register read or write

200ps for other stages
Compare pipelined datapath with single-cycle
datapath

Instr Instrfetch | Register |ALUop |Memory |Register | Total time
read access write

Iw 200ps 100 ps 200ps 200ps 100 ps 800ps

sw 200ps 100ps | 200ps 200ps 700ps

R-format | 200ps 100ps | 200ps 100ps |600ps

beq 200ps 100 ps 200ps 500ps

Chapter 4 — The Processor — 33

Pipeline Performance

B Single-cycle (T,= 800ps)
execution 200 400 600 800 1000 1200 1400 1800 1800

order
(in instructions)

I §1, 100(S0)| """ e

Iw $2, 200($0) 800 ps.

l‘lw $3, 300(S0) 800 ps.
Pipelined (T,= 200ps

Program P (T, ps)

execution Time 200 400 600 800 1000 1200 1400

order
(in instructions)

S
I $1,100(50) 41"

W §2,200(50) 200 ps | "t

Iw $3,300(50) 200 ps

200ps 200ps 200ps 200ps 200 ps

Chapter4 — The Processor— 34

Pipeline Speedup

If all stages are balanced
i.e., all take the same time
Time between instructions i gjineq
= Time between instructions,
Number of stages

nonpipelined

If not balanced, speedup is less

Speedup due to increased throughput

Latency (time for each instruction) does not
decrease

Chapter4 — The Processor — 35

elining and ISA Design

MIPS ISA designed for pipelining
All instructions are 32-bits
Easier to fetch and decode in one cycle
c.f. x86: 1-to 17-byte instructions
Few and regular instruction formats
Can decode and read registers in one step
Load/store addressing

Can calculate address in 3 stage, access memory
in 4 stage

Alignment of memory operands
Memory access takes only one cycle

Chapter4 —The Processor— 36

Hazards

Situations that prevent starting the next
instruction in the next cycle
Structure hazards
A required resource is busy
Data hazard

Need to wait for previous instruction to
complete its data read/write

Control hazard

Deciding on control action depends on
previous instruction

Chapter4 — The Processor — 37

Structure Hazards

Conflict for use of a resource

In MIPS pipeline with a single memory
Load/store requires data access
Instruction fetch would have to stall for that
cycle

Would cause a pipeline “bubble”

Hence, pipelined datapaths require

separate instruction/data memories
Or separate instruction/data caches

Chapter4 — The Processor— 38

Data Hazards

An instruction depends on completion of
data access by a previous instruction

add $s0, $to, $t1
sub $t2, $s0, $t3

Time

200 400 600 800 1000
add 850, $10, t1 D -a m ws |
Chubble) (bubble;) 3])

bubble

sub $I2. 850, $t3 E’—f D -a MEM we

Chapter4 — The Processor — 39

Forwarding (aka Bypassing)

Use result when it is computed
Don't wait for it to be stored in a register
Requires extra connections in the datapath

Program

execution

order Time
(in instructions)

600
r 1
add $s0, $10, St1 —=c 19 E‘—Eﬂ

sub §t2, 30, $t3 B—: -8 MEM—(WB |

Chapter4 — The Processor— 40

800 1000

200 400
z |

Load-Use Data Hazard

Can't always avoid stalls by forwarding
If value not computed when needed
Can't forward backward in time!

Program
execution 200 400 600 800 1000 1200 1400

Time
(in instructions)
Iw $50, 20(§t1)

sub St2, $50, $13

Chapter4 — The Processor — 41

Code Scheduling to Avoid Stalls

Reorder code to avoid use of load result in
the next instruction

CcodeforA =B + E; C =B + F;

Tw $tl1, 0(3t0) Tw $t1, 0(3t0)

Tw 4(5t0) w (§t2)
7——add st (t2) v (5t)

sw o $t3, 12(3%t0) add $t3,™9

Tw 8($t0) sw $t3, $
[siain] - add 55, $t1,(5t3) add $ts, $t1,(5t4)
sw o $t5, 16(3t0) sw $t5, 16($t0)

Chapter 4 — The Processor — 42

Control Hazards

Branch determines flow of control

Fetching next instruction depends on branch
outcome

Pipeline can't always fetch correct instruction
Still working on ID stage of branch

In MIPS pipeline

Need to compare registers and compute
target early in the pipeline

Add hardware to do it in ID stage

Chapter4 — The Processor — 43

Stall on Branch

Wait until branch outcome determined
before fetching next instruction

Program
execution ; 200 400 600 800 1000 1200 1400
ime T T T T ~— T

(in instructions)

stncron) O
add $4, 85,6 "0 Fog| AW [yocnes |Re8
beas1.82.40 o] M M

or §7, $8, $9 -
] 400 ps foich

Chapter4 — The Processor— 44

Branch Prediction

Longer pipelines can't readily determine
branch outcome early

Stall penalty becomes unacceptable
Predict outcome of branch

Only stall if prediction is wrong
In MIPS pipeline

Can predict branches not taken

Fetch instruction after branch, with no delay

Chapter4 — The Processor — 45

MIPS with Predict Not Taken

Program

execution 7ine 200 400 600 800 1000 1200 1400
order

(in instructions)

add $4.85.56 | a |Rx-u My | Dus H':w|
|
beq $1, 52, 40 »——(“"’"“m |n | A | Do ‘Hn
200 ps fotch. g a0cess ‘7‘ ;

w $3, 300(S0) 200 p;

Prediction
correct

Pragram
execution 200 400 600 800 1000 1200 1400
ime
order
(in instructions)
— add $4,$5.86 || oq |
Prediction =
e beq $1, 52, 40 i
incorrect | 200ps
‘—'u $7,$8, 89 —

Chapter4 — The Processor— 46

More-Realistic Branch Prediction

Static branch prediction
Based on typical branch behavior
Example: loop and if-statement branches
Predict backward branches taken
Predict forward branches not taken
Dynamic branch prediction
Hardware measures actual branch behavior
e.g., record recent history of each branch
Assume future behavior will continue the trend
When wrong, stall while re-fetching, and update history

Chapter 4 — The Processor — 47

MIPS Pipelined Datapath

e S Ex Envcutel MEM: Mamory access | W Wit bace
| regsterie eac acess cakcabon i

3
/

Right-to-left
flow leads to
hazards

Chapter4 — The Processor— 49

Pipeline Summary

Pipelining improves performance by
increasing instruction throughput
Executes multiple instructions in parallel
Each instruction has the same latency
Subject to hazards
Structure, data, control

Instruction set design affects complexity of
pipeline implementation

Chapter4 —The Processor—48

Need registers between stages
To hold information produced in previous cycle

Chapter4 — The Processor — 50

| Pipeline Operation

Cycle-by-cycle flow of instructions through
the pipelined datapath
“Single-clock-cycle” pipeline diagram
Shows pipeline usage in a single cycle
Highlight resources used
c.f. “multi-clock-cycle” diagram
Graph of operation over time
We'll look at “single-clock-cycle” diagrams
for load & store

Chapter4 —The Processor — 51

| IF for Load, Store, ...

e

5

W
Instructon foeh
[
=

Chapter4 — The Processor — 52

| ID for Load, Store, ...

Chapter4 — The Processor— 53

| EX for Load

Chapter4 — The Processor— 54

| MEM for Load

Chapter4 — The Processor— 55

| WB for Load

Wrong
register [

number.

Chapter4 — The Processor — 56

| Corrected Datapath for Load

y 11
Hi{§
i

Chapter4 — The Processor — 57

Gg)

| MEM for Store

e
i
11}

__E@

Chapter4 — The Processor— 59

| Multi-Cycle Pipeline Diagram

‘ Form showing resource usage

Tima (in clock cycles)
Cc1 662 CC3 GC4 OG5 CC6 CCT CCB €GO

mmmmmm

B
wvpE T

#
A AN
Li; L]

| EX for Store

uuuuu

i

Chapter4 — The Processor— 58

| WB for Store

Chapter4 — The Processor— 60

Chapter4 — The Processor— 61

| Multi-Cycle Pipeline Diagram

‘ Traditional form

Time (i clock cycles)
ccr ccz

Chapter4 — The Processor— 62

| Single-Cycle Pipeline Diagram

State of pipeline in a given cycle

| addS14, 55,58 i he$1,24 (81)
I

Chapter4 — The Processor— 63

| Pipelined Control

I Control signals derived from instruction
= As in single-cycle implementation

LY “lwa

[~ ex
\ =
I0EX

—]
W, 1
I
1
- [
=
|

_‘\'VE i .
\

H

EXMEM MEMWS

wwwwwwww

Chapter4 — The Processor — 65

| Data Hazards in ALU Instructions

| Consider this sequence:
sub , $1,%3
and $12,%2,%5
or $13,%6,
add $14,
sw $15,100(%2)

We can resolve hazards with forwarding
How do we detect when to forward?

Chapter 4 — The Processor — 67

| Pipelined Control (Simplified)

=T
:

Chapter4 — The Processor— 64

| Pipelined Control

Chapter4 — The Processor— 66

| Dependencies & Forwarding

Time (in clock cycles)
Vaeot CC1 ©CC2 €G3 GC4 C€C5 ©C6 GC7 CCB CCS
register $2: 10 10 10 10 1020 20 -0 -0 -20
Progran
eeeeeeee
order
in i
sut
-

add'§14, 52,52

5w S15, 100(52)

Chapter4 — The Processor— 68

Detecting the Need to Forward5 o4 (0 8

S R ()
Pass register numbers along pipeline !

e.gd.. ID/EX.RegisterRs = register number for Rs 3 awd $3 @, 35
sitting in ID/EX pipeline register
ALU operand register numbers in EX stage
are given by
ID/EX.RegisterRs, ID/EX.RegisterRt
Data hazards when
EX/MEM RegisterRd = ID/EX RegisterRs
X/MEM RegisterRd = ID/EX RegisterRt
MEMMB RegisterRd = ID/EX .RegisterRs
MEMMB RegisterRd = ID/EX RegisterRt

Fwd from
EXMEM
ineline re.

Fud from
MEMAE
pioeline reg

Chapter 4— The Processor — 69

Detecting the Need to Forward

But only if forwarding instruction will write
to a register!

EX/MEM.RegWrite, MEM/WB.RegWrite
And only if Rd for that instruction is not
$zero

EX/MEM.RegisterRd # 0,
MEMMVB.RegisterRd # 0

Chapter 4 — The Processor — 70

Forwarding Paths

MEMWE

{2}

Registers

Data
memory

EXIMEM RogistorRd

MEMWE RagsterRd

b. With forwarding

Chapter4 — The Processor—T1

Forwarding Conditions

EX hazard

if (EX/MEM.RegWirite and (EX/MEM .RegisterRd # 0)
and (EX/MEM .RegisterRd = ID/EX.RegisterRs))

if (EX/MEM.RegWrite and (EX/MEM.RegisterRd # 0)
and (EX/MEM RegisterRd = ID/EX.RegisterRt))

MEM hazard
if (MEM/WB.RegWirite and (MEM/ANB.RegisterRd # 0)
and (MEMMVB.RegisterRd = ID/EX.RegisterRs))

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)
and (MEMAVB.RegisterRd = ID/EX.RegisterRt))

Chapter4 — The Processor—T72

Double Data Hazard

Consider the sequence:

add ,$1,%2
add ,51,9%3
add $1,91,%4

Both hazards occur
Want to use the most recent
Revise MEM hazard condition
Only fwd if EX hazard condition isn't true

Chapter4 — The Processor — 73

Revised Forwarding Condition

MEM hazard
if (MEM/AWB.RegWrite and (MEM/VWB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRs))
ForwardA = 01

if (MEM/WB.RegWrite and (MEM/WB.RegisterRd # 0)

and (MEM/WB.RegisterRd = ID/EX.RegisterRt))
ForwardB = 01

Chapter 4 — The Processor — 74

Datapath with Forwarding

ID/EX

" exmen
—o " £
5 1

1oy L 1 MEWWE
. ./ L L oo}
; —u
—lu
x
|
Regiters S "
]| mstructi | e
E_‘ bk | o e
" r »l: mamory
IFMD Rsgistems | |Rs
TF7D Ragisto it At
- Al || | EXMEM RagisterRd|
A [
MEMMWE RegistorRid
T

Chapter 4 — The Processor — 75

Load-Use Data Hazard !wllo(s')

Chapter 4 — The Processor — 76

Load-Use Hazard Detection

Check when using instruction is decoded
in ID stage

ALU operand register numbers in ID stage
are given by

IF/ID.RegisterRs, IF/ID.RegisterRt
Load-use hazard when

ID/EX.MemRead and
((ID/EX.RegisterRt = IF/ID.RegisterRs) or
(ID/EX.RegisterRt = IF/ID.RegisterRt))

If detected, stall and insert bubble

Chapter4 — The Processor — 77

Stall/Bubble in the Pipeline

Time (in clock
€c1 cc2 €C3 CC4 CCs5 CCB CC7 CC8 CC9 CC1O

Program
execution

order
(in instructions)

w 52, 20(81) ,.
(@nd becomes nD @—HJ‘G a1

w~{

and $4, 52, 85

w2 @-H'L"“‘”:D T@}@
add $9, 54, 52 @-”-ﬁi B oM

Chapter4 — The Processor—T9

How to Stall the Pipeline

Force control values in ID/EX register
to 0

EX, MEM and WB do nop (no-operation)
Prevent update of PC and IF/ID register

Using instruction is decoded again

Following instruction is fetched again

1-cycle stall allows MEM to read data for Tw
Can subsequently forward to EX stage

Chapter4 — The Processor—T78

Stall/Bubble in the Pipeline

Time (in clock cycles)
cc1 otz CC3 0G4 CCs CC6 CC7 CC8 CC9 CC10

Program
execution

ordar
(in instructions)
W52, 20(51) @‘H"h i i
and becomes nop [el I,l{ }
e

and 84, 2, $5 stalled in 1D

or's8, 52, $6 stalled in IF

Red oMk Feo
“J ™ i
QOr, more
accurately... Chapter 4 —The Processor— 80

add 59, $4, 52

| Datapath with Hazard Detection

MEMWB
LT L

oy i
—E‘:JI___.

1D Regiserts I
FAD Fagistofs =

IFAD Rogisierfid T

ID/EX Fagisiori, —

Chapter4 — The Processor — &1

| Branch Hazards

‘ If branch outcome determined in MEM

€1 cc2 €3 cc4 CCS CCE €CT CC8 CCY
Program
oxocuton

(i instructons)

48 ors1a, 56,52

NS E}I«;:I’ NI
Flush these
i el e instructions
IIII-Iﬁ‘fal: ’ M‘, {Set control
i . values 1o 0)
apafPlefs
ol

Chapter4 — The Processor — 83

2008514, 82.52

| Example: Branch Taken

‘ and $12, 82,55 i beq$1,83,7 H sub$10,84,58 | before<t> | before<2>

Chapter4 — The Processor — 85

10

| Stalls and Performance

Stalls reduce performance
= But are required to get correct results

Compiler can arrange code to avoid
hazards and stalls

= Requires knowledge of the pipeline structure

Chapter4 — The Processor — 82

| Reducing Branch Delay

| Move hardware to determine outcome to 1D
stage
» Target address adder
= Register comparator
Example: branch taken

36: sub $10, 34, 38
40: beq $1, 33, 7
44: and $12, $2, $5
48: or $13, 32, 36
52: add $14, %4, 32
56: slt $15, 36, 37

72: Tw $4, 50($7)

Chapter4 — The Processor— 84

| Example: Branch Taken

‘ ¢ s, 154, 50087) : 2 beq$1,53.7 , subSI0.... , before<l>

Chapter4 — The Processor— 86

Data Hazards for Branches Data Hazards for Branches
If a comparison register is a destination of

If a comparison register is a destination of
2" or 3 preceding ALU instruction preceding ALU instruction or 2" preceding
load instruction

Need 1 stall cycle

add 51, 52, 53 []| l][| =]k =]
add 51, 5, $6 HHHH
EIEIEE=e] W, s [Ed] kel
o s i, s === aad o, 55,56 [F| =] A
b FlElololo
beq ©1, i1, target H o HHH

Can resolve using forwarding

Chapter4 —The Processor— 88

Chapter4 — The Processor — 87

Data Hazards for Branches Dynamic Branch Prediction
In deeper and superscalar pipelines, branch

If a comparison register is a destination of
penalty is more significant

immediately preceding load instruction
Need 2 stall cycles Use dynamic prediction
Branch prediction buffer (aka branch history table)
Indexed by recent branch instruction addresses

Stores outcome (taken/not taken)

st ader H”HH To execute a branch =
beq HHO HO HO Check table, expect the same outcome C Z
Start fetching from fall-through or target
bed HHO HO HO If wrong, flush pipeline and flip prediction 5"3 L
beq i, , target HE‘HHH

Chapter4 — The Processor — 90

Chapter4 — The Processor — 89

2-Bit Predictor

Only change prediction on two successive

1-Bit Predictor: Shortcoming

Inner loop branches mispredicted twice!
outer: mlsprE;#yctlons
inner: [
/ Nottaken:
Errra : E—
Taken
beq .., .., outer Not taken ’Taken
Mispredict as taken on last iteration of st e
inner loop
Then mispredict as not taken on first
iteration of inner loop next time around
Chapter4 — The Processor — 92

Chapter4 — The Processor — 91

11

Calculating the Branch Target

Even with predictor, still need to calculate
the target address

1-cycle penalty for a taken branch
Branch target buffer

Cache of target addresses

Indexed by PC when instruction fetched

If hit and instruction is branch predicted taken, can
fetch target immediately

Chapter4 — The Processor — 93

Concluding Remarks

ISA influences design of datapath and control
Datapath and control influence design of ISA
Pipelining improves instruction throughput
using parallelism

More instructions completed per second

Latency for each instruction not reduced

Hazards: structural, data, control

Chapter 4 —The Processor— 1

12

Pitfalls

Poor ISA design can make pipelining
harder
e.g., complex instruction sets (VAX, [A-32)
Significant overhead to make pipelining work
|A-32 micro-op approach
e.g., complex addressing modes
Register update side effects, memory indirection
e.g., delayed branches
Advanced pipelines have long delay slots

Chapter 4 — The Processor — 130

